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Grenoble, France

Workshop on Formal Verification
of Embedded Control Systems
LCCC, Lund, April 17-19 2013

A. Girard (LJK-UJF) Symbolic Control of δ-GAS Systems 1 / 39



Motivation

Algorithmic synthesis of controllers from high level specifications:

SpecificationPhysical System
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Motivation

Specifications can be expressed using temporal logic (e.g. LTL):

Safety �S (Always S)
Reachability ♦T (Eventually T )
Stability ♦(�T )
Recurrence �(♦T )
Sequencing ♦(T1 ∧ ♦T2)
Coverage ♦T1 ∧ ♦T2

Fault recovery �(F =⇒ ♦R)

LTL formula admits an equivalent (Büchi) automaton.
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Motivation

Algorithmic synthesis of controllers from high level specifications:

Temporal Logic Specif.:Physical System:

|=

Controller

ẋ(t) = f (x(t), u(t))
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Motivation

Algorithmic synthesis of controllers from high level specifications:

Temporal Logic Specif.:Physical System:

|=ẋ(t) = f (x(t), u(t))

Controller:

?

The problem is hard because the model and the specification are
heterogeneous.
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Symbolic Approach to Control Synthesis

Approximate symbolic (discrete) model that is “formally related” to the
(continuous) dynamics of the physical system:

Physical System:

≈ẋ(t) = f (x(t), u(t))

Symbolic Model:
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Symbolic Approach to Control Synthesis

Approximate symbolic (discrete) model that is “formally related” to the
(continuous) dynamics of the physical system:

Discrete Controller:

Symbolic Model:

Hybrid Controller:

Physical System:

≈ẋ(t) = f (x(t), u(t))

Refinement

q(t+) = g(q(t), x(t))
u(t) = k(q(t), x(t))
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Outline of the Talk

1 Behavioral metrics for discrete and continuous systems

Language metric
Approximate bisimulation and bisimulation metric

2 Symbolic abstractions of incrementally stable systems

Incrementally stable switched systems
State-space approaches: from uniform to multi-scale abstractions
Input-space approach
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Transition Systems

Unified modeling framework of discrete and (sampled) continuous systems.

Definition

A transition system is a tuple T = (X ,U, δ,Y ,H,X 0) where

X is a (discrete or continuous) set of states;

U is a (discrete or continuous) set of inputs;

δ : X × U → 2X is a transition relation;

Y is a (discrete or continuous) set of outputs;

H : X → Y is an ouput map;

X 0 ⊆ X is a set of initial states.

The transition system is said to be discrete or symbolic if X and U are
countable or finite.
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Transition Systems

A trajectory of the transition system T is a finite or infinite sequence:

s = (x0, u0), (x1, u1), (x2, u2) . . .

where x0 ∈ X 0 and xk+1 ∈ δ(xk , uk ), ∀k .

The associated observed trajectory is

o = (y0, u0), (y1, u1), (y2, u2) . . . where yk = H(xk ), ∀k .

The set L(T ) of observed trajectories of T is the language of
transition system T .
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Language Metric

Traditional behavioral relationships for transition systems are based
on language inclusion or equivalence.

For systems observed over metric spaces, the distance between
observed trajectories is more natural.

Let Ti = (Xi ,U, δi ,Y ,Hi ,X
0
i ), i ∈ {1, 2}, be transition systems with

a common set of inputs U and outputs Y equipped with a metric d .
For o1 ∈ L(T1), o2 ∈ L(T2),

d(o1, o2) =

{
sup

k
d(y1

k , y
2
k ) if u1

k = u2
k , ∀k

+∞ otherwise
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Language Metric

Definition

The language metric between T1 and T2 is given by

dL(T1,T2) = max

{
sup

o1∈L(T1)

inf
o2∈L(T2)

d(o1, o2), sup
o2∈L(T2)

inf
o1∈L(T1)

d(o1, o2)

}

The language metric is generally hard to compute:

The choice of trajectory o2 approximating o1 may require knowledge of
the whole trajectory o1.

Easier if the approximating trajectory can be selected transition after
transition:

Bisimulation equivalence in the traditional setting.
Natural extension given by the bisimulation metric.
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Approximate Bisimulation

Definition

Let ε ∈ R+
0 , a relation R ⊆ X1 × X2 is an ε-approximate bisimulation

relation if for all (x1, x2) ∈ R :

1 d(H1(x1),H2(x2)) ≤ ε;

2 ∀u ∈ U, ∀x ′1 ∈ δ1(x1, u), ∃x ′2 ∈ δ2(x2, u), such that (x ′1, x
′
2) ∈ R;

3 ∀u ∈ U, ∀x ′2 ∈ δ2(x2, u), ∃x ′1 ∈ δ1(x1, u), such that (x ′1, x
′
2) ∈ R.

Definition

T1 and T2 are ε-approximately bisimilar (T1 ∼ε T2) if :

1 For all x1 ∈ X 0
1 , there exists x2 ∈ X 0

2 , such that (x1, x2) ∈ R;

2 For all x2 ∈ X 0
2 , there exists x1 ∈ X 0

1 , such that (x1, x2) ∈ R.
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Bisimulation Metric

Definition

The bisimulation metric between T1 and T2 is given by

dB(T1,T2) = inf
{
ε ∈ R+

0 | T1 ∼ε T2

}
Fixed-point computation of the bisimulation metric for symbolic
systems.

For other systems, computation of upper-bounds using the notion of
bisimulation functions.

Theorem

The following inequality holds

dL(T1,T2) ≤ dB(T1,T2).
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A Simple Example

0

1

2 4

T1

0

1 1

2 4

T2

0

1

3

T3

dL(T1,T2) = 0, dB(T1,T2) = 2.

dL(T1,T3) = 1, dB(T1,T3) = 1.

A. Girard (LJK-UJF) Symbolic Control of δ-GAS Systems 13 / 39



Outline of the Talk

1 Behavioral metrics for discrete and continuous systems

Language metric
Approximate bisimulation and bisimulation metric

2 Symbolic abstractions of incrementally stable systems

Incrementally stable switched systems
State-space approaches: from uniform to multi-scale abstractions
Input-space approach
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Switched Systems

Continuous control systems with finite set of inputs:

Definition

A switched system is a tuple Σ = (Rn,P,F) where:

Rn is the state space;

P = {1, . . . ,m} is the finite set of modes;

F = {fp : Rn → Rn| p ∈ P} is the collection of vector fields.

For a switching signal p : R+ → P, initial state x ∈ Rn, x(t, x ,p) denotes
the trajectory of Σ given by:

ẋ(t) = fp(t)(x(t)), x(0) = x .
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Incremental Stability

Asymptotic forgetfulness of past history:

Definition

The switched system Σ is incrementally globally uniformly asymptotically
stable (δ-GUAS) if there exists a KL function β such that for all initial
conditions x1, x2 ∈ Rn, for all switching signals p : R+ → P, for all t ∈ R+:

‖x(t, x1,p)− x(t, x2,p)‖ ≤ β(‖x1 − x2‖, t)→t→+∞ 0.

t

x(t, x1, p)

x(t, x2, p)
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Examples of incrementally stable systems

Power converters.

Thermal dynamics in buildings.

Road traffic.
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Lyapunov Characterization

Definition

V : Rn ×Rn → R+ is a common δ-GUAS Lyapunov function for Σ if there
exist K∞ functions α, α and κ ∈ R+ such that for all x1, x2 ∈ Rn:

α(‖x1 − x2‖) ≤ V (x1, x2) ≤ α(‖x1 − x2‖),

∀p ∈ P,
∂V

∂x1
(x1, x2)fp(x1) +

∂V

∂x2
(x1, x2)fp(x2) ≤ −κV (x1, x2).

Theorem

If there exists a common δ-GUAS Lyapunov function, then Σ is δ-GUAS.

Supplementary assumption (true if working on a compact subset of Rn):
There exists a K∞ function γ such that

∀x1, x2, x3 ∈ Rn, |V (x1, x2)− V (x1, x3)| ≤ γ(‖x2 − x3‖).
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Switched Systems as Transition Systems

Consider a switched system Σ = (Rn,P,F) and a time sampling
parameter τ > 0.

Let Tτ (Σ) be the transition system where:

the set of states is X = Rn;
the set of inputs is U = P;
the transition relation is given by

x ′ ∈ δ(x , p) ⇐⇒ x ′ = x(τ, x , p);

the set of outputs is Y = Rn;
the output map H is the identity map over Rn;
the set of initial states is X 0 = Rn.
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Computation of the Symbolic Abstraction

We start by approximating the set of states Rn by:

[Rn]η =

{
z ∈ Rn

∣∣∣∣ zi = ki
2η√
n
, ki ∈ Z, i = 1, ..., n

}
,

where η > 0 is a state sampling parameter:

∀x ∈ Rn, ∃z ∈ [Rn]η, ‖x − z‖ ≤ η.

Approximation of the transition relation = “rounding”:

x(τ, z, p)

z

z ′

A. Girard (LJK-UJF) Symbolic Control of δ-GAS Systems 20 / 39



Approximation Theorem

Theorem

Let us assume that there exists V : Rn × Rn → R+ which is a common
δ-GUAS Lyapunov function for Σ. Consider sampling parameters
τ, η ∈ R+ and a desired precision ε ∈ R+. If

η ≤ min
{
γ−1

(
(1− e−κτ )α(ε)

)
, α−1 (α(ε))

}
then, the relation R ⊆ Rn × [Rn]η given by

R = {(x , z) ∈ Rn × [Rn]η| V (x , z) ≤ α(ε)}

is an ε-approximate bisimulation relation and Tτ (Σ) ∼ε Tτ,η(Σ).

Main idea of the proof: show that accumulation of successive “rounding
errors” is contained by incremental stability.
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Comments on the Approximation Theorem

Based on sampling (gridding) of time and space: simple to compute.

For a given time sampling parameter τ , any precision ε can be
achieved by choosing appropriately the state sampling parameter η
(the smaller τ or ε, the smaller η).

Uniform time and space discretization: excessive computation time
and memory consumption.

Overcome this problem with multi-scale symbolic abstractions:
on-the-fly refinement where fast switching needed, guided by
controller synthesis.
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Switched Systems in a Multi-Scale Setting

Consider a switched system Σ = (Rn,P,F), time and scale sampling
parameters τ > 0 and N ∈ N.

We change the control paradigm: the (aperiodic) controller chooses a
mode and a duration during which it will be applied.

Let TN
τ (Σ) be the transition system where:

the set of states is X = Rn;
the set of inputs is U = P ×ΘN

τ where ΘN
τ = {2−sτ | s = 0, . . . ,N};

the transition relation is given by

x ′ ∈ δ(x , (p, 2−sτ)) ⇐⇒ x ′ = x(2−sτ, x , p);

the set of outputs is Y = Rn;
the output map H is the identity map over Rn;
the set of initial states is X 0 = Rn.
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Multi-Scale Symbolic Abstraction

The set of states Rn is approximated by a sequence of embedded
lattices Q0 ⊆ Q1 ⊆ ... ⊆ QN ⊆ Rn with:

Qs = [Rn]2−sη =

{
z ∈ Rn

∣∣∣∣ zi = ki
2−s+1η√

n
, ki ∈ Z, i = 1, ..., n

}
where η > 0 is a state sampling parameter:

Approximation of the transition relation:

z

z ′′

z ′

x(z , p, τ)

x(z , p, τ/2)

Fine scales reached only
by transitions of shorter
duration.
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Approximation Theorem

Theorem

Let us assume that there exists V : Rn × Rn → R+ which is a common
δ-GUAS Lyapunov function for Σ. Consider sampling and scale parameters
τ, η ∈ R+ , N ∈ N and a desired precision ε ∈ R+. If

η ≤ min

{
min

s=0...N

[
2sγ−1

(
(1− e−κ2−sτ )α(ε)

)]
, α−1 (α(ε))

}
then, the relation R ⊆ Rn × QN given by

R =
{

(x , z) ∈ Rn × QN | V (x , z) ≤ α(ε)
}

is an ε-approximate bisimulation relation and Tτ (Σ) ∼ε Tτ,η(Σ).
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Controller Synthesis using Multi-Scale Abstractions

Multi-scale abstractions are computed on the fly during controller
synthesis using depth first search algorithm:

Start from initial states:
→ elements of the coarsest lattice.

Explore transitions of longer duration first and transitions of shorter
duration only if specification cannot be met by transitions of longer
durations:
→ fine lattices are explored only when necessary.

For safety specifications: notion of maximal lazy safety controller.

Tool CoSyMA: Controller Synthesis using Multi-Scale abstractions.
multiscale-dcs.gforge.inria.fr
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Example: DC-DC Converter

Power converter with switching
control:

Incrementally stable.

Safety specification:
[1.15, 1.55]× [5.45, 5.85].

il

s1

vs

rl
xl

s2

xc

rc

vc

r0 v0

Uniform abstraction Tτ,η(Σ)
τ = 0.5, η = 0.0003, ε = 0.05

Time 9.2s
Size (103) 936
Cont. ratio 93%

Multi-scale abstraction T N
τ,η(Σ)

N = 6, τ = 32, η = 0.018, ε = 0.05
Time 0.6s
Size (103) 6
Durations 4 (33%), 2 (9%), 1 (50%), 0.5 (8%)
Cont. Ratio 92%

A. Girard (LJK-UJF) Symbolic Control of δ-GAS Systems 27 / 39



Example: Boost DC-DC Converter

Uniform abstraction Tτ,η(Σ):
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Example: Boost DC-DC Converter

Multiscale abstraction TN
τ,η(Σ):

1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.551.55

5.450

5.500

5.550

5.600

5.650

5.700

5.750

5.800

5.850

1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.551.55

5.450

5.500

5.550

5.600

5.650

5.700

5.750

5.800

5.850

Modes Durations
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Example: 4 Room Building

4 dimensional thermal model:

Incrementally stable.

At most one heater on at every
instant.

Safety specification: [20, 22]4.

Heater1

Room1 Room2

Room4 Room3

Heater2

Heater3Heater4

Multi-scale abstractions TN
τ,η(Σ)

N = 4, τ = 80, η = 0.14, ε = 0.2

Time 39s

Size (103) 232

Durations 20 (2%), 10 (91%), 5 (7%)

Cont. Ratio 99%
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Example: 4 Room Building

Control maps (mode 1):
T3 = 20.5 T3 = 21.5

T4 = 21.5

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

T4 = 20.5

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000
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Example: 4 Room Building

Control maps (durations):
T3 = 20.5 T3 = 21.5

T4 = 21.5

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

T4 = 20.5

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000

20.00 20.20 20.40 20.60 20.80 21.00 21.20 21.40 21.60 21.80 22.0022.00

20.000

20.200

20.400

20.600

20.800

21.000

21.200

21.400

21.600

21.800

22.00022.000
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Mode Sequences as Symbolic States

State-space approaches suffer from the curse of dimensionality.

Alternative: input-space approach

Incremental stability = asymptotic forgetfulness of past history,
Use mode sequences of given length N, representing the latest applied
modes, as symbolic states of symbolic model Tτ,N (Σ),
The transition relation is given for w = p1p2 . . . pn and p ∈ P by

w ′ ∈ δ(w , p) ⇐⇒ w ′ = p2 . . . pnp.

The output map is defined for w = p1p2 . . . pn as

H(w) = x(Nτ, xs ,pw ) where pw (t) = pi , ∀t ∈ [(i − 1)τ, iτ).

where xs ∈ Rn is a source state.
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Approximation Theorem

Theorem

Let us assume that there exists V : Rn × Rn → R+ which is a common
δ-GUAS Lyapunov function for Σ. Consider time sampling parameter
τ ∈ R+, sequence length N ∈ N and a desired precision ε ∈ R+. Let

ε ≥ α−1

(
γ
(
e−Nκτθ(xs)

)
1− e−κτ

)

where θ(xs) = maxp∈P V (x(τ, xs , p), xs). Then, the relation R ⊆ Rn × PN

given by

R =
{

(x ,w) ∈ Rn × PN | V (x ,H(w)) ≤ α(ε)
}

is an ε-approximate bisimulation relation between Tτ (Σ) and Tτ,η(Σ).
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Comments on the Approximation Theorem

The source state can be chosen so as to minimize θ(xs).

For a given time sampling parameter τ , any precision ε can be
achieved by choosing appropriately the sequence length N.

Number of symbolic states grows exponentially with the sequence
length N.

Asymptotic estimates show that for a given precision ε, the
input-space approach leads to a smaller number of symbolic states
than the (uniform) state-space approach as soon as

ln(|P|) ≤ κτn.
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Example: Road Traffic

5 dimensional model:

Incrementally stable.

At least one green light.

Safety specification: [0, 15]5.

Fairness constraint: red light no
longer than 3 time units.

1 2 3 4 5

Sequence length N 10 12 14

Size (103) 59 531 4783

Precision ε 0.1 0.01 0.001
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Example: Road Traffic

Periodic schedule for light coordination:

2

4

6

8

10

12

14

16
Maximal density = 15

cell 1

cell 2

cell 3

cell 4

cell 5

0 0 0 2 1 0 0 2 1 0 0 2 1 2
applied
modes

traffic
density
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Conclusions

Approximately bisimilar symbolic abstractions:

A rigorous tool for controller synthesis:
Synthesized controllers are “correct by design”.

Allow us to leverage efficient algorithmic techniques from discrete
systems to continuous and hybrid systems.

Computable for interesting classes of systems: switched systems,
continuous control systems...

Several approaches can help to reduce the computation burden.

Ongoing and future work:

Tool CoSyMA: Controller Synthesis using Multi-scale Abstractions.

Multi-scale input-space approaches.

Symbolic models for infinite dimensional systems.
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