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Introduction

Distributed Control and Implementation

Problem to be solved:

“Given a centralized specification PN and a constraint Ψ,
Derive a distributed implementation I for PN controlled by Ψ”

Our hypotheses:

centralized specification PN: w.l.g. Petri Nets

distributed setting: one process per location — can learn about each
other only via communication mechanisms provided by the platform

constraint Ψ: a safety constraint (here: priorities)

Not considered in this talk:

uncontrollable transitions, data, timing, progress constraints, . . .
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Introduction

Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1 Use knowledge to realize a transformation [BBPS09,GPQ10]:

PN + Ψ −→ PN ′ enforcing Ψ

2 Derive a distributed implementation I for a PN by means of a
protocol Pr [PCT04,BGQ11]:

PN ′ ⊕ Pr −→ I

Exist: algorithms/proofs for a particular implementation relation
for a particular platform

Claim: A knowledge-based approach is also interesting for problem (2)

define more efficient protocols (think in terms of knowledge)

optimize existing protocols (exploit existing — also application
dependent — knowledge)
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Knowledge for Control One-safe Petri Nets PN and control constraints

One-safe Petri Nets

Place/Transition Nets:

state s: a set of places

transition c is enabled (enc) if
{p3, p4} ⊆ s and leads to
s ′ = s − {p3, p4}+ {p5, p6}.
a state is reachable if it appears
in some execution.

jointly enabled transitions are
independent if they don’t share
places (e.g. d , e in {p5, p6})
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Knowledge for Control One-safe Petri Nets PN and control constraints

Global constraints — here priorities

A control constraint Ψ is a set of pairs (state, transition) expressing which
transitions are authorized in each state i.e. we assume the centralised control
problem to be solved

Running example: priority policies

a priority policy � is a strict partial order on the transitions

transition t has maximal priority (maxt) in state s if:

no transition t ′ such that t � t ′ is enabled in s

Susanne Graf Knowledge for the Distributed Implementation of Constrained Systems 6 / 17



Knowledge for Control One-safe Petri Nets PN and control constraints

Global constraints — here priorities

a prioritized execution of is an
execution such that for all
si

ti−→ si+1, ti has maximal
priority in si
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Knowledge for Control One-safe Petri Nets PN and control constraints

Global constraints — here priorities

a prioritized execution of is an
execution such that for all
si

ti−→ si+1, ti has maximal
priority in si

independent transitions may
not be independent any more
(e.g. d , e in {p5, p6})

Question of [GPQ-CAV10]: can
we transform the controlled
system (PN,�) into a
Petrinet? which can be
analyzed, implemented “as
usually”
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Knowledge for Control Locality and knowledge

Compositional setting

a process or thread π is a set of
places Pπ ⊆ P (exactly 1 token)
and the corresponding
transitions Tπ ⊆ T
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Knowledge for Control Locality and knowledge

Compositional setting

a process or thread π is a set of
places Pπ ⊆ P (exactly 1 token)
and the corresponding
transitions Tπ ⊆ T

the neighborhood ngbπ of π is⋃
t∈Tπ

(•t ∪ t•)

the set of local states of π is
{s ∩ ngbπ | s ∈ S}
the local state corresponding to
s is denoted s|π
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Knowledge for Control Knowledge for Control

Definition of Knowledge

π knows a property ϕ in a local
s|π if ϕ holds in all reachable s ′

such that s ′|π = s|π
s|π |= Kπϕ

by extension: π knows ϕ in a
global s if s|π |= Kπϕ

Stability Property:
if s|π |= Kπϕ, then
s|π |= Kπϕ Until ¬(s|π)
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Knowledge for Control Knowledge for Control

Knowledge to support transitions

What are useful knowledge proper-
ties?

transition a can be fired in s if
ena ∧ ¬enb

ena is a local condition, always
known in πl :
sπl
|= Kπl

ena or sπl
|= Kπl

¬ena

are there local states sπl
in

which also ¬enb holds ?
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Knowledge for Control Knowledge for Control

Knowledge to support transitions

Useful knowledge for the example:

{p1} |= Kπl
ena but

{p1} 6|= Kπl
¬enb
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Knowledge for Control Knowledge for Control

Knowledge to support transitions

Useful knowledge for the example:

{p1} |= Kπl
ena but

{p1} 6|= Kπl
¬enb

{p1, p4} |= Kπl
ena and

{p1, p4} |= Kπl
¬enb
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Knowledge for Control Knowledge for Control

Knowledge to support transitions

Useful knowledge for the example:

{p1} |= Kπl
ena but

{p1} 6|= Kπl
¬enb

{p1, p4} |= Kπl
ena and

{p1, p4} |= Kπl
¬enb

{p5, p6} |= Kπl
end but

{p5, p6} |= Kπl
ene

{p5} |= Kπl
end and

{p5} |= Kπl
¬ene
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Knowledge for Control Knowledge for Control

Knowledge to support transitions

We can define a Petri net with local
conditions for the controlled system
(PN,�). It is like PN, but

allows a only in the local state
{p1, p4} of πl

allows d only in the local state
{p5} of πl

Allows compositional analysis: A
(partial) state s knows ent iff one of
the threads involved in t knows ent

(disjunctive control)
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Knowledge for Distributed Implementation

Outline

1 Introduction

2 Knowledge for Control
One-safe Petri Nets PN and control constraints
Locality and knowledge
Knowledge for Control

3 Knowledge for Distributed Implementation
Distributed Setting: implementation relations
Knowledge Required in a Distributed Implementation
Knowledge and Communication

4 Discussion
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Distributed setting

a process π is a set of places
Pπ ⊆ P (exactly 1 token) and
Tπ contains for each transition
in which π is involved, a
corresponding local transition
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a process π is a set of places
Pπ ⊆ P (exactly 1 token) and
Tπ contains for each transition
in which π is involved, a
corresponding local transition

the neighborhood ngbπ of π is
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Distributed setting

a process π is a set of places
Pπ ⊆ P (exactly 1 token) and
Tπ contains for each transition
in which π is involved, a
corresponding local transition

the neighborhood ngbπ of π is
exactly the set of local places Pπ

everything else is unchanged

We have now a new Petri net with a
different transition set.
Question: how to relate distributed
and centralized executions ?
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Implementation relations �
� must support the methodology:

(1) verify ϕ on PN
(2) guarantee ϕ on I by construction
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Implementation relations �
� must support the methodology:

(1) verify ϕ on PN
(2) guarantee ϕ on I by construction

Minimal Requirements on �: sequential consistency

(1) transition correctness (projection of global traces)
(2) atomicity (all π choose the same trace)

Additional Constraints:

(3) synchronization constraints (e.g. synchronize before/after joint transitions)
(4) progress constraints
(5) constraints imposed by Ψ (�)
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Illustrating Implementation relations
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Illustrating Implementation relations
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Illustrating Implementation relations
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Illustrating Implementation relations
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Knowledge for Distributed Implementation Distributed Setting: implementation relations

Illustrating Implementation relations
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Even to achieve this loosest imple-
mentation relation, one has to control
local processes
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Knowledge for enabling transitions

For �, the enabling condition goπ
t for a local transition t:

1 t is enabled (in the sense of Petri net) or already partially executed:

int = ∀π′ ∈ proc(t) . (enπ′
t ∨ doneπ

′
t )
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Knowledge for enabling transitions

For �ss and �, the enabling condition goπ
t for a local transition t:

1 t is enabled (in the sense of Petri net) or already partially executed:

int = ∀π′ ∈ proc(t) . (enπ′
t ∨ doneπ

′
t )

2 transitions t ′ preceding t (in PN) are terminated in all π′:

∀t ′.(doneπt′ =⇒ donet′) where donet′ = ∀π′ ∈ t ′ . doneπ
′

t′
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Knowledge for enabling transitions

For �, the enabling condition goπ
t for a local transition t:

1 t is enabled (in the sense of Petri net) or already partially executed:

int = ∀π′ ∈ proc(t) . (enπ′
t ∨ doneπ

′
t )

2 t has maximal priority:

maxt = ∀t ′ . (t � t ′ =⇒ ¬ent′)

3 t has no unresolved conflict:

selectt =⇒ ∀t ′ . (potentially in conflict with t =⇒ ¬selectt′)
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Knowledge for enabling transitions

For �, the enabling condition goπ
t for a local transition t:

1 t is enabled (in the sense of Petri net) or already partially executed:

int = ∀π′ ∈ proc(t) . (enπ′
t ∨ doneπ

′
t )

2 t has maximal priority:

maxt = ∀t ′ . (t � t ′ =⇒ ¬ent′)

3 t has no unresolved conflict:

selectt =⇒ ∀t ′ . (potentially in conflict with t =⇒ ¬selectt′)

π must know goπ
t and

π must also know that π′ ∈ proc(t) knows or will know goπ′
t
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Petri net Knowledge preserved in a distributed
setting

Can we use the knowledge computed on the Petri net ?
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Petri net Knowledge preserved in a distributed
setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

non enabledness of transitions
(useful for priorities)

we can transform Petri net
knowledge by weakening it with
the incertainty induced by �
impossible: knowledge for
achieving synchronization
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Knowledge for Distributed Implementation Knowledge Required in a Distributed Implementation

Petri net Knowledge preserved in a distributed
setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

non enabledness of transitions
(useful for priorities)

we can transform Petri net
knowledge by weakening it with
the incertainty induced by �
impossible: knowledge for
achieving synchronization

Conclusion: to achieve synchroniza-
tion, one must communicate
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Knowledge for Distributed Implementation Knowledge and Communication

Knowledge through communication

A typical protocol for achieving distributed implementation:

I can do a, you ?

I can do a, you ?

en1a ∨ gone1

en2a ∨ gone2

en1a, en
1
b

en2a

no information gained – also not with a negative response
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Knowledge for Distributed Implementation Knowledge and Communication

Knowledge through communication

A typical protocol for achieving distributed implementation:

(locally known)

en1a, en
1
b

I can do a, you ?

I can do a, only a, you ? en1a ∨ gone1

∀x .¬en2x

en2a, ¬enx

en2a

process 1 can no decide to selecta (if not yet engaged for b)
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Knowledge for Distributed Implementation Knowledge and Communication

Knowledge through communication

en1a, en
1
b

I can do a, you ?

I can do a, only a, you ? en1a ∨ gone1

∀x .¬en2x

1 knows, it can decide selecta

do a

ina

do a

go for a

ina

en2a

en2a, ¬enx

conveye information providing stronger knowledge — when possible
(e.g. information about absence of conflict)
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Knowledge for Distributed Implementation Knowledge and Communication

Knowledge through communication

en1a, en
1
b

en2a
If you can do a, we go

ena ∧ selecta

∀x .¬en2x

1 may “pre-select” a

go for a

I can do a, only a, you ?

ina

ina

do a

do a

try to resolve conflicts early
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Knowledge for Distributed Implementation Knowledge and Communication

Knowledge through communication

en1a, en
1
b

en2a
If you can do a, we go

ena ∧ selecta

∀x .¬en2x

1 may “pre-select” a

go for a

I can do a, only a, you ?

ina

ina

do a

do a

try to resolve conflicts early

avoid requesting knowledge that is already available
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Discussion

Discussion

I hope I could convince you that knowledge is a useful tool for reasoning
about distribution

Perspectives

take into account data, timing, ... (discrete and continuous)

formulate platform characteristics in terms of knowledge

devise modular proofs for distribution strategies
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