Knowledge for the Distributed Implementation of Constrained Systems

Susanne Graf¹ and Sophie $Quinton^2$

¹ VERIMAG/CNRS, ² TU Braunschweig

LCCC Workshop, Lund, April 2013

Introduction

Distributed Control and Implementation

Problem to be solved:

"Given a centralized specification PN and a constraint Ψ , Derive a distributed implementation I for PN controlled by Ψ "

Our hypotheses:

- centralized specification PN: w.l.g. Petri Nets
- distributed setting: one process per location can learn about each other only via communication mechanisms provided by the platform
- constraint Ψ : a safety constraint (here: priorities)

Not considered in this talk:

uncontrollable transitions, data, timing, progress constraints, ...

Introduction

Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1 Use knowledge to realize a transformation [BBPS09,GPQ10]:

 $PN + \Psi \longrightarrow PN'$ enforcing Ψ

2 Derive a distributed implementation *I* for a *PN* by means of a protocol *Pr* [PCT04,BGQ11]:

$$PN' \oplus Pr \longrightarrow I$$

Exist: algorithms/proofs for a particular implementation relation for a particular platform

Claim: A knowledge-based approach is also interesting for problem (2)

- define more efficient protocols (think in terms of knowledge)
- optimize existing protocols (exploit existing also application dependent knowledge)

Outline

1 Introduction

2 Knowledge for Control

- One-safe Petri Nets PN and control constraints
- Locality and knowledge
- Knowledge for Control

3 Knowledge for Distributed Implementation

- Distributed Setting: implementation relations
- Knowledge Required in a Distributed Implementation
- Knowledge and Communication

4 Discussion

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

- state *s*: a set of places
- transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- jointly enabled transitions are independent if they don't share places (e.g. d, e in {p₅, p₆})

A control constraint Ψ is a set of pairs (state, transition) expressing which transitions are authorized in each state i.e. we assume the centralised control problem to be solved

Running example: priority policies

- \blacksquare a priority policy \ll is a strict partial order on the transitions
- transition t has maximal priority (max_t) in state s if:
 - \blacksquare no transition t' such that $t \ll t'$ is enabled in s

• a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}, t_i$ has maximal priority in s_i

• a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}, t_i$ has maximal priority in s_i

• a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}, t_i$ has maximal priority in s_i

• a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}, t_i$ has maximal priority in s_i

• a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}, t_i$ has maximal priority in s_i

- a prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i
- independent transitions may not be independent any more (e.g. d, e in {p₅, p₆})
- Question of [GPQ-CAV10]: can we transform the controlled system (PN, ≪) into a Petrinet? which can be analyzed, implemented "as usually"

Compositional setting

• a process or thread π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and the corresponding transitions $T_{\pi} \subseteq T$

Compositional setting

- a process or thread π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and the corresponding transitions $T_{\pi} \subseteq T$
- the neighborhood ngb_{π} of π is $\bigcup_{t\in T_{\pi}}({}^{\bullet}t\cup t^{\bullet})$
- the set of local states of π is $\{s \cap \operatorname{ngb}_{\pi} \mid s \in S\}$ the local state corresponding to s is denoted $s|_{\pi}$

Compositional setting

- a process or thread π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and the corresponding transitions $T_{\pi} \subseteq T$
- the neighborhood ngb_{π} of π is $\bigcup_{t\in T_{\pi}}({}^{\bullet}t\cup t^{\bullet})$
- the set of local states of π is $\{s \cap \operatorname{ngb}_{\pi} \mid s \in S\}$ the local state corresponding to s is denoted $s|_{\pi}$

Definition of Knowledge

- π knows a property φ in a local $s|_{\pi}$ if φ holds in all reachable s' such that $s'|_{\pi} = s|_{\pi}$ $s|_{\pi} \models K_{\pi}\varphi$
- by extension: π knows φ in a global s if $s|_{\pi} \models K_{\pi}\varphi$

Stability Property: if $s|_{\pi} \models K_{\pi}\varphi$, then $s|_{\pi} \models K_{\pi}\varphi \ Until \neg (s|_{\pi})$

What are useful knowledge properties?

- transition a can be fired in s if en_a ∧ ¬en_b
- en_a is a local condition, always *known* in π_I :

$$s_{\pi_{I}} \models K_{\pi_{I}} en_{a}$$
 or $s_{\pi_{I}} \models K_{\pi_{I}} \neg en_{a}$

are there local states s_{π_l} in which also ¬en_b holds ?

Useful knowledge for the example:

•
$$\{p_1\} \models K_{\pi_l} en_a$$
 but
 $\{p_1\} \not\models K_{\pi_l} \neg en_b$

Useful knowledge for the example:

- $\{p_1\} \models K_{\pi_l} en_a$ but $\{p_1\} \not\models K_{\pi_l} \neg en_b$
- $\{p_1, p_4\} \models K_{\pi_l} en_a$ and $\{p_1, p_4\} \models K_{\pi_l} \neg en_b$

Useful knowledge for the example:

- $\{p_1\} \models K_{\pi_l} en_a$ but $\{p_1\} \not\models K_{\pi_l} \neg en_b$
- $\{p_1, p_4\} \models K_{\pi_l} en_a$ and $\{p_1, p_4\} \models K_{\pi_l} \neg en_b$
- { p_5, p_6 } $\models K_{\pi_l} en_d$ but { p_5, p_6 } $\models K_{\pi_l} en_e$
- $\{p_5\} \models K_{\pi_l} en_d$ and $\{p_5\} \models K_{\pi_l} \neg en_e$

We can define a Petri net with local conditions for the controlled system (PN, \ll) . It is like PN, but

- allows a only in the local state {p₁, p₄} of π_l
- allows d only in the local state $\{p_5\}$ of π_I

Allows compositional analysis: A (partial) state s knows en_t iff one of the threads involved in t knows en_t (disjunctive control)

Outline

1 Introduction

2 Knowledge for Control

- One-safe Petri Nets PN and control constraints
- Locality and knowledge
- Knowledge for Control

3 Knowledge for Distributed Implementation

- Distributed Setting: implementation relations
- Knowledge Required in a Distributed Implementation
- Knowledge and Communication

4 Discussion

• a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition

- a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- the neighborhood ngb_π of π is exactly the set of local places P_π

- a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- the neighborhood ngb_π of π is exactly the set of local places P_π

- a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- the neighborhood ngb_π of π is exactly the set of local places P_π
- everything else is unchanged

- a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- the neighborhood ngb_π of π is exactly the set of local places P_π
- everything else is unchanged

We have now a new Petri net with a **different transition set**.

Question: how to relate distributed and centralized executions ?

Implementation relations \leq

- \preceq must support the methodology:
 - (1) verify φ on *PN*
 - (2) guarantee φ on I by construction

Implementation relations \leq

- \preceq must support the methodology:
 - (1) verify φ on *PN*
 - (2) guarantee φ on I by construction

Minimal Requirements on \preceq : sequential consistency

(1) transition correctness (projection of global traces) (2) atomicity (all π choose the same trace)

Implementation relations \leq

- \preceq must support the methodology:
 - (1) verify φ on *PN*
 - (2) guarantee φ on I by construction

Minimal Requirements on \preceq : sequential consistency

- (1) transition correctness (projection of global traces)
- (2) atomicity (all π choose the same trace)

Additional Constraints:

- (3) synchronization constraints (e.g. synchronize before/after joint transition
- (4) progress constraints
- (5) constraints imposed by $\Psi~(\ll)$

Illustrating Implementation relations

 $\preceq_{\mathit{ss}}:$ requires synchronization before and after transitions

 $\preceq:$ requires synchronization only before transitions

 \leq_{ns} : requires no synchronization

 \leq_{ns} : requires no synchronization

Even to achieve this loosest implementation relation, one has to *control* local processes

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - 1 t is enabled (in the sense of Petri net) or already partially executed:

$$\mathit{in}_t = orall \pi' \in \mathit{proc}(t)$$
 . $(\mathit{en}_t^{\pi'} \lor \mathit{done}_t^{\pi'})$

For \leq_{ss} and \leq , the enabling condition go_t^{π} for a local transition *t*:

1 t is enabled (in the sense of Petri net) or already partially executed:

$$\mathit{in}_t = orall \pi' \in \mathit{proc}(t)$$
 . $(\mathit{en}_t^{\pi'} \lor \mathit{done}_t^{\pi'})$

2 transitions t' preceding t (in PN) are terminated in all π' :

 $orall t'.(\mathit{done}_{t'}^{\pi} \implies \mathit{done}_{t'})$ where $\mathit{done}_{t'} = orall \pi' \in t'$. $\mathit{done}_{t'}^{\pi'}$

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - 1 t is enabled (in the sense of Petri net) or already partially executed:

$$\mathit{in}_t = orall \pi' \in \mathit{proc}(t)$$
 . $(\mathit{en}_t^{\pi'} \lor \mathit{done}_t^{\pi'})$

2 *t* has maximal priority:

$$max_t = \forall t' . (t \ll t' \implies \neg en_{t'})$$

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - **1** t is enabled (in the sense of Petri net) or already partially executed:

$$\mathsf{in}_t = orall \pi' \in \mathsf{proc}(t) \;.\; (\mathsf{en}_t^{\pi'} \lor \mathsf{done}_t^{\pi'})$$

2 *t* has maximal priority:

$$max_t = \forall t' . (t \ll t' \implies \neg en_{t'})$$

3 *t* has no unresolved conflict:

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - 1 t is enabled (in the sense of Petri net) or already partially executed:

$$\mathsf{in}_t = orall \pi' \in \mathsf{proc}(t) \;.\; (\mathsf{en}_t^{\pi'} \lor \mathsf{done}_t^{\pi'})$$

2 *t* has maximal priority:

$$max_t = \forall t' \ . \ (t \ll t' \implies \neg en_{t'})$$

3 t has no unresolved conflict:

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - 1 t is enabled (in the sense of Petri net) or already partially executed:

$$\mathsf{in}_t = orall \pi' \in \mathsf{proc}(t) \;.\; (\mathsf{en}_t^{\pi'} \lor \mathsf{done}_t^{\pi'})$$

2 *t* has maximal priority:

$$max_t = \forall t' . (t \ll t' \implies \neg en_{t'})$$

3 t has no unresolved conflict:

 $select_t \implies \forall t'$. (potentially in conflict with $t \implies \neg select_{t'}$)

- For \leq , the enabling condition go_t^{π} for a local transition *t*:
 - **1** t is enabled (in the sense of Petri net) or already partially executed:

$$\mathsf{in}_t = orall \pi' \in \mathsf{proc}(t) \;.\; (\mathsf{en}_t^{\pi'} \lor \mathsf{done}_t^{\pi'})$$

2 *t* has maximal priority:

$$max_t = \forall t' . (t \ll t' \implies \neg en_{t'})$$

3 t has no unresolved conflict:

 $select_t \implies \forall t'$. (potentially in conflict with $t \implies \neg select_{t'}$)

 π must know go_t^{π} and π must also know that $\pi' \in proc(t)$ knows or will know $go_t^{\pi'}$

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

- non enabledness of transitions (useful for priorities)
- we can transform Petri net knowledge by weakening it with the incertainty induced by ≤
- impossible: knowledge for achieving synchronization

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

- non enabledness of transitions (useful for priorities)
- we can transform Petri net knowledge by weakening it with the incertainty induced by ≤
- impossible: knowledge for achieving synchronization

Conclusion: to achieve synchronization, one must communicate

A typical protocol for achieving distributed implementation:

no information gained – also not with a negative response

A typical protocol for achieving distributed implementation:

process 1 can no decide to select_a (if not yet engaged for b)

 conveye information providing stronger knowledge — when possible (e.g. information about absence of conflict)

Susanne Graf

Knowledge for the Distributed Implementation of Constrained Systems

try to resolve conflicts early

- try to resolve conflicts early
- avoid requesting knowledge that is already available

Susanne Graf

Knowledge for the Distributed Implementation of Constrained Systems

Discussion

I hope I could convince you that knowledge is a useful tool for reasoning about distribution

Perspectives

- take into account data, timing, ... (discrete and continuous)
- formulate platform characteristics in terms of knowledge
- devise modular proofs for distribution strategies