Statistical Model Checking for Stochastic Hybrid Systems

Kim G. Larsen

Alexandre David, Marius Mikucionis,

Peter Bulychev, Axel Legay, Dehui Du, Guangyuan Li, Danny B. Poulsen, Amélie Stainer, Zheng Wang

Cyber-Physical Systems

Real Time Complex systems that tightly integrate Resources ts (hardware and software) with no Hybrid Systems computing physic... CAMER elements such as LIGHTING ^e Stochasticity Î IRRIGATIO components.

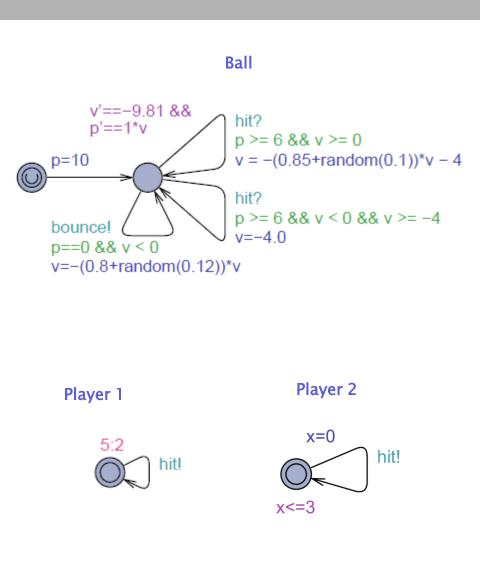
LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Kim Larsen [2]

Overview

- Stochastic Hybrid Systems
- Metric Interval Temporal Logic
- UPPAAL SMC
- Schedulability and Performance Analysis of Mixed Critical Systems

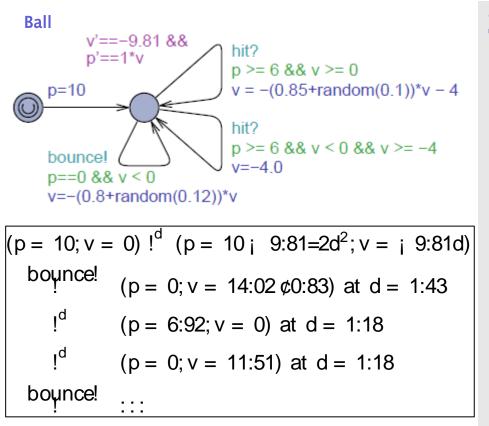
Kim Larsen [3]


- Energy Aware Buildings
- Conclusion

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Hybrid Automata

H=(L, I₀,§, X,E,F,Inv) where

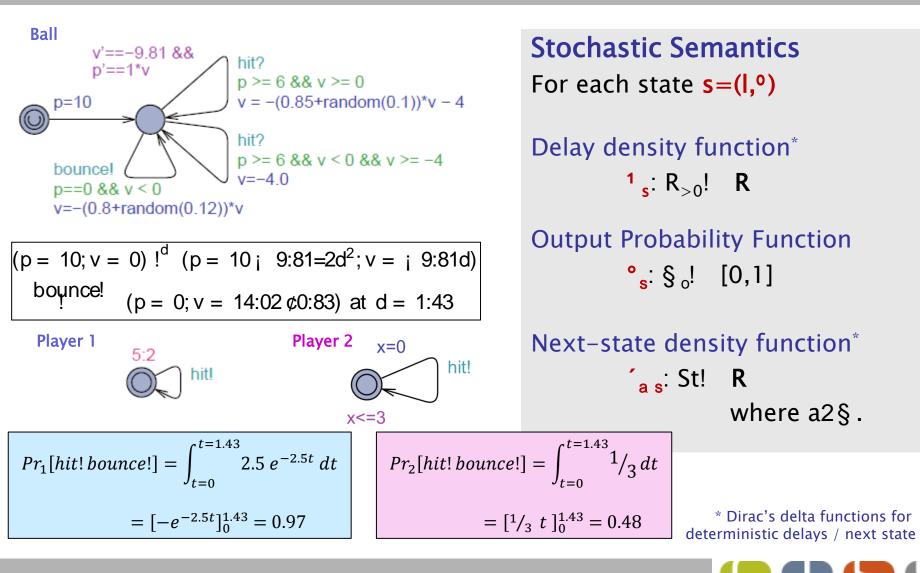

- L set of locations
- I₀ initial location
- $\$ = \$_i [\$_o]$ set of actions
- X set of continuous variables valuation °: X! R (=R^X)
- E set of edges (I,g,a,Á,I') with gµ R^x and Áµ R^x£ R^x and a2§
- For each I a delay function F(I): R_{>0}£ R^X ! R^X
- For each I an invariant Inv(I)µ R^x

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Kim Larsen [4]

Hybrid Automata

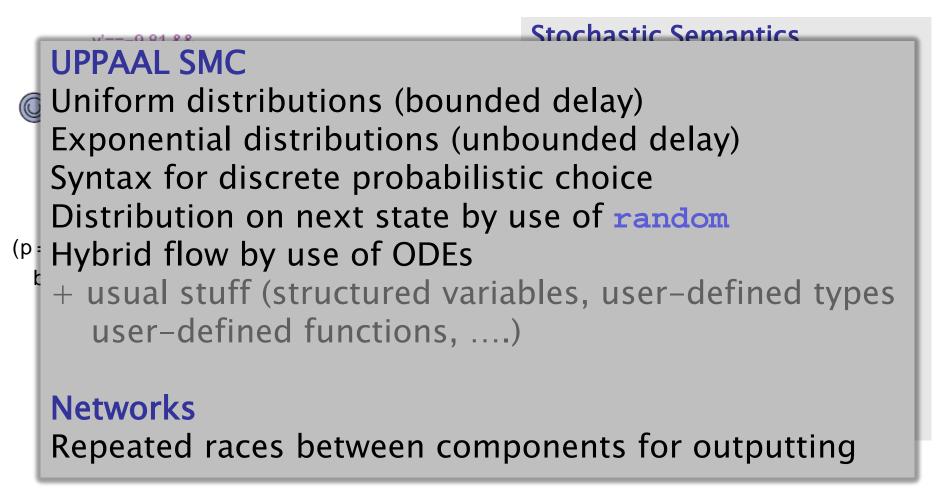
Semantics


- States

 (I,°) where °2R^x
- Transitions

 (I,°)!
 (I,°') where
 °'=F(I)(d,°)
 provided °'2 Inv(I)

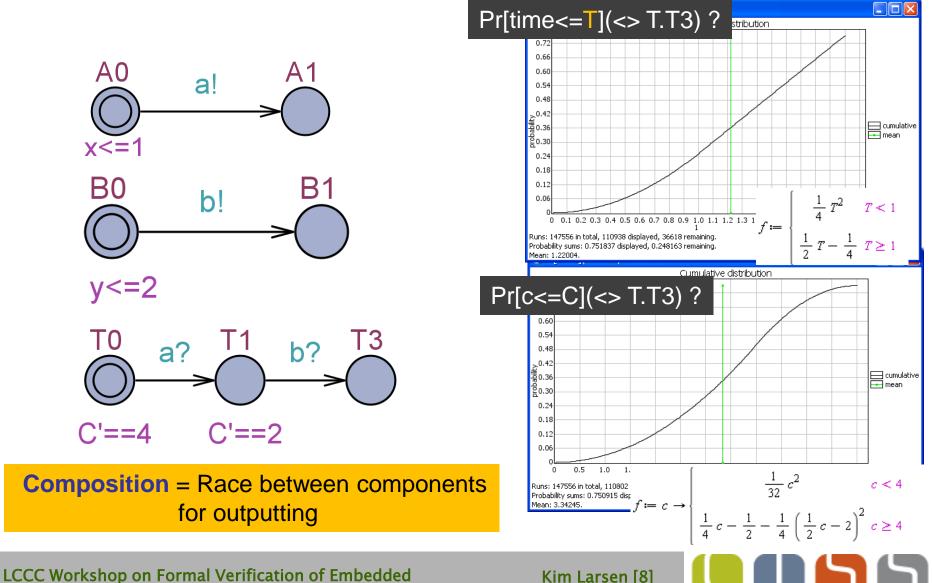
(I,°) ! a (I',°') if there exists (I,g,a,Á,I')2E with °2g and (°,°')2Á and °'2 Inv(I')


Stochastic Hybrid Automata

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

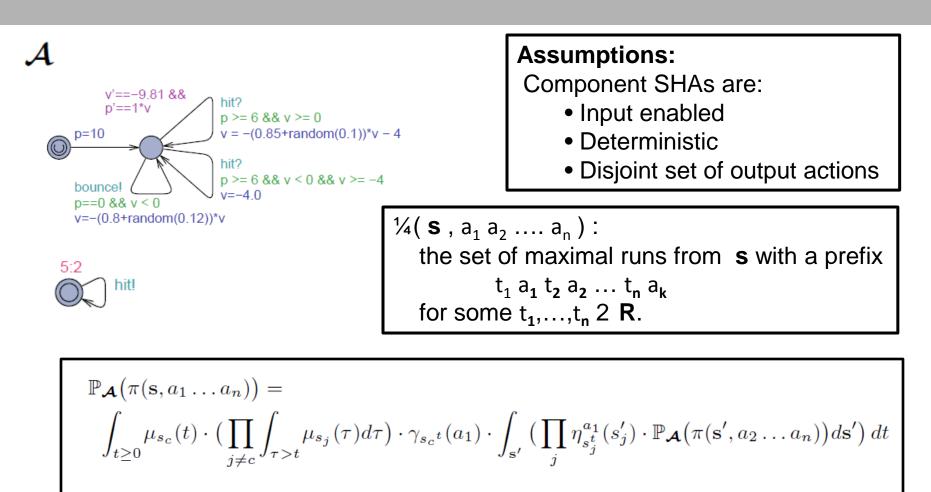
Kim Larsen [6]

Stochastic Hybrid Automata



* Dirac's delta functions for deterministic delays / next state

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

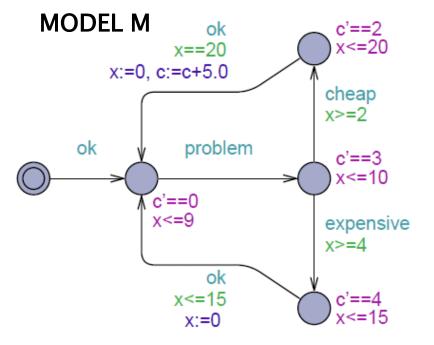

Kim Larsen [7]

Stochastic Semantics NTAs

Control Systems, April 17–19, Lund, Sweden

Stochastic Semantics of NHAs

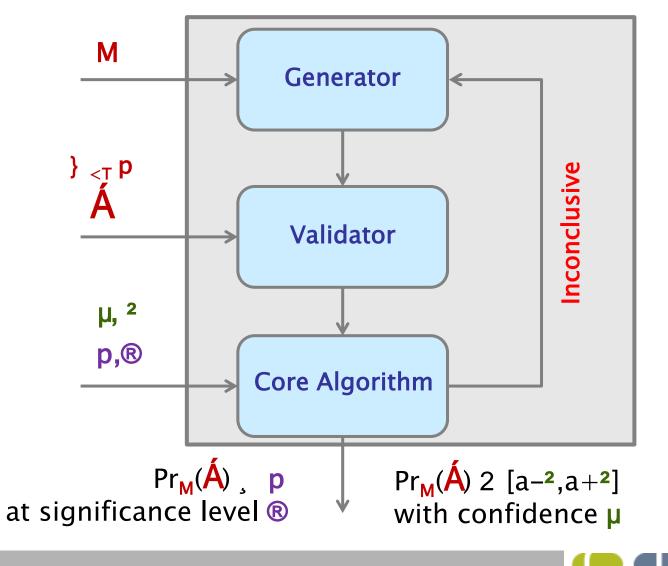
where $c = c(a_1)$, and as base case we take $P_{\mathcal{A}}(\pi(\mathbf{s}), \varepsilon) = 1$.


LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

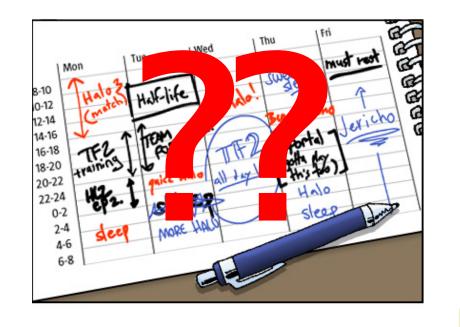
Kim Larsen [9]

Logical Properties- WMITL

$$\mathbf{\dot{A}} = \ \mathsf{ok} \ \mathsf{U}_{\leq 9}^{\tau}(\texttt{problem} \land (\neg \mathsf{ok} \ \mathsf{U}_{\leq 10}^{\tau} \ \mathsf{ok}) \land (\neg \mathsf{ok} \ \mathsf{U}_{\leq 40}^{c} \ \mathsf{ok}))$$


$$Pr_{M}(\mathbf{A}) = ??$$

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden Kim Larsen [10]

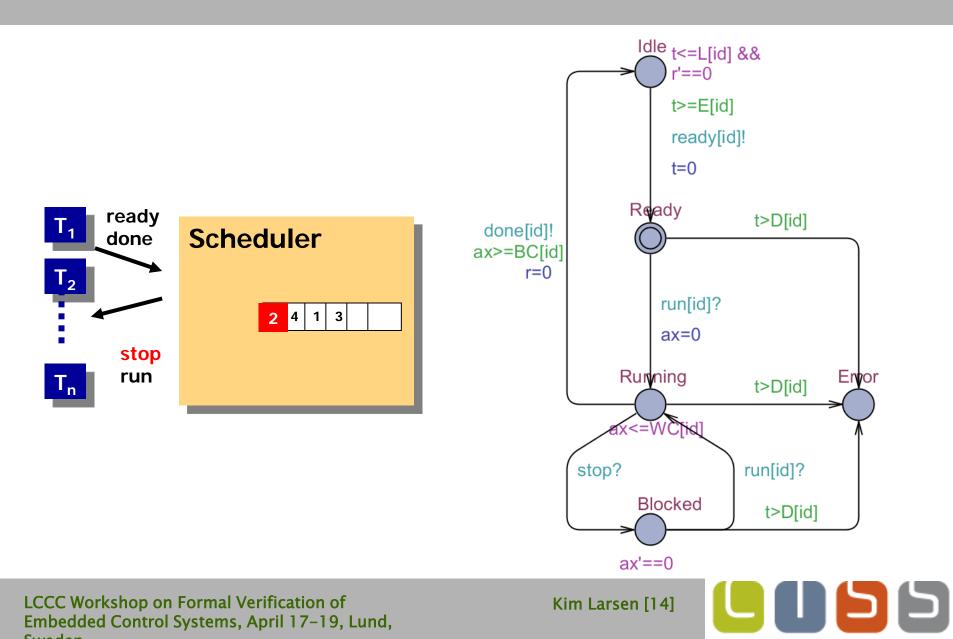

Statistical Model Checking

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden Kim Larsen [11]

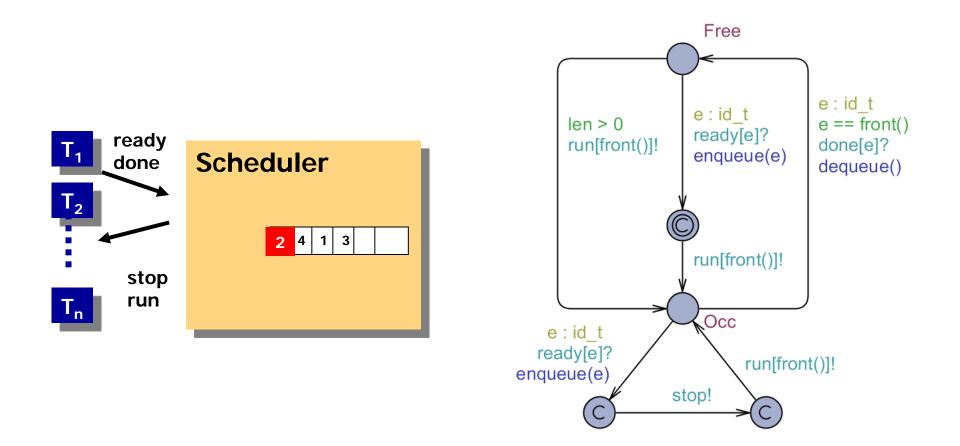
Schedulability & Performance Analysis



Task Scheduling

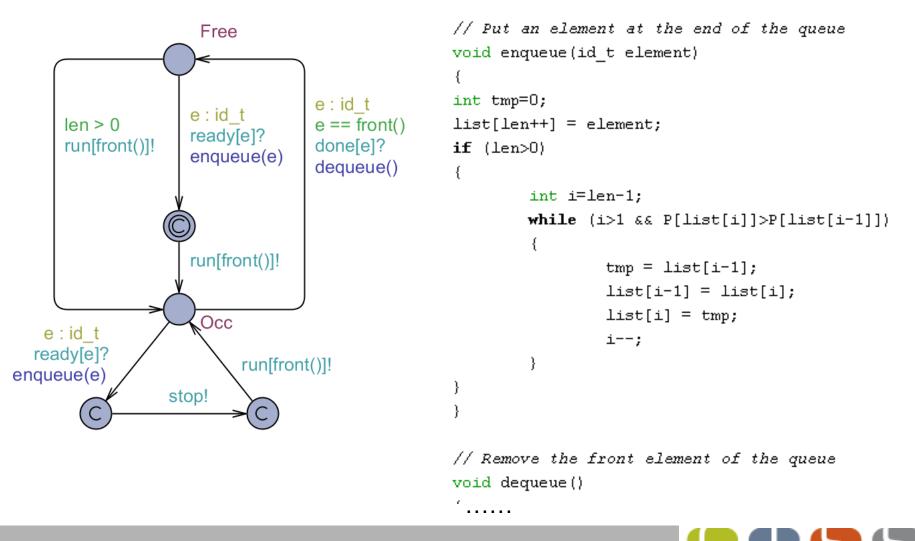

utilization of CPU

P(i), UNI[E(i), L(i)], ...: period or earliest/latest arrival or ... for T_i C(i), UNI[BC(i),WC(i)] : execution time for T_i D(i): deadline for T_i

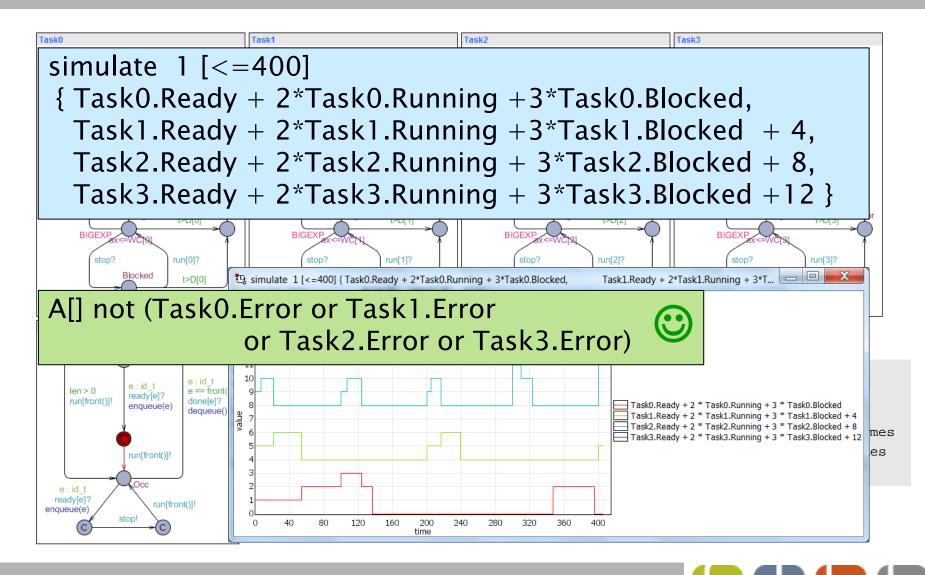


LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund,

Modeling Task

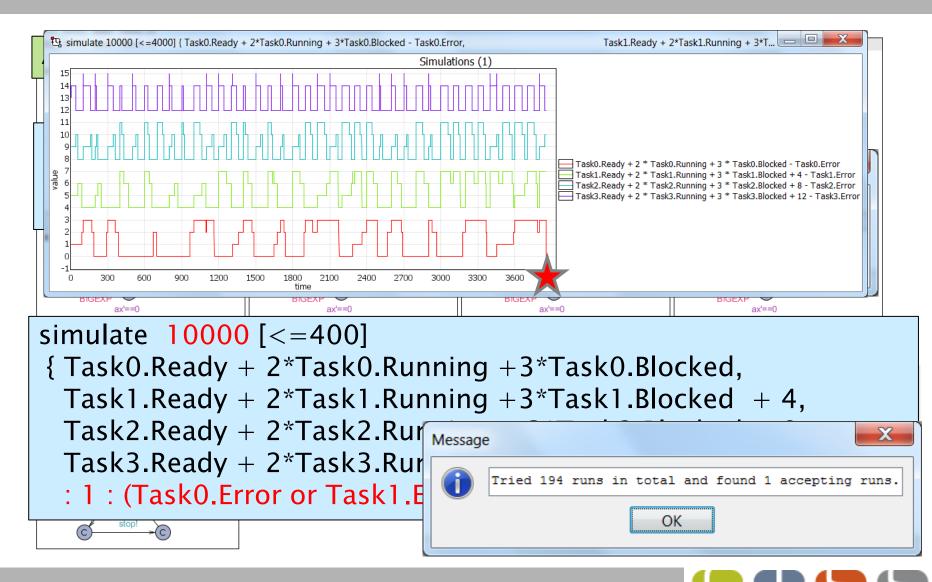


Modeling Scheduler


LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Kim Larsen [15]

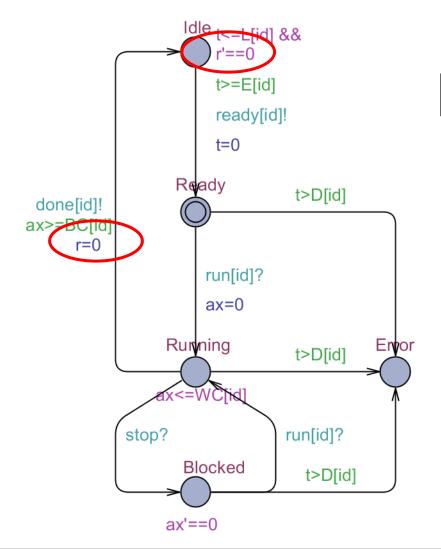
Modeling Queue

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Kim Larsen [16]


Schedulability Analysis

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Kim Larsen [17]

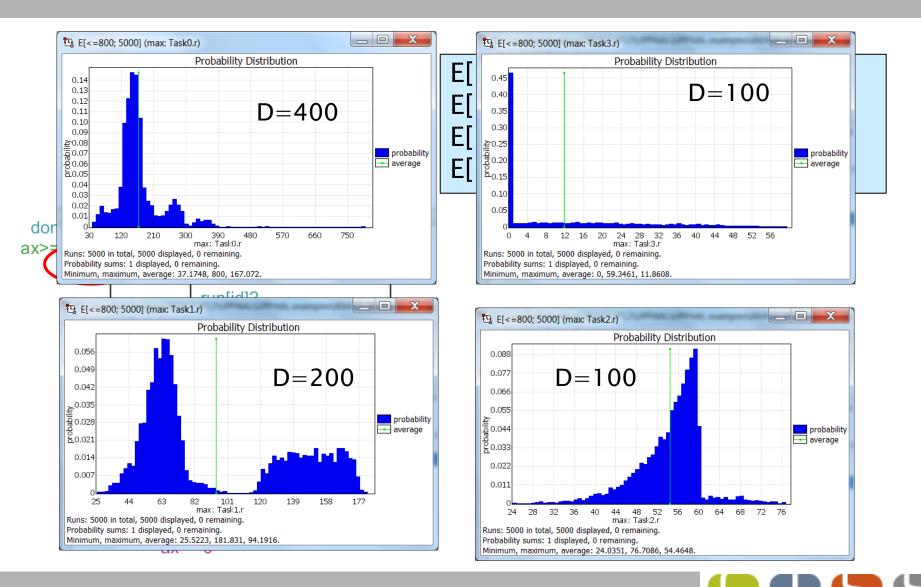

Schedulability Analysis

Kim Larsen [18]

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

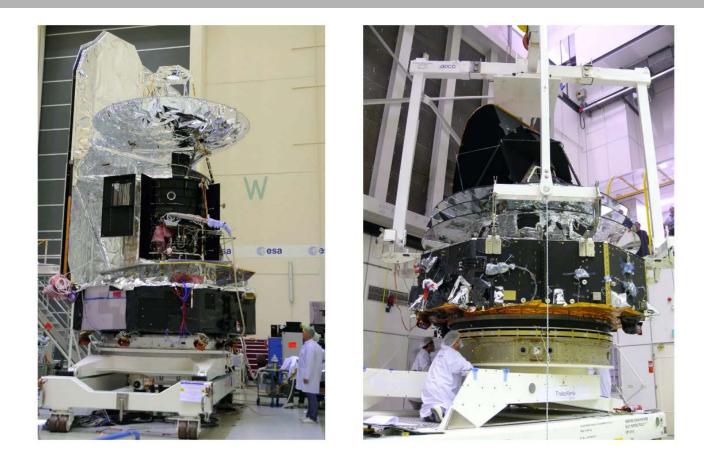
Performance Analysis

sup : Task2.r, Task3.r



LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Kim Larsen [19]



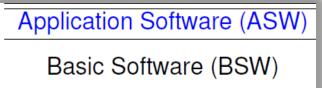
Performance Analysis

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden Kim Larsen [20]

Herschel-Planck Scientific Mission at ESA

Attitude and Orbit Control Software TERMA A/S Steen Ulrik Palm, Jan Storbank Pedersen, Poul Hougaard

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden Kim Larsen [21]


Herschel & Planck Satelites

Application software (ASW)

- built and tested by Terma:
- does attitude and orbit control, telecommanding, fault detection isolation and recovery.
- Basic software (BSW)
 - low level communication and scheduling periodic events.
- Real-time operating system (RTEMS)
 - Priority Ceiling for ASW,
 - Priority Inheritance for BSW

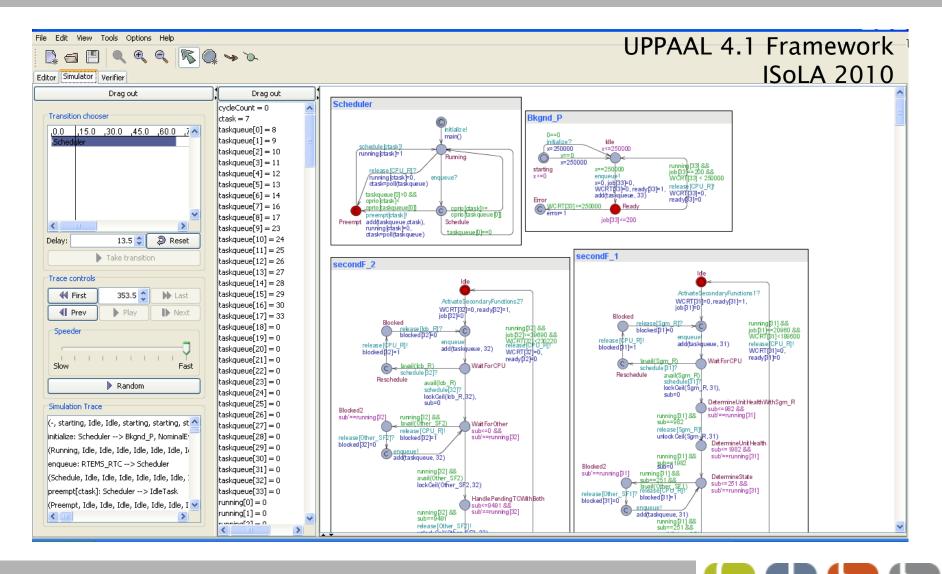
Hardware

 single processor, a few buses, sensors and act **Requirements:**

Hardware

Software tasks should be schedulable.

Kim Larsen [22]


CPU utilization should not exceed 50% load

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19,

Modeling in UPPAAL

TERMA®

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund,

Kim Larsen [23]

Gantt Chart 1. cycle

TERMA®

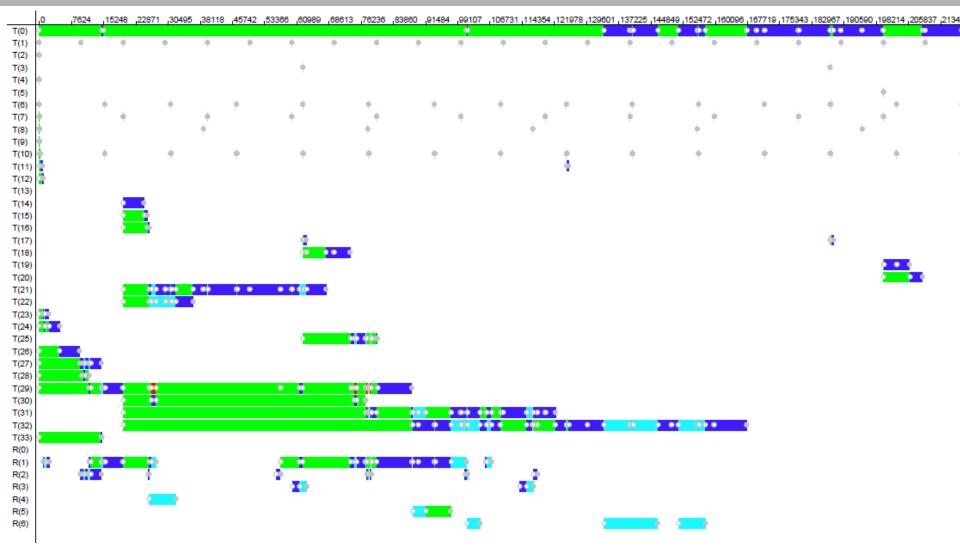


Fig. 11. Gantt chart of a schedule from the first cycle: green means ready, blue means running, cyan means suspended, red means blocked. R stand for resources: CPU_R=0, Icb_R=1, Sgm_R=2, PmReq_R=3, Other_RCS=4, Other_SF1=5, Other_SF2=6.

Blocking & WCRT

	Secrification Decking times WCDT								_		
ID	T 1	Specification Period WCET 1		I	Blocking tin			m	WCRT	Dia	
ID	Task						Diff		UPPAAL		
1		10.000	0.013	1.000	0.035	0	0.035	0.050	0.013	I	
2	AswSync_SyncPulseIsr	250.000	0.070	1.000	0.035	0	0.035	0.120	0.083	0.037	
3	Hk_SamplerIsr	125.000	0.070	1.000	0.035	0	0.035	0.120	0.070	0.050	
4	SwCyc_CycStartIsr	250.000	0.200	1.000	0.035	0	0.035	0.320	0.103	0.217	
5	SwCyc_CycEndIsr	250.000	0.100	1.000	0.035	0	0.035	0.220	0.113		
6		15.625	0.070	1.000	0.035	0	0.035	0.290	0.173	0.117	
7	Bc1553_Isr	20.000	0.070	1.000	0.035	0	0.035	0.360	0.243	0.117	
8	Spw_Isr	39.000	0.070	2.000	0.035	0	0.035	0.430	0.313	0.117	
9	Obdh_Isr	250.000	0.070	2.000	0.035	0	0.035	0.500	0.383	0.117	
10	RtSdb_P_1	15.625	0.150	15.625	3.650	0	3.650	4.330	0.533	3.797	
11	RtSdb_P_2	125.000	0.400	15.625	3.650	0	3.650	4.870	0.933	3.937	
12	RtSdb_P_3	250.000	0.170	15.625	3.650	0	3.650	5.110	1.103	4.007	
14	FdirEvents	250.000	5.000	230.220	0.720	0	0.720	7.180	5.153	2.027	
15	NominalEvents_1	250.000	0.720	230.220	0.720	0	0.720	7.900	5.873	2.027	
16	MainCycle	250.000	0.400	230.220	0.720	0	0.720	8.370	6.273	2.097	
17	HkSampler_P_2	125.000	0.500	62.500	3.650	0	3.650	11.960	5.380	6.580	
18	HkSampler_P_1	250.000	6.000	62.500	3.650	0	3.650	18.460	11.615	6.845	
19	Acb_P	250.000	6.000	50.000	3.650	0	3.650	24.680	6.473	18.207	
20	IoCyc_P	250.000	3.000	50.000	3.650	0	3.650	27.820	9.473	18.347	
21	PrimaryF	250.000	34.050	<mark>59.600</mark>	5.770	0.966	4.804	65.470	54.115	11.355	
22	RCSControlF	250.000	4.070	239.600	12.120	0	12.120	76.040	53.994	22.046	
23	Obt_P	1000.000	1.100	100.000	9.630	0	9.630	74.720	2.503	72.217	
24	Hk_P	250.000	2.750	250.000	1.035	0	1.035	6.800	4.953	1.847	
25	StsMon_P	250.000	3.300	125.000	16.070	0.822	15.248	85.050	17.863	67.187	
26	TmGen_P	250.000	4.860	250.000	4.260	0	4.260	77.650	9.813		
27	Sgm_P	250.000	4.020	250.000	1.040	0	1.040	18.680	14.796	3.884	
28	TcRouter_P	250.000	0.500	250.000	1.035	0	1.035	19.310	11.896	7.414	
29	Cmd_P	250.000	14.000	250.000	26.110	1.262	24.848	114.920	94.346	20.574	Ν
30	NominalEvents_2	250.000	1.780	230.220	1			102.760	65.177	37.583	
31	SecondaryF_1	250.000	20.960	189.600	1			141.550		30.884	
32		250.000	39.690	230.220	1			204.050		49.494	
	Bkgnd_P	250.000	0.200	250.000	0.000	0		154.090		139.044	
					0.000	0	2.000	2020000			

Marius Micusionis

Effort and Utilization

cycle	U	opaal resou	rces	Herschel CPU utilization						
limit	CPU, s	Mem, KB	States, $\#$	Idle, μs	Used, μs	Global, μs	Sum, μs Used, %			
1	465.2	60288	173456	91225	160015	250000	$251240 \ 0.640060$			
2	470.1	59536	174234	182380	318790	500000	$501170 \ 0.637580$			
3	461.0	58656	175228	273535	477705	750000	$751240 \ 0.636940$			
4	474.5	58792	176266	363590	636480	1000000	$1000070 \ 0.636480$			
6	474.6	58796	178432	545900	955270	1500000	$1501170 \ 0.636847$			
8	912.3	58856	352365	727110	1272960	2000000	$2000070 \ 0.636480$			
13	507.7	58796	186091	1181855	2069385	3250000	$3251240 \ 0.636734$			
16	1759.0	58728	704551	1454220	2545850	4000000	4000070 0.636463			
26	541.9	58112	200364	2363640	4137530	6500000	$6501170 \ 0.636543$			
32	3484.0	75520	1408943	2908370	5091700	8000000	8000070 0.636463			
39	583.5	74568	214657	3545425	6205745	9750000	$9751170 \ 0.636487$			
64	7030.0	91776	2817704	5816740	10183330	16000000	$16000070 \ 0.636458$			
78	652.2	74768	257582	7089680	12411420	19500000	$19501100 \ 0.636483$			
128	14149.4	141448	5635227	11633480	20366590	32000000	$32000070 \ 0.636456$			
156	789.4	91204	343402	14178260	24821740	39000000	39000000 <mark>0.636455</mark>)			
256	23219.4	224440	11270279	23266890	40733180	64000000	64000070 0.636456			
312	1824.6	124892	686788	28356520	49643480	78000000	$78000000 \ 0.636455$			
512	49202.2	390428	22540388	46533780	81466290	128000000	$128000070 \ 0.636455$			
624	3734.7	207728	1373560	56713040	99286960	156000000	$15600000 \ 0.636455$			

TERMA®

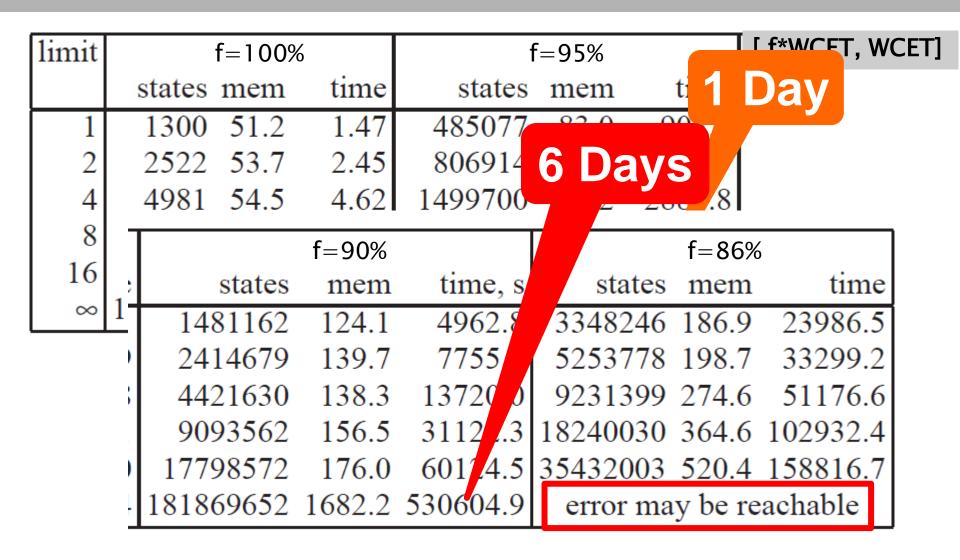
Marius Micusionis

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund,

Page 26

TERMA Case Conclusion

- Schedulability analysis using UPPAAL:
 - Reusable and customizable task templates.
 - Blocking times and WCRTs can be derived from the model.
 - WCRTs of all tasks are more optimistic than in RTA.
 - There are very few blocking times and they are short.
 - PrimaryF meets deadline (59.6ms) with WCRT=54.1ms (65.5ms in RTA).
 - Herschel event mode is schedulable.
- UPPAAL verification for schedulability:
 - can be scaled using sweep-line method,
 - takes up to 2min to verify schedulability of 32 task system,


Kim Larsen [27]

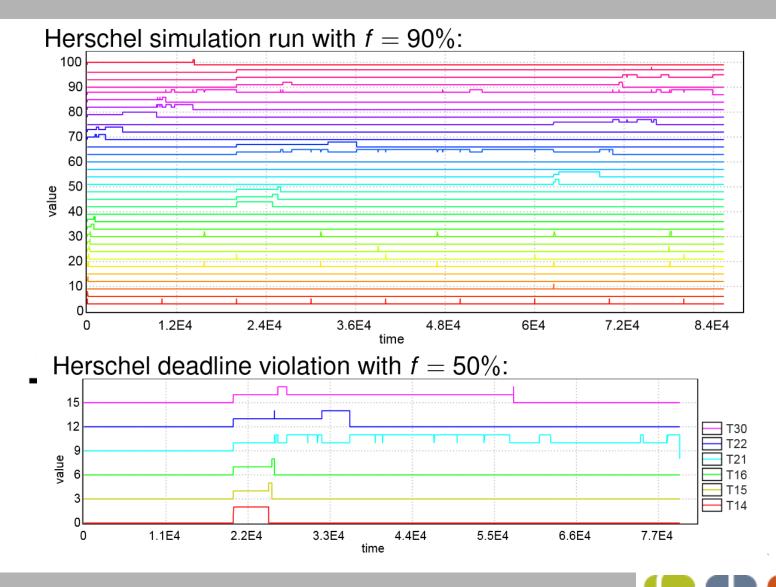
- takes up to 8min to find all WCRTs and CPU utilization.
- In addition, it is possible to:
 - simulate the system model and examine details,
 - render a Gantt chart, validate and inspect visually.

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund,

TERMA Case Follow-Up

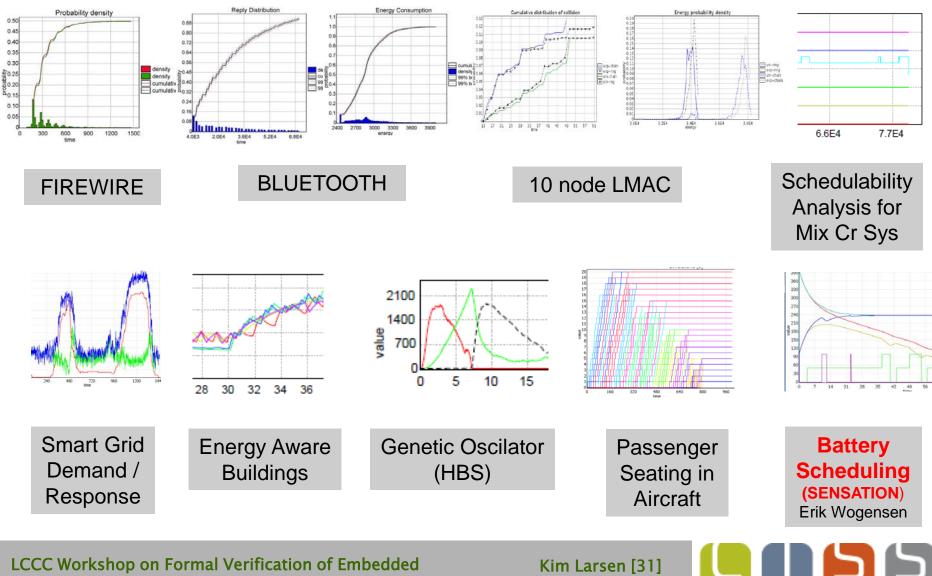
ISOLA 2012

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Kim Larsen [28]


TERMA Case – **Statistical MC**

									0
Limit	$\stackrel{f}{\sim}$	α	ε	Total		ror traces			Verification
cycles	%			traces, $#$	#	Probability	cycle	offset	time
1	0	0.0100	0.005	105967	1928	0.018194	0	79600.0	1:58:06
1	50	0.0100	0.005	105967	753	0.007106	0	79600.0	2:00:52
1	60	0.0100	0.005	105967	13	0.000123	0	79778.3	2:01:18
1	62	0.0005	0.002	1036757	34	0.000033	0	79616.4	19:52:22
160	63	0.0100	0.05	1060	177	0.166981	0	81531.6	2:47:03
160	64	0.0100	0.05	1060	118	0.111321	1	79803.0	2:55:13
160	65	0.0500	0.05	738	57	0.077236	3	79648.0	2:06:55
160	66	0.0100	0.05	1060	60	0.056604	2	82504.0	2:62:44
160	67	0.0100	0.05	1060	26	0.024528	1	79789.0	2:64:20
160	68	0.0100	0.05	1060	3	0.002830	67	81000.0	2:67:08
640	69	0.0100	0.05	1060	8	0.007547	114	80000.0	12:23:00
640	70	0.0100	0.05	1060	3	0.002830	6	88070.0	12:30:49
1280	71	0.0100	0.05	1060	2	0.001887	458	80000.0	25:19:35

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund,


Kim Larsen [29]

TERMA Case – Conclusion

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Kim Larsen [30]

Other Case Studies

Control Systems, April 17-19, Lund, Sweden

www.uppaal.{org,com}

LCCC Workshop on Formal Verification of Embedded Control Systems, April 17–19, Lund, Sweden

Kim Larsen [32]

