UNIVERSITY OF

OXFORD

Automatic Verification of
Competitive Stochastic Systems

Marta Kwiatkowska

University of Oxford

Joint work with:

Taolue Chen, Vojtéch Forejt, Dave Parker, Aistis Simaitis

Based on TACAS’12 [FMSD’13], TACAS’13 and SR‘13



Automated quantitative verification

Quantitative verification
— of systems with stochastic behaviour, against temporal logic
— e.g. due to unreliability, uncertainty, randomisation, ...
— probability, costs/rewards, time, ...
— often: subtle interplay between probability/nondeterminism

- Automated verification

— probabilistic model checking
— tool support: PRISM model checker
— techniques for improving efficiency, scalability

Practical applications

— wireless communication protocols, security protocols,
systems biology, DNA computing, robotic planning, ...



Probabilistic models

Discrete-time Markov chains (DTMCs)
— discrete states + probability
— for: randomisation, unreliable communication media, ...

Continuous-time Markov chains (CTMCs)
— discrete states + exponentially distributed delays
— for: component failures, job arrivals, molecular reactions, ...

Markov decision processes (MDPs)
— probability + nondeterminism (e.g. for concurrency)
— for: randomised distributed algorithms, security protocols, ...

Probabilistic timed automata (PTASs)
— probability, nondeterminism + real-time
— for wireless comm. protocols, embedded control systems, ...




Probabilistic model checking

Property specifications based on temporal logic
— PCTL, CSL, probabilistic LTL, PCTL*, ...

- Simple examples:

— P_g o1 [ F “crash” ] - “the probability of a crash is at most 0.01”
— S_0.999 [ “Up” ] - “long-run probability of availability is >0.999”

Usually focus on quantitative (numerical) properties:

— P_, [ F “crash” ]
“‘what is the probability et
of a crash occurring?”

— then analyse trends in
quantitative properties
as system parameters vary

Probability of choosing X

«alo
13




Probabilistic model checking

- Typically combine numerical + exhaustive aspects
— model checking: graph analysis + numerical solution + ...

— or statistical model checking (sampling of executions, statistical
tests or probability estimation)

Probabilistic properties

— P2 [ F=10 “fail” ] - “worst-case probability of a failure occurring
within 10 seconds, for any possible scheduling of system
components”

— Pa—r [ G=002 "deploy” {“crash”{max} ] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

Reward-based properties (rewards = costs = prices)
— Reimen—» [ F “end” ] - “expected algorithm execution time”

— Rysenergyimax=? [ C=72%° ] - “worst-case expected energy
consumption during the first 2 hours”



The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs

- Support for:

— discrete-/continuous-time Markov chains (D/CTMCs)
— Markov decision processes (MDPs)
— probabilistic timed automata (PTAS)
— PCTL, CSL, LTL, PCTL*, costs/rewards, ...

Multiple efficient model checking engines
— mostly symbolic (BDDs) (up to 10'9 states, 107-108 on avg.)
— widely used, 30,000 downloads
— 100+ case studies, 300+ papers

- See: http://www.prismmodelchecker.org/




Modelling cooperation & competition

Consider systems organised into communities

— self-interested agents, goal driven

— need to cooperate, e.g. in order to share bandwidth

— possibly opposing goals, hence competititive behaviour

— incentives to increase motivation and discourage selfishness
Many typical scenarios

— e.g. energy management, user-centric networks, or sensor

network coordination

Natural to adopt a game-theoretic view

— widely used in computer science, economics, ...

— here, distinctive focus on algorithms, automated verification

Research question: can we automatically verify cooperative
and competitive behaviour?




Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— probability + nondeterminism + multiple players

- A (turn-based) SMG is a tuple (TT, S, (S)icrp, A, A, L):

— ITis a set of n players

— Sis a (finite) set of states

— (S))iery is a partition of S ] a

— Ais a set of action labels b

— A:S X A — Dist(S) is a (partial)
transition probability function

— L:S — 2APis a labelling with
atomic propositions from AP

Notation:
— A(s) denotes available actions in state A



Paths, strategies + probabilities

- A path is an (infinite) sequence of connected states in SMG
— i.e. $pay57a;... such that a,€A(s;) and A(s;,a,)(s;,)>0 for all i

— represents a system execution (i.e. one possible behaviour)
— to reason formally, need a probability space over paths

- A strategy for player i € TT resolves choices in S, states
— based on history of execution so far

— i.e. a function g, : (SA)*S, — Dist(A)

— 2, denotes the set of all strategies for player |

- A strategy profile is tuple o=(o,...,0,) for n players
— deterministic if o always gives a Dirac distribution

— memoryless if a(sya,...s,) depends only on s,

— finite memory ...



Paths, strategies + probabilities...

For a strategy profile o:
— the game’s behaviour is fully probabilistic
— essentially an (infinite-state) Markov chain
— yields a probability measure Pr.© »

A
_}__} .....
over set of all paths Path, from s §’<’» .....

.
.
.
‘e

- Allows us to reason about the probability of events
— under a specific strategy profile o
— e.g. any (w-)regular property over states/actions

- Also allows us to define expectation of random variables
— i.e. measurable functions X : Path, — R_,,
— EIX] = Jpun, X dPr,°
— used to define expected costs/rewards...




Rewards

Rewards (or costs, prices)
— real-valued quantities assigned to states (and/or transitions)
Wide range of possible uses:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

We use:
— state rewards: r: S — N (but can generalise to Q_,)
— expected cumulative reward until a target set T is reached

3 interpretations of rewards
— 3 reward types * € {c0,c,0}, differing where T is not reached
— reward is assumed to be infinite, cumulated sum, zero, resp.
— o0: e.g. expected time for algorithm execution
— C: e.g. expected resource usage (energy, messages sent, ...)
— 0: e.g. reward incentive awarded on algorithm completion




Property specification: rPATL

New temporal logic rPATL:
— reward probabilistic alternating temporal logic

- CTL, extended with:

— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised version of reward operator R from PRISM

Example:
- ((’“ 12}» P<0_0] [ FS]OerrOI’]

— “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”



rPATL syntax

- Syntax:

du=Tlal -l dAd|{(CHP W] | (CHR o [F*d]
P=Xd|pUskd|Fkd |Gk
- where:
— a€AP is an atomic proposition, C<IT is a coalition of players,
<e{<,<,>,>} q€[0,1]nQ, xeQ. 4, k € NU{oo}
ris a reward structure and *€{0,00,c} is a reward type
© ((CHPqlW]
— “players in coalition C have a strategy to ensure that the

probability of path formula @ being true satisfies < q,
regardless of the strategies of other players”

© ((CHR" o [F ]
— “players in coalition C have a strategy to ensure that the

expected reward r to reach a ¢-state (type *) satisfies > x,
regardless of the strategies of other players”




rPATL semantics

- Semantics for most operators is standard

. Just focus on P and R operators...
— present using reduction to a stochastic 2-player game
— (as for later model checking algorithms)

- Coalition game G, for SMG G and coalition C<TT
— 2-player SMG where C and TT\C collapse to players 1 and 2

((C))P.x[W] is true in state s of G iff:
— in coalition game G¢:
— 10,€%, such that Vo,€Z%, . Pr.91% () < g

- Semantics for R operator defined similarly...



Examples

(ONPyl F v ]

true in initial state

(ONWP [ F v ]

(O DMP=y[F V]



Examples

(ONPyl F v ]

true in initial state

(ONWP [ F v ]

false in initial state

(O DMP=y[F V]



Examples

(ONPyl F v ]

true in initial state

(ONWP [ F v ]

false in initial state

(O DMP=y[F V]

true in initial state



Why do we need multiple players?

- SMGs have multiple (>2) players
— but semantics (and model checking) reduce to 2-player case
— due to (zero sum) nature of queries expressible by rPATL
— so why do we need multiple players?

1. Modelling convenience
— and/or multiple rPATL queries on same model

2. May also exploit in nested queries, e.qg.:
— players: sensorl, sensor2, repairer
— ((sensorl1)) P_y o1[ F (—((repairer)) P, qs[ F “Operational” ] ) ]



Model checking rPATL

Basic algorithm: as for any branching-time temporal logic
— recursive descent of formula parse tree
— compute Sat(d) = { seS | se=d } for each subformula ¢

Main task: checking P and R operators
— reduction to solution of stochastic 2-player game G-
— e.g. ((C)P_,[v] < SUPg, es, inf(Izezz Pr.o1:92 () >q
— complexity: NP n coNP (without any R[F°] operators)
— compared to, e.g. P for Markov decision processes
— complexity for full logic: NEXP N coNEXP (due to R[F°] op.)

In practice though:
— evaluation of numerical fixed points (“value iteration”)
— up to a desired level of convergence
— usual approach taken in probabilistic model checking tools



Probabilities for P operator

- E.g. ((C))P_,[ F & ] : max/min reachability probabilities
— compute sup; s, inf02622 Pr.91:92 (F &) for all states s
— deterministic memoryless strategies suffice

- Value is:

— 1 if s € Sat(¢), and otherwise least fixed point of:

f(s) =1

- Computation:

Max, e [Z A(s,a)(s") - f(s')J ifse S,

s'eS

min, _,q [Z A(s,a)(s") - f(s')} ifsesS,

s'eS

— start from zero, propagate probabilities backwards
— guaranteed to converge
- Can also generate strategies



rPATL: ((O,)P-,[F v 1

Player 1: O,[Q Player 2:$

Compute: SUPg es, infcrzezz Pr.o1:92(F /')



Tool support: PRISM-games

Prototype model checker for stochastic games
— integrated into PRISM model checker
— using new explicit-state model checking engine

- SMGs added to PRISM modelling language

— guarded command language, based on Reactive modules

— finite data types, parallel composition, proc. algebra op.s, ...
rPATL added to PRISM property specification language

— implemented value iteration based model checking
- Strategy generation implemented
— can generate strategies (memoryless, finite—memory for R[F°])
— perform model checking under a strategy
- Available now [TACAS 2013]:
— http://www.prismmodelchecker.org/games/




Case studies

- Applicable to strategic analysis of
— distributed agreement protocols
— reputation/virtual currency systems

Evaluated on several case studies:
— team formation protocol [CLIMA’T 1]
— futures market investor model [Mclver & Morgan]
— collective decision making for sensor networks [TACAS’12]
— energy management in microgrids [TACAS’12]
— user-centric networks [SR ‘1 3]



Energy management in microgrids

Microgrid: proposed model for future energy markets

— localised energy management
DINY

HP I 1

Neighbourhoods use and
store electricity generated

no&e
from local sources .,'i
I

GTVF OutBack

_ Wind’ Solar’ Grid-Interactive

Inverter —»

1
1
Batteryless
Grid-Tie
-« Inverters
1 I

Micro Grid —»

Needs: demand-side
management

— active management
of demand by users

— to avoid peaks

Generator

Generator Sends Power if
There Isn’t Enough Solar
Power for Household Loads.

Batteries



Microgrid demand-side management

Demand-side management algorithm [Hildmann/Saffre’11]
— N households, connected to a distribution manager
— households submit loads for execution
— load submission probability: daily demand curve
— load duration: random, between 1 and D steps

— execution cost/step = number of currently running loads

Simple probabilistic algorithm:

— upon load generation, if cost is below an agreed limit ¢,
execute it, otherwise only execute with probability P,

- Analysis of [Hildmann/Saffre’11]

— define household value as V=loads_executing/execution_cost

— simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

— (if all households stick to algorithm)




Microgrid demand-side management

- The model

— SMG with N players (one per household)

— analyse 3-day period, using piecewise
approximation of daily demand curve

— fix parameters D=4, ¢;,=1.5

Power demand

— add rewards structure for value V

0 3 6 9 12 15 18 21 24
Time of the day (hours)

Built/analysed models
— for N=2,...,7 households

States Transitions
743,904 2,145,120
2,384,369 7,260,756
6,241,312 19,678,246

Step 1: assume all households
follow algorithm of [HS’11] (MDP)

— obtain optimal value for P,

N Oy Ul 2

Step 2: introduce competitive behaviour (SMG)
— allow coalition C of households to deviate from algorithm



Results: Competitive behaviour

Expected total value V per household
— in rPATL: ((C))RC,.,_, [FO time=max time] / |C|
— where r- is combined rewards for coalition C

20
g . >trong Al follow alg.
2 . incentive to
@ deviate
3 No use of alg.
-
ol _
-E 10 . —_—
g Deviations of
) varying size
I ying

5 J T I T T I ]

1 2 3 4 5 6 7 8
Number of households



Results: Competitive behaviour

Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

20 =
% Better to
< 15 — collaborate All follow alg.
. (with all) _
(@) m—
e
tg_ Deviations of

varying size
oS 10 -
e
=
5
@
S} I I I T I - l

1 2 3 4 5 6 7 8
Number of households



Conclusions

Conclusions

— verification and strategy synthesis for stochastic systems with
competitive behaviour

— modelled as stochastic multi-player games
— temporal logic rPATL for property specification

— rPATL /rPATL* model checking algorithm based on numerical
fixed points

— prototype tool PRISM-games
— case studies

Future work
— further objectives, e.g. multiple objectives
— correct-by-construction controller synthesis
— more realistic classes of strategy, e.g. partial information
— new application areas, security, randomised algorithmes, ...



