Symbolic Control of Incrementally Stable Systems

Antoine Girard

Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble, France

Workshop on Formal Verification of Embedded Control Systems LCCC, Lund, April 17-19 2013

Algorithmic synthesis of controllers from high level specifications:

э

イロト イポト イヨト イヨト

Algorithmic synthesis of controllers from high level specifications:

< m

• Specifications can be expressed using temporal logic (e.g. LTL):

• LTL formula admits an equivalent (Büchi) automaton.

Algorithmic synthesis of controllers from high level specifications:

Image: Image:

- A I I I A I I I I

Algorithmic synthesis of controllers from high level specifications:

The problem is hard because the model and the specification are heterogeneous.

Approximate symbolic (*discrete*) model that is "formally related" to the (*continuous*) dynamics of the physical system:

Approximate symbolic (*discrete*) model that is "formally related" to the (*continuous*) dynamics of the physical system:

Approximate symbolic (*discrete*) model that is "formally related" to the (*continuous*) dynamics of the physical system:

Behavioral metrics for discrete and continuous systems

- Language metric
- Approximate bisimulation and bisimulation metric
- Symbolic abstractions of incrementally stable systems
 - Incrementally stable switched systems
 - State-space approaches: from uniform to multi-scale abstractions
 - Input-space approach

Unified modeling framework of discrete and (sampled) continuous systems.

Definition

A transition system is a tuple $T = (X, U, \delta, Y, H, X^0)$ where

- X is a (discrete or continuous) set of states;
- U is a (discrete or continuous) set of inputs;
- $\delta: X \times U \rightarrow 2^X$ is a transition relation;
- Y is a (discrete or continuous) set of outputs;
- $H: X \to Y$ is an ouput map;
- $X^0 \subseteq X$ is a set of initial states.

The transition system is said to be *discrete* or *symbolic* if X and U are countable or finite.

• A *trajectory* of the transition system T is a finite or infinite sequence:

$$s = (x_0, u_0), (x_1, u_1), (x_2, u_2) \dots$$

where $x_0 \in X^0$ and $x_{k+1} \in \delta(x_k, u_k), \forall k$.

• The associated *observed trajectory* is

$$o = (y_0, u_0), (y_1, u_1), (y_2, u_2) \dots$$
 where $y_k = H(x_k), \ \forall k$.

• The set *L*(*T*) of observed trajectories of *T* is the *language* of transition system *T*.

- Traditional behavioral relationships for transition systems are based on language inclusion or equivalence.
- For systems observed over metric spaces, the distance between observed trajectories is more natural.
- Let $T_i = (X_i, U, \delta_i, Y, H_i, X_i^0)$, $i \in \{1, 2\}$, be transition systems with a common set of inputs U and outputs Y equipped with a metric d. For $o^1 \in L(T_1), o^2 \in L(T_2)$,

$$d(o^1, o^2) = \left\{ egin{array}{cc} \sup d(y^1_k, y^2_k) & ext{if } u^1_k = u^2_k, \ orall k \ +\infty & ext{otherwise} \end{array}
ight.$$

The language metric between T_1 and T_2 is given by

$$d_{L}(T_{1}, T_{2}) = \max \left\{ \sup_{o^{1} \in L(T_{1})} \inf_{o^{2} \in L(T_{2})} d(o^{1}, o^{2}), \sup_{o^{2} \in L(T_{2})} \inf_{o^{1} \in L(T_{1})} d(o^{1}, o^{2}) \right\}$$

- The language metric is generally hard to compute:
 - The choice of trajectory o^2 approximating o^1 may require knowledge of the whole trajectory o^1 .
- Easier if the approximating trajectory can be selected transition after transition:
 - Bisimulation equivalence in the traditional setting.
 - Natural extension given by the bisimulation metric.

Let $\varepsilon \in \mathbb{R}_0^+$, a relation $R \subseteq X_1 \times X_2$ is an ε -approximate bisimulation relation if for all $(x_1, x_2) \in R$:

- **1** $d(H_1(x_1), H_2(x_2)) \leq \varepsilon;$
- $\Im \ \forall u \in U, \ \forall x'_2 \in \delta_2(x_2, u), \ \exists x'_1 \in \delta_1(x_1, u), \ \text{such that} \ (x'_1, x'_2) \in R.$

Definition

 T_1 and T_2 are ε -approximately bisimilar ($T_1 \sim_{\varepsilon} T_2$) if :

- For all $x_1 \in X_1^0$, there exists $x_2 \in X_2^0$, such that $(x_1, x_2) \in R$;
- **2** For all $x_2 \in X_2^0$, there exists $x_1 \in X_1^0$, such that $(x_1, x_2) \in R$.

イロト イ理ト イヨト イヨト

The bisimulation metric between T_1 and T_2 is given by

$$d_B(T_1, T_2) = \inf \left\{ \varepsilon \in \mathbb{R}_0^+ \mid T_1 \sim_{\varepsilon} T_2 \right\}$$

- Fixed-point computation of the bisimulation metric for symbolic systems.
- For other systems, computation of upper-bounds using the notion of *bisimulation functions*.

Theorem

The following inequality holds

$$d_L(T_1, T_2) \leq d_B(T_1, T_2).$$

A Simple Example

 $d_L(T_1, T_2) = 0, \ d_B(T_1, T_2) = 2.$ $d_L(T_1, T_3) = 1, \ d_B(T_1, T_3) = 1.$

(日) (同) (三) (三)

Behavioral metrics for discrete and continuous systems

- Language metric
- Approximate bisimulation and bisimulation metric
- Symbolic abstractions of incrementally stable systems
 - Incrementally stable switched systems
 - State-space approaches: from uniform to multi-scale abstractions
 - Input-space approach

Continuous control systems with finite set of inputs:

Definition

A switched system is a tuple $\Sigma = (\mathbb{R}^n, P, \mathcal{F})$ where:

- \mathbb{R}^n is the state space;
- $P = \{1, \ldots, m\}$ is the finite set of modes;
- $F = \{f_p : \mathbb{R}^n \to \mathbb{R}^n | p \in P\}$ is the collection of vector fields.

For a switching signal $\mathbf{p} : \mathbb{R}^+ \to P$, initial state $x \in \mathbb{R}^n$, $\mathbf{x}(t, x, \mathbf{p})$ denotes the trajectory of Σ given by:

$$\dot{\mathbf{x}}(t) = f_{\mathbf{p}(t)}(\mathbf{x}(t)), \ \mathbf{x}(0) = x.$$

Incremental Stability

Asymptotic forgetfulness of past history:

Definition

The switched system Σ is *incrementally globally uniformly asymptotically* stable (δ -GUAS) if there exists a \mathcal{KL} function β such that for all initial conditions $x_1, x_2 \in \mathbb{R}^n$, for all switching signals $\mathbf{p} : \mathbb{R}^+ \to P$, for all $t \in \mathbb{R}^+$:

$$\|\mathbf{x}(t, x_1, \mathbf{p}) - \mathbf{x}(t, x_2, \mathbf{p})\| \leq \beta(\|x_1 - x_2\|, t) \rightarrow_{t \rightarrow +\infty} 0.$$

Examples of incrementally stable systems

- Power converters.
- Thermal dynamics in buildings.
- Road traffic.

 $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ is a *common* δ -*GUAS Lyapunov function* for Σ if there exist \mathcal{K}_{∞} functions $\underline{\alpha}, \overline{\alpha}$ and $\kappa \in \mathbb{R}^+$ such that for all $x_1, x_2 \in \mathbb{R}^n$:

$$\underline{\alpha}(\|x_1-x_2\|) \leq V(x_1,x_2) \leq \overline{\alpha}(\|x_1-x_2\|),$$

$$\forall p \in P, \ \frac{\partial V}{\partial x_1}(x_1,x_2)f_p(x_1) + \frac{\partial V}{\partial x_2}(x_1,x_2)f_p(x_2) \leq -\kappa V(x_1,x_2).$$

Theorem

If there exists a common δ -GUAS Lyapunov function, then Σ is δ -GUAS.

 $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ is a *common* δ -*GUAS Lyapunov function* for Σ if there exist \mathcal{K}_{∞} functions $\underline{\alpha}, \overline{\alpha}$ and $\kappa \in \mathbb{R}^+$ such that for all $x_1, x_2 \in \mathbb{R}^n$:

$$\underline{\alpha}(\|x_1-x_2\|) \leq V(x_1,x_2) \leq \overline{\alpha}(\|x_1-x_2\|),$$

$$\forall p \in P, \ \frac{\partial V}{\partial x_1}(x_1,x_2)f_p(x_1) + \frac{\partial V}{\partial x_2}(x_1,x_2)f_p(x_2) \leq -\kappa V(x_1,x_2).$$

Theorem

If there exists a common δ -GUAS Lyapunov function, then Σ is δ -GUAS.

Supplementary assumption (true if working on a compact subset of \mathbb{R}^n): There exists a \mathcal{K}_{∞} function γ such that

$$\forall x_1, x_2, x_3 \in \mathbb{R}^n, \ |V(x_1, x_2) - V(x_1, x_3)| \le \gamma(||x_2 - x_3||).$$

Switched Systems as Transition Systems

- Consider a switched system Σ = (ℝⁿ, P, F) and a time sampling parameter τ > 0.
- Let $T_{\tau}(\Sigma)$ be the transition system where:
 - the set of states is $X = \mathbb{R}^n$;
 - the set of inputs is U = P;
 - the transition relation is given by

$$x' \in \delta(x,p) \iff x' = \mathbf{x}(\tau,x,p);$$

- the set of outputs is $Y = \mathbb{R}^n$;
- the output map H is the identity map over \mathbb{R}^n ;
- the set of initial states is $X^0 = \mathbb{R}^n$.

Computation of the Symbolic Abstraction

• We start by approximating the set of states \mathbb{R}^n by:

$$[\mathbb{R}^n]_{\eta} = \left\{ z \in \mathbb{R}^n \mid z_i = k_i \frac{2\eta}{\sqrt{n}}, \ k_i \in \mathbb{Z}, \ i = 1, ..., n \right\},$$

where $\eta > 0$ is a state sampling parameter:

$$\forall x \in \mathbb{R}^n, \ \exists z \in [\mathbb{R}^n]_{\eta}, \ \|x - z\| \le \eta.$$

• Approximation of the transition relation = "rounding":

Theorem

Let us assume that there exists $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ which is a common δ -GUAS Lyapunov function for Σ . Consider sampling parameters $\tau, \eta \in \mathbb{R}^+$ and a desired precision $\varepsilon \in \mathbb{R}^+$. If

$$\eta \leq \min\left\{\gamma^{-1}\left(\left(1 - e^{-\kappa\tau}\right)\underline{\alpha}(\varepsilon)\right), \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$

then, the relation $R \subseteq \mathbb{R}^n \times [\mathbb{R}^n]_\eta$ given by

$$R = \{ (x, z) \in \mathbb{R}^n \times [\mathbb{R}^n]_{\eta} | V(x, z) \leq \underline{\alpha}(\varepsilon) \}$$

is an ε -approximate bisimulation relation and $T_{\tau}(\Sigma) \sim_{\varepsilon} T_{\tau,\eta}(\Sigma)$.

Main idea of the proof: show that accumulation of successive "rounding errors" is contained by incremental stability.

- Based on sampling (gridding) of time and space: simple to compute.
- For a given time sampling parameter τ, any precision ε can be achieved by choosing appropriately the state sampling parameter η (the smaller τ or ε, the smaller η).
- Uniform time and space discretization: excessive computation time and memory consumption.
- Overcome this problem with multi-scale symbolic abstractions: on-the-fly refinement where fast switching needed, guided by controller synthesis.

Switched Systems in a Multi-Scale Setting

- Consider a switched system Σ = (ℝⁿ, P, F), time and scale sampling parameters τ > 0 and N ∈ N.
- We change the control paradigm: the (aperiodic) controller chooses a mode and a duration during which it will be applied.
- Let $T_{\tau}^{N}(\Sigma)$ be the transition system where:
 - the set of states is $X = \mathbb{R}^n$;
 - the set of inputs is $U = P \times \Theta_{\tau}^{N}$ where $\Theta_{\tau}^{N} = \{2^{-s}\tau \mid s = 0, \dots, N\}$;
 - the transition relation is given by

$$x' \in \delta(x, (p, 2^{-s}\tau)) \iff x' = \mathbf{x}(2^{-s}\tau, x, p);$$

- the set of outputs is $Y = \mathbb{R}^n$;
- the output map H is the identity map over \mathbb{R}^n ;
- the set of initial states is $X^0 = \mathbb{R}^n$.

Multi-Scale Symbolic Abstraction

 The set of states ℝⁿ is approximated by a sequence of embedded lattices Q⁰ ⊆ Q¹ ⊆ ... ⊆ Q^N ⊆ ℝⁿ with:

$$Q^{s} = [\mathbb{R}^{n}]_{2^{-s}\eta} = \left\{ z \in \mathbb{R}^{n} \mid z_{i} = k_{i} \frac{2^{-s+1}\eta}{\sqrt{n}}, \ k_{i} \in \mathbb{Z}, \ i = 1, ..., n \right\}$$

where $\eta > 0$ is a state sampling parameter:

• Approximation of the transition relation:

Fine scales reached only by transitions of shorter duration.

Theorem

Let us assume that there exists $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ which is a common δ -GUAS Lyapunov function for Σ . Consider sampling and scale parameters $\tau, \eta \in \mathbb{R}^+$, $N \in \mathbb{N}$ and a desired precision $\varepsilon \in \mathbb{R}^+$. If

$$\eta \leq \min\left\{\min_{s=0...N} \left[2^{s} \gamma^{-1} \left((1-e^{-\kappa 2^{-s}\tau})\underline{\alpha}(\varepsilon)\right)\right], \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$

then, the relation $R \subseteq \mathbb{R}^n \times Q^N$ given by

$$R = \left\{ (x, z) \in \mathbb{R}^n \times Q^N | V(x, z) \le \underline{\alpha}(\varepsilon) \right\}$$

is an ε -approximate bisimulation relation and $T_{\tau}(\Sigma) \sim_{\varepsilon} T_{\tau,\eta}(\Sigma)$.

Controller Synthesis using Multi-Scale Abstractions

- Multi-scale abstractions are computed on the fly during controller synthesis using depth first search algorithm:
 - Start from initial states:
 - \rightarrow elements of the coarsest lattice.
 - Explore transitions of longer duration first and transitions of shorter duration only if specification cannot be met by transitions of longer durations:
 - \rightarrow fine lattices are explored only when necessary.
- For safety specifications: notion of maximal lazy safety controller.
- Tool CoSyMA: Controller Synthesis using Multi-Scale abstractions. multiscale-dcs.gforge.inria.fr

Example: DC-DC Converter

Power converter with switching control:

- Incrementally stable.
- Safety specification: [1.15, 1.55] × [5.45, 5.85].

	Uniform abstraction $T_{\tau,\eta}(\Sigma)$			
	$ au=$ 0.5, $\eta=$ 0.0003, $arepsilon=$ 0.05			
Time	9.2s			
Size (10 ³)	936			
Cont. ratio	93%			
	Multi-scale abstraction $T^{N}_{\tau,\eta}(\Sigma)$			
	$N = 6, \tau = 32, \ \eta = 0.018, \ \varepsilon = 0.05$			
Time	0.6s			
Size (10 ³)	6			
Durations	4 (33%), 2 (9%), 1 (50%), 0.5 (8%)			
Cont. Ratio	92%			

Example: Boost DC-DC Converter

Uniform abstraction $T_{\tau,\eta}(\Sigma)$:

Example: Boost DC-DC Converter

Multiscale abstraction $T_{\tau,\eta}^N(\Sigma)$:

Example: 4 Room Building

- 4 dimensional thermal model:
 - Incrementally stable.
 - At most one heater on at every instant.
 - Safety specification: $[20, 22]^4$.

Heater ₁	Heater ₂		
$Room_1$	$Room_2$		
Room ₄	Room ₃		

	Multi-scale abstractions $T^{N}_{\tau,\eta}(\Sigma)$			
	$N=4, au=$ 80, $\eta=$ 0.14, $arepsilon=$ 0.2			
Time	39s			
Size (10 ³)	232			
Durations	20 (2%), 10 (91%), 5 (7%)			
Cont. Ratio	99%			

Example: 4 Room Building

Control maps (mode 1):

A. Girard (LJK-UJF)

Symbolic Control of δ -GAS Systems

æ

Example: 4 Room Building

Control maps (durations):

A. Girard (LJK-UJF)

Symbolic Control of δ -GAS Systems

- State-space approaches suffer from the curse of dimensionality.
- Alternative: input-space approach
 - Incremental stability = asymptotic forgetfulness of past history,
 - Use mode sequences of given length N, representing the latest applied modes, as symbolic states of symbolic model T_{τ,N}(Σ),
 - The transition relation is given for $w = p_1 p_2 \dots p_n$ and $p \in P$ by

$$w' \in \delta(w,p) \iff w' = p_2 \dots p_n p.$$

• The output map is defined for $w = p_1 p_2 \dots p_n$ as

$$H(w) = \mathbf{x}(N\tau, x_s, \mathbf{p}_w)$$
 where $\mathbf{p}_w(t) = p_i, \forall t \in [(i-1)\tau, i\tau)$.

where $x_s \in \mathbb{R}^n$ is a source state.

Theorem

Let us assume that there exists $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ which is a common δ -GUAS Lyapunov function for Σ . Consider time sampling parameter $\tau \in \mathbb{R}^+$, sequence length $N \in \mathbb{N}$ and a desired precision $\varepsilon \in \mathbb{R}^+$. Let

$$arepsilon \geq \underline{lpha}^{-1}\left(rac{\gamma\left(e^{-N\kappa au} heta(x_{\mathsf{s}})
ight)}{1-e^{-\kappa au}}
ight)$$

where $\theta(x_s) = \max_{p \in P} V(\mathbf{x}(\tau, x_s, p), x_s)$. Then, the relation $R \subseteq \mathbb{R}^n \times P^N$ given by

$${\sf R} = \left\{ (x,w) \in {\mathbb R}^n imes {\sf P}^{{\sf N}} | \; V(x,{\sf H}(w)) \le \underline{lpha}(arepsilon)
ight\}$$

is an ε -approximate bisimulation relation between $T_{\tau}(\Sigma)$ and $T_{\tau,\eta}(\Sigma)$.

Comments on the Approximation Theorem

- The source state can be chosen so as to minimize $\theta(x_s)$.
- For a given time sampling parameter τ , any precision ε can be achieved by choosing appropriately the sequence length N.
- Number of symbolic states grows exponentially with the sequence length *N*.
- Asymptotic estimates show that for a given precision ε, the input-space approach leads to a smaller number of symbolic states than the (uniform) state-space approach as soon as

 $\ln(|P|) \leq \kappa \tau n.$

Example: Road Traffic

- 5 dimensional model:
 - Incrementally stable.
 - At least one green light.
 - Safety specification: $[0, 15]^5$.
 - Fairness constraint: red light no longer than 3 time units.

Sequence length N	10	12	14
Size (10 ³)	59	531	4783
Precision ε	0.1	0.01	0.001

Example: Road Traffic

Periodic schedule for light coordination:

< A

э

- Approximately bisimilar symbolic abstractions:
 - A rigorous tool for controller synthesis: Synthesized controllers are "correct by design".
 - Allow us to leverage efficient algorithmic techniques from discrete systems to continuous and hybrid systems.
 - Computable for interesting classes of systems: switched systems, continuous control systems...
 - Several approaches can help to reduce the computation burden.
- Ongoing and future work:
 - Tool CoSyMA: Controller Synthesis using Multi-scale Abstractions.
 - Multi-scale input-space approaches.
 - Symbolic models for infinite dimensional systems.

글 > - + 글 >

- Behavioral metrics for discrete and continuous systems:
 - G. and Pappas, Approximation metrics for discrete and continuous systems. IEEE TAC, 2007.
- Symbolic abstractions of incrementally stable systems:
 - Pola, G. and Tabuada, Approximately bisimilar symbolic models for nonlinear control systems. Automatica, 2008.
 - G., Pola and Tabuada, Approximately bisimilar symbolic models for incrementally stable switched systems. IEEE TAC, 2010.
 - Camara, G. and Goessler, Safety controller synthesis for switched systems using multi-scale symbolic models. CDC, 2011.
 - Mouelhi, G. and Goessler, CoSyMA: a tool for controller synthesis using multi-scale abstractions. HSCC, 2013.
 - Le Corronc, G. and Goessler, Mode sequences as symbolic states in abstractions of incrementally stable switched systems. Submitted.