
Automatic Verification ofAutomatic Verification ofAutomatic Verification ofAutomatic Verification of
Competitive Stochastic SystemsCompetitive Stochastic SystemsCompetitive Stochastic SystemsCompetitive Stochastic Systems

Marta Kwiatkowska

University of Oxford

Based on TACAS’12 [FMSD’13], TACAS’13 and SR‘13

Joint work with:

Taolue Chen, Vojtěch Forejt, Dave Parker, Aistis Simaitis

Automated quantitative verification

• Quantitative verification

− of systems with stochastic behaviour, against temporal logic

− e.g. due to unreliability, uncertainty, randomisation, …

− probability, costs/rewards, time, …

− often: subtle interplay between probability/nondeterminism

• Automated verification

− probabilistic model checking

− tool support: PRISM model checker

− techniques for improving efficiency, scalability

• Practical applications

− wireless communication protocols, security protocols,
systems biology, DNA computing, robotic planning, …

Probabilistic models

• Discrete-time Markov chains (DTMCs)

− discrete states + probability

− for: randomisation, unreliable communication media, …

• Continuous-time Markov chains (CTMCs)

− discrete states + exponentially distributed delays

− for: component failures, job arrivals, molecular reactions, …

• Markov decision processes (MDPs)

− probability + nondeterminism (e.g. for concurrency)

− for: randomised distributed algorithms, security protocols, …

• Probabilistic timed automata (PTAs)

− probability, nondeterminism + real-time

− for wireless comm. protocols, embedded control systems, …

Probabilistic model checking

• Property specifications based on temporal logic

− PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”

− S>0.999 [“up”] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [F “crash”]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary

Probabilistic model checking

• Typically combine numerical + exhaustive aspects

− model checking: graph analysis + numerical solution + …

− or statistical model checking (sampling of executions, statistical
tests or probability estimation)

• Probabilistic properties

− Pmax=? [F≤10 “fail”] – “worst-case probability of a failure occurring
within 10 seconds, for any possible scheduling of system
components”

− Pmax=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

The PRISM tool

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source (GPL), runs on all major OSs

• Support for:

− discrete-/continuous-time Markov chains (D/CTMCs)

− Markov decision processes (MDPs)

− probabilistic timed automata (PTAs)

− PCTL, CSL, LTL, PCTL*, costs/rewards, …

• Multiple efficient model checking engines

− mostly symbolic (BDDs) (up to 1010 states, 107-108 on avg.)

− widely used, 30,000 downloads

− 100+ case studies,300+ papers

• See: http://www.prismmodelchecker.org/

Modelling cooperation & competition

• Consider systems organised into communities

− self-interested agents, goal driven

− need to cooperate, e.g. in order to share bandwidth

− possibly opposing goals, hence competititive behaviour

− incentives to increase motivation and discourage selfishness

• Many typical scenarios

− e.g. energy management, user-centric networks, or sensor
network coordination

• Natural to adopt a game-theoretic view

− widely used in computer science, economics, …

− here, distinctive focus on algorithms, automated verification

• Research question: can we automatically verify cooperative
and competitive behaviour?

Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− probability + nondeterminism + multiple players

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, ∆, L):

− Π is a set of n players

− S is a (finite) set of states

− ⟨Si⟩i∈Π is a partition of S

− A is a set of action labels

− ∆ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• Notation:

− A(s) denotes available actions in state A

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG

− i.e. s0a0s1a1… such that ai∈A(si) and ∆(si,ai)(si+1)>0 for all i

− represents a system execution (i.e. one possible behaviour)

− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states

− based on history of execution so far

− i.e. a function σi : (SA)*Si → Dist(A)

− Σi denotes the set of all strategies for player I

• A strategy profile is tuple σ=(σ1,…,σn) for n players

− deterministic if σ always gives a Dirac distribution

− memoryless if σ(s0a0…sk) depends only on sk

− finite memory …

Paths, strategies + probabilities…

• For a strategy profile σ:

− the game’s behaviour is fully probabilistic

− essentially an (infinite-state) Markov chain

− yields a probability measure Prs
σ

over set of all paths Paths from s

• Allows us to reason about the probability of events

− under a specific strategy profile σ

− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables

− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths

X dPrs
σ

− used to define expected costs/rewards…

s1 s2s

Rewards

• Rewards (or costs, prices)

− real-valued quantities assigned to states (and/or transitions)

• Wide range of possible uses:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• We use:

− state rewards: r : S → ℕ (but can generalise to ℚ≥0)

− expected cumulative reward until a target set T is reached

• 3 interpretations of rewards

− 3 reward types ⋆ ∈ {∞,c,0}, differing where T is not reached

− reward is assumed to be infinite, cumulated sum, zero, resp.

− ∞: e.g. expected time for algorithm execution

− c: e.g. expected resource usage (energy, messages sent, …)

− 0: e.g. reward incentive awarded on algorithm completion

Property specification: rPATL

• New temporal logic rPATL:

− reward probabilistic alternating temporal logic

• CTL, extended with:

− coalition operator ⟨⟨C⟩⟩ of ATL

− probabilistic operator P of PCTL

− generalised version of reward operator R from PRISM

• Example:

− ⟨⟨{1,2}⟩⟩ P<0.01 [F
≤10 error]

− “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”

rPATL syntax

• Syntax:

φ ::= ⊤ | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈x [F⋆φ]

ψ ::= X φ | φ U≤k φ | F≤k φ | G≤k φ

• where:

− a∈AP is an atomic proposition, C⊆Π is a coalition of players,

⋈∈{≤,<,>,≥}, q∈[0,1]∩ℚ, x∈ℚ≥0, k ∈ ℕ∪{∞}

r is a reward structure and ⋆∈{0,∞,c} is a reward type

• ⟨⟨C⟩⟩P⋈q[ψ]

− “players in coalition C have a strategy to ensure that the
probability of path formula ψ being true satisfies ⋈ q,
regardless of the strategies of other players”

• ⟨⟨C⟩⟩Rr
⋈x [F⋆φ]

− “players in coalition C have a strategy to ensure that the
expected reward r to reach a φ-state (type ⋆) satisfies ⋈ x,
regardless of the strategies of other players”

rPATL semantics

• Semantics for most operators is standard

• Just focus on P and R operators…

− present using reduction to a stochastic 2-player game

− (as for later model checking algorithms)

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

false in initial state

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

false in initial state

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

true in initial state

Why do we need multiple players?

• SMGs have multiple (>2) players

− but semantics (and model checking) reduce to 2-player case

− due to (zero sum) nature of queries expressible by rPATL

− so why do we need multiple players?

• 1. Modelling convenience

− and/or multiple rPATL queries on same model

• 2. May also exploit in nested queries, e.g.:

− players: sensor1, sensor2, repairer

− ⟨⟨sensor1⟩⟩ P<0.01[F (¬⟨⟨repairer⟩⟩ P≥0.95[F “operational”])]

Model checking rPATL

• Basic algorithm: as for any branching-time temporal logic

− recursive descent of formula parse tree

− compute Sat(φ) = { s∈S | s⊨φ } for each subformula φ

• Main task: checking P and R operators

− reduction to solution of stochastic 2-player game GC

− e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity: NP ∩ coNP (without any R[F0] operators)

− compared to, e.g. P for Markov decision processes

− complexity for full logic: NEXP ∩ coNEXP (due to R[F0] op.)

• In practice though:

− evaluation of numerical fixed points (“value iteration”)

− up to a desired level of convergence

− usual approach taken in probabilistic model checking tools

Probabilities for P operator

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge

• Can also generate strategies

f(s) =

maxa∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑

 if s ∈ S1

mina∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑

 if s ∈ S2

Example

b

a ¼

¼
¼

½

¼

1

1
½

1
a

b

1

a

b

Compute: supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F ✓)

Player 1: , Player 2:

✓

rPATL: ⟨⟨ , ⟩⟩P≥⅓ [F ✓]

Tool support: PRISM-games

• Prototype model checker for stochastic games

− integrated into PRISM model checker

− using new explicit-state model checking engine

• SMGs added to PRISM modelling language

− guarded command language, based on Reactive modules

− finite data types, parallel composition, proc. algebra op.s, …

• rPATL added to PRISM property specification language

− implemented value iteration based model checking

• Strategy generation implemented

− can generate strategies (memoryless, finite-memory for R[F0])

− perform model checking under a strategy

• Available now [TACAS 2013]:

− http://www.prismmodelchecker.org/games/

Case studies

• Applicable to strategic analysis of

− distributed agreement protocols

− reputation/virtual currency systems

• Evaluated on several case studies:

− team formation protocol [CLIMA’11]

− futures market investor model [McIver & Morgan]

− collective decision making for sensor networks [TACAS’12]

− energy management in microgrids [TACAS’12]

− user-centric networks [SR ‘13]

Energy management in microgrids

• Microgrid: proposed model for future energy markets

− localised energy management

• Neighbourhoods use and
store electricity generated
from local sources

− wind, solar, …

• Needs: demand-side
management

− active management
of demand by users

− to avoid peaks

Microgrid demand-side management

• Demand-side management algorithm [Hildmann/Saffre’11]

− N households, connected to a distribution manager

− households submit loads for execution

− load submission probability: daily demand curve

− load duration: random, between 1 and D steps

− execution cost/step = number of currently running loads

• Simple probabilistic algorithm:

− upon load generation, if cost is below an agreed limit clim,
execute it, otherwise only execute with probability Pstart

• Analysis of [Hildmann/Saffre’11]

− define household value as V=loads_executing/execution_cost

− simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

− (if all households stick to algorithm)

Microgrid demand-side management

• The model

− SMG with N players (one per household)

− analyse 3-day period, using piecewise
approximation of daily demand curve

− fix parameters D=4, clim=1.5

− add rewards structure for value V

• Built/analysed models

− for N=2,…,7 households

• Step 1: assume all households
follow algorithm of [HS’11] (MDP)

− obtain optimal value for Pstart

• Step 2: introduce competitive behaviour (SMG)

− allow coalition C of households to deviate from algorithm

NNNN StatesStatesStatesStates TransitionsTransitionsTransitionsTransitions

5 743,904 2,145,120

6 2,384,369 7,260,756

7 6,241,312 19,678,246

Results: Competitive behaviour

• Expected total value V per household

− in rPATL: ⟨⟨C⟩⟩RrC
max=? [F

0 time=max time] / |C|

− where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to

deviate

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

Conclusions

• Conclusions

− verification and strategy synthesis for stochastic systems with
competitive behaviour

− modelled as stochastic multi-player games

− temporal logic rPATL for property specification

− rPATL /rPATL* model checking algorithm based on numerical
fixed points

− prototype tool PRISM-games

− case studies

• Future work

− further objectives, e.g. multiple objectives

− correct-by-construction controller synthesis

− more realistic classes of strategy, e.g. partial information

− new application areas, security, randomised algorithms, …

