Knowledge for the Distributed Implementation of Constrained Systems

Susanne Graf¹ and Sophie Quinton²

 1 VERIMAG/CNRS, 2 TU Braunschweig

LCCC Workshop, Lund, April 2013

Introduction

Distributed Control and Implementation

Problem to be solved:

"Given a centralized specification PN and a constraint Ψ, Derive a distributed implementation I for PN controlled by Ψ"

Our hypotheses:

- centralized specification PN: w.l.g. Petri Nets
- distributed setting: one process per location can learn about each other only via communication mechanisms provided by the platform
- constraint Ψ: a safety constraint (here: priorities)

Not considered in this talk:

uncontrollable transitions, data, timing, progress constraints, \dots

Introduction

Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1 Use knowledge to realize a transformation [BBPS09,GPQ10]:

 $PN + \Psi \longrightarrow PN'$ enforcing Ψ

2 Derive a distributed implementation I for a PN by means of a protocol Pr [PCT04,BGQ11]:

$$
PN' \oplus Pr \longrightarrow I
$$

Exist: algorithms/proofs for a particular implementation relation for a particular platform

Claim: A knowledge-based approach is also interesting for problem (2)

- define more efficient protocols (think in terms of knowledge)
- optimize existing protocols (exploit existing also application dependent — knowledge)

Outline

[Introduction](#page-1-0)

2 [Knowledge for Control](#page-4-0)

- **n** One-safe Petri Nets PN [and control constraints](#page-4-0)
- **[Locality and knowledge](#page-17-0)**
- [Knowledge for Control](#page-20-0)

8 [Knowledge for Distributed Implementation](#page-26-0)

- [Distributed Setting: implementation relations](#page-27-0)
- [Knowledge Required in a Distributed Implementation](#page-40-0)
- [Knowledge and Communication](#page-50-0)

[Discussion](#page-55-0)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

- state s : a set of places
- **u** transition c is enabled (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}.$
- a state is reachable if it appears in some execution.
- \blacksquare jointly enabled transitions are independent if they don't share places (e.g. d , e in $\{p_5, p_6\}$)

A control constraint Ψ is a set of pairs (state, transition) expressing which transitions are authorized in each state i.e. we assume the centralised control problem to be solved

Running example: priority policies

- **a** a priority policy \ll is a strict partial order on the transitions
- **transition t has maximal priority (max_t)** in state s if:
	- no transition t' such that $t \ll t'$ is enabled in s

a a prioritized execution of is an execution such that for all $\mathsf{s}_i \stackrel{t_i}{\longrightarrow} \mathsf{s}_{i+1}, \ \mathsf{t}_i$ has maximal priority in s_i

Susanne Graf [Knowledge for the Distributed Implementation of Constrained Systems](#page-0-0) 6 / 17

- a prioritized execution of is an execution such that for all $\mathsf{s}_i \stackrel{t_i}{\longrightarrow} \mathsf{s}_{i+1}, \ \mathsf{t}_i$ has maximal priority in s_i
- \blacksquare independent transitions may not be independent any more (e.g. d, e in $\{p_5, p_6\}$)
- Question of [GPQ-CAV10]: can we transform the controlled system (PN, \ll) into a Petrinet? which can be analyzed, implemented "as usually"

Susanne Graf [Knowledge for the Distributed Implementation of Constrained Systems](#page-0-0) 6 / 17

Compositional setting

a process or thread π is a set of \sim places $P_{\pi} \subseteq P$ (exactly 1 token) and the corresponding transitions $T_\pi \subseteq T$

Compositional setting

- a process or thread π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and the corresponding transitions $T_\pi \subset T$
- **the neighborhood** ngb_{π} of π is $\bigcup_{t\in\mathcal{T}_\pi}(\overset{\bullet}t\cup t^\bullet)$
- **the set of local states of** π **is** $\{s \cap ngb_\pi \mid s \in S\}$ the local state corresponding to s is denoted $s|_{\pi}$

Compositional setting

- a process or thread π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and the corresponding transitions $T_\pi \subset T$
- **the neighborhood** ngb_{π} of π is $\bigcup_{t\in\mathcal{T}_\pi}(\overset{\bullet}t\cup t^\bullet)$
- **the set of local states of** π **is** $\{s \cap ngb_\pi \mid s \in S\}$ the local state corresponding to s is denoted $s|_{\pi}$

Definition of Knowledge

- \blacksquare π knows a property φ in a local $\boldsymbol{s}|_\pi$ if φ holds in all reachable \boldsymbol{s}' such that $s'|_{\pi} = s|_{\pi}$ $|s|_\pi \models \mathcal{K}_{\pi} \varphi$
- by extension: π knows φ in a global s if $s|_{\pi} \models K_{\pi} \varphi$

Stability Property: if $s|_{\pi} \models K_{\pi}\varphi$, then $s|_{\pi} \models K_{\pi} \varphi$ Until $\neg(s|_{\pi})$

What are useful knowledge properties?

- transition a can be fired in s if en_a ∧ \neg en_b
- \blacksquare en_a is a local condition, always *known* in π _I:

$$
s_{\pi_l} \models K_{\pi_l} en_a \text{ or } s_{\pi_l} \models K_{\pi_l} \neg en_a
$$

are there local states s_{π_I} in which also $\neg en_b$ holds ?

Useful knowledge for the example:

$$
\blacksquare \{p_1\} \models K_{\pi_1}en_a \text{ but } \{p_1\} \not\models K_{\pi_1}\neg en_b
$$

Susanne Graf [Knowledge for the Distributed Implementation of Constrained Systems](#page-0-0) 9 / 17

Useful knowledge for the example:

- $\{p_1\} \models \mathcal{K}_{\pi_l}$ en_a but $\{p_1\} \not\models K_{\pi} \neg en_b$
- $\{p_1, p_4\} \models \mathcal{K}_{\pi_l}$ en_a and $\{p_1, p_4\} \models \mathcal{K}_{\pi} \neg en_b$

Useful knowledge for the example:

- $\{p_1\} \models \mathcal{K}_{\pi_l}$ en_a but $\{p_1\} \not\models K_{\pi} \neg en_b$
- $\{p_1, p_4\} \models \mathcal{K}_{\pi_l}$ en_a and $\{p_1, p_4\} \models K_{\pi} \neg en_b$
- $\{p_5, p_6\} \models \mathcal{K}_{\pi_l}$ en_d but $\{p_5, p_6\} \models \mathcal{K}_{\pi_l}$ en $_{\epsilon}$
- $\{ \rho_5 \} \models \mathcal{K}_{\pi_l}$ en $_d$ and $\{p_5\} \models K_{\pi} \neg en_e$

We can define a Petri net with local conditions for the controlled system (PN, \ll) . It is like PN, but

- \blacksquare allows a only in the local state $\{p_1, p_4\}$ of π_l
- **allows** d only in the local state $\{p_5\}$ of π_l

Allows compositional analysis: A (partial) state s knows \emph{en}_{t} iff one of the threads involved in t knows en_t (disjunctive control)

Outline

[Introduction](#page-1-0)

2 [Knowledge for Control](#page-4-0)

- **n** One-safe Petri Nets PN [and control constraints](#page-4-0)
- **[Locality and knowledge](#page-17-0)**
- [Knowledge for Control](#page-20-0)

8 [Knowledge for Distributed Implementation](#page-26-0)

- [Distributed Setting: implementation relations](#page-27-0)
- [Knowledge Required in a Distributed Implementation](#page-40-0)
- [Knowledge and Communication](#page-50-0)

[Discussion](#page-55-0)

a process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition

- a process π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- **the neighborhood** ngb_{π} of π is exactly the set of local places P_{π}

- a process π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- **the neighborhood** ngb_{π} of π is exactly the set of local places P_{π}

- a process π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- **the neighborhood** ngb_{π} of π is exactly the set of local places P_{π}
- everything else is unchanged

- **a** process π is a set of places $P_{\pi} \subset P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition
- **the neighborhood** ngb_{π} of π is exactly the set of local places P_{π}
- everything else is unchanged

We have now a new Petri net with a different transition set.

Question: how to relate distributed and centralized executions ?

Implementation relations \prec

- \preceq must support the methodology:
	- (1) verify φ on PN
	- (2) guarantee φ on *l* by construction

Implementation relations \prec

- \preceq must support the methodology:
	- (1) verify φ on PN
	- (2) guarantee φ on *l* by construction

Minimal Requirements on \prec : sequential consistency

(1) transition correctness (projection of global traces) (2) atomicity (all π choose the same trace)

Implementation relations \prec

- \preceq must support the methodology:
	- (1) verify φ on PN
	- (2) guarantee φ on *l* by construction

Minimal Requirements on \prec : sequential consistency

(1) transition correctness (projection of global traces) (2) atomicity (all π choose the same trace)

Additional Constraints:

- (3) synchronization constraints (e.g. synchronize before/after joint transition
- (4) progress constraints
- (5) constraints imposed by Ψ (\ll)

 \preceq_{ss} : requires synchronization before and after transitions

 \preceq : requires synchronization only before transitions

c

a

c

 \preceq_{ns} : requires no synchronization

 \preceq_{ns} : requires no synchronization

Even to achieve this loosest implementation relation, one has to control local processes

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

For \preceq_{ss} and \preceq , the enabling condition go^{π}_t for a local transition t :

 \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in \mathit{proc}(t) \ . \ (\mathit{en}^{\pi'}_t \lor \mathit{done}^{\pi'}_t)
$$

 2 transitions t' preceding t (in PN) are terminated in all π' :

 $\forall t'.(done^\pi_{t'} \implies done_{t'})$ where done $_{t'} = \forall \pi' \in t'$. done $_{t'}^{\pi'}$ t'

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

2 t has maximal priority:

$$
max_t = \forall t' \cdot (t \ll t' \implies \neg en_{t'})
$$

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

2 t has maximal priority:

$$
max_t = \forall t' \cdot (t \ll t' \implies \neg en_{t'})
$$

 \blacksquare t has no unresolved conflict:

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

2 t has maximal priority:

$$
max_t = \forall t' \cdot (t \ll t' \implies \neg en_{t'})
$$

 \blacksquare t has no unresolved conflict:

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

2 t has maximal priority:

$$
max_t = \forall t' \cdot (t \ll t' \implies \neg en_{t'})
$$

 \blacksquare t has no unresolved conflict:

 $\textit{select}_t \implies \forall t'$. (potentially in conflict with $t \implies \neg \textit{select}_{t'})$

- For \preceq , the enabling condition go_t^{π} for a local transition t:
	- \blacksquare t is enabled (in the sense of Petri net) or already partially executed:

$$
in_t = \forall \pi' \in proc(t) \ . \ (en_t^{\pi'} \vee done_t^{\pi'})
$$

2 t has maximal priority:

$$
max_t = \forall t' \cdot (t \ll t' \implies \neg en_{t'})
$$

 \blacksquare t has no unresolved conflict:

 $\textit{select}_t \implies \forall t'$. (potentially in conflict with $t \implies \neg \textit{select}_{t'})$

 π must know go_t^{π} and π must also know that $\pi' \in \textit{proc}(t)$ knows or will know $\textit{go}^{\pi'}_t$

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

- non enabledness of transitions (useful for priorities)
- we can transform Petri net knowledge by weakening it with the incertainty induced by \prec
- **n** impossible: knowledge for achieving synchronization

Petri net Knowledge preserved in a distributed setting

Can we use the knowledge computed on the Petri net ?

What can and cannot be preserved:

- non enabledness of transitions (useful for priorities)
- we can transform Petri net knowledge by weakening it with the incertainty induced by \prec
- **n** impossible: knowledge for achieving synchronization

Conclusion: to achieve synchronization, one must communicate

A typical protocol for achieving distributed implementation:

no information gained – also not with a negative response

A typical protocol for achieving distributed implementation:

process 1 can no decide to select_a (if not yet engaged for b)

 \blacksquare conveye information providing stronger knowledge — when possible (e.g. information about absence of conflict) Susanne Graf [Knowledge for the Distributed Implementation of Constrained Systems](#page-0-0) 16 / 17

\blacksquare try to resolve conflicts early

- \blacksquare try to resolve conflicts early
- avoid requesting knowledge that is already available

Susanne Graf [Knowledge for the Distributed Implementation of Constrained Systems](#page-0-0) 16 / 17

Discussion

I hope I could convince you that knowledge is a useful tool for reasoning about distribution

Perspectives

- take into account data, timing, ... (discrete and continuous)
- **F** formulate platform characteristics in terms of knowledge
- **devise modular proofs for distribution strategies**