Computable analysis and control synthesis over complex dynamical systems via formal verification

Alessandro Abate

Delft Center for Systems and Control, TU Delft Department of Computer Science, University of Oxford

April 2013

Outline

Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

Outline

Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

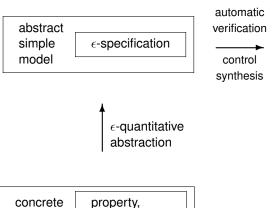
concrete property, complex specification, model cost or reward

 ϵ -quantitative abstraction

concrete property, complex specification, model cost or reward

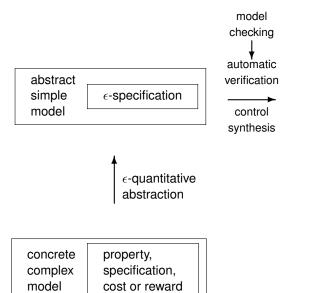
 ϵ -quantitative abstraction

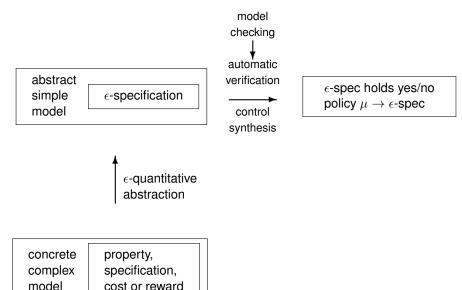
concreteproperty,complexspecification,modelcost or reward

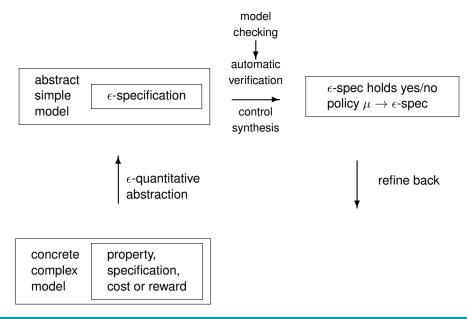


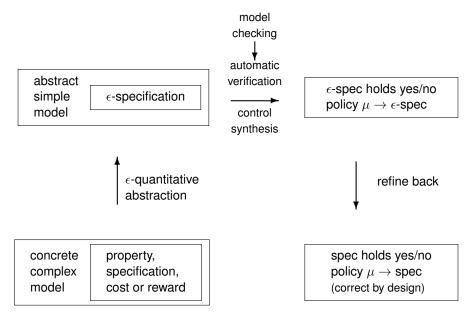
specification,

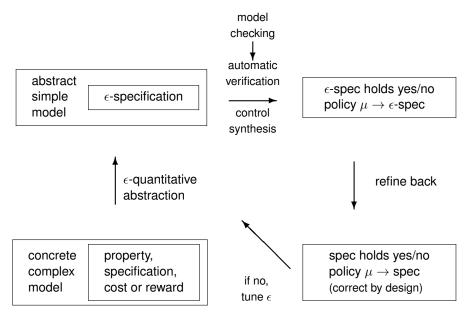
cost or reward











Outline

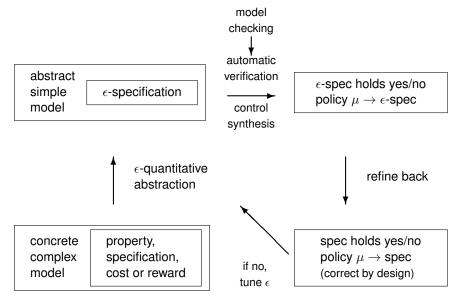
Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

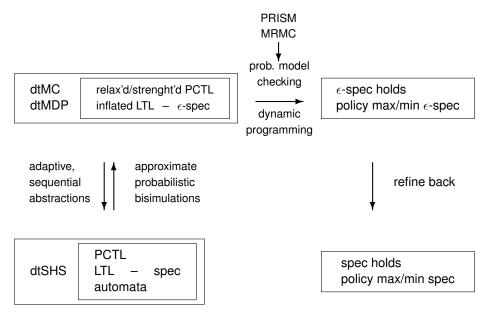
Formal verification of max-plus linear models

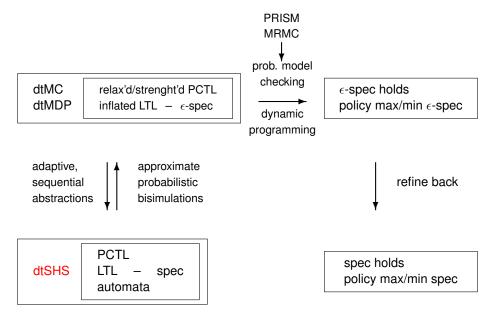
- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

4 Concluding remarks



Formal abstractions for verification of dtSHS





discrete-time models

finite-space Markov chainuncountable-space Markov process $(\mathcal{Z}, \mathcal{T})$ (\mathcal{S}, T_s) $\mathcal{Z} = (z_1, z_2, z_3)$ $\mathcal{S} = \mathbb{R}^2$ $\mathcal{T} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$ $T_s(x|s) = \frac{e^{-\frac{1}{2}(x-m(s))^T \Sigma^{-1}(s)(x-m(s))}}{\sqrt{2\pi}|\Sigma(s)|^{1/2}}$ $P(z_1, \{z_2, z_3\}) = p_{12} + p_{13}$ $P(s, A) = \int_A T_s(dx|s), \quad A \in \mathcal{B}(\mathcal{S})$

discrete-time models

finite-space Markov chain	uncountable-space Markov process
$(\mathcal{Z}, \mathfrak{T})$	(S, <i>T</i> _s)
$\mathcal{Z} = (z_1, z_2, z_3)$	$S = \mathbb{R}^2$
$\mathfrak{T} = \left[egin{array}{cccc} p_{11} & p_{12} & p_{13} \ p_{21} & \cdots & \cdots \ \cdots & \cdots & \cdots \end{array} ight]$	$T_{s}(x s) = rac{e^{-rac{1}{2}(x-m(s))^{T}\Sigma^{-1}(s)(x-m(s))}}{\sqrt{2\pi} \Sigma(s) ^{1/2}}$
$P(z_1, \{z_2, z_3\}) = p_{12} + p_{13}$	$P(s,A) = \int_A T_s(dx s), A \in \mathbb{B}(\mathbb{S})$

⇒ discrete-time, stochastic hybrid systems

Definition

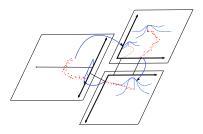
A discrete-time stochastic hybrid system is a pair (S, T_s) , where

• $S = \bigcup_{q \in Q} (\{q\} \times \mathbb{R}^{n(q)}), Q$ a discrete set of modes, $n : Q \to \mathbb{N}$

T_s: S × S → [0, 1] specifies the dynamics of process at point *s* = (*q*, *x*):

$$T_{s}(ds'|s) = \begin{cases} T_{x}(dx'|(q,x))T_{q}(q|(q,x)), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),q')T_{q}(q'|(q,x)), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

• initial state
$$\pi : S \rightarrow [0, 1]$$



Definition

A discrete-time stochastic hybrid system is a pair (S, T_s) , where

- $S = \bigcup_{q \in Q} (\{q\} \times \mathbb{R}^{n(q)}), Q$ a discrete set of modes, $n : Q \to \mathbb{N}$
- $T_s: S \times S \rightarrow [0, 1]$ specifies the dynamics of process at point s = (q, x):

$$T_{s}(ds'|s) = \begin{cases} T_{x}(dx'|(q,x))T_{q}(q|(q,x)), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),q')T_{q}(q'|(q,x)), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

- initial state $\pi : S \rightarrow [0, 1]$
- can be control dependent ($u \in U$):

$$T_{s}(ds'|s,u) = \begin{cases} T_{x}(dx'|(q,x),u)T_{q}(q|(q,x),u), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),u,q')T_{q}(q'|(q,x),u), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

- policy μ: "string" of controls
- equivalent dynamical representation: $s_{k+1} = f(s_k, \xi_k, u_k)$

Stochastic hybrid systems in risk analysis

$$\begin{cases} Z_{n+1} = g(Z_n, \theta_n) & Z_n \in \mathbb{R}, \\ \theta_{n+1} = h(Z_n, \theta_n, \xi_n) & \theta_n \in \{\Theta_1, \dots, \Theta_N\}, \\ \end{cases} \leftarrow \text{ interest}$$

where ξ_n i.i.d. random variables; g, h measurable; (Z_0, θ_0) given

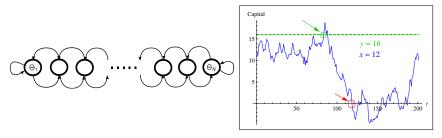


[I. Tkachev, AA - CDC 11]

Stochastic hybrid systems in risk analysis

$$\begin{cases} Z_{n+1} = g(Z_n, \theta_n) & Z_n \in \mathbb{R}, \\ \theta_{n+1} = h(Z_n, \theta_n, \xi_n) & \theta_n \in \{\Theta_1, \dots, \Theta_N\}, & \leftarrow \text{ interest} \end{cases}$$

where ξ_n i.i.d. random variables; g, h measurable; (Z_0, θ_0) given



• **objective:** what is the probability that, starting from initial capital $Z_0 = x$, high capitalization *y* is reached, while company's bankruptcy is avoided

[I. Tkachev, AA - CDC 11]

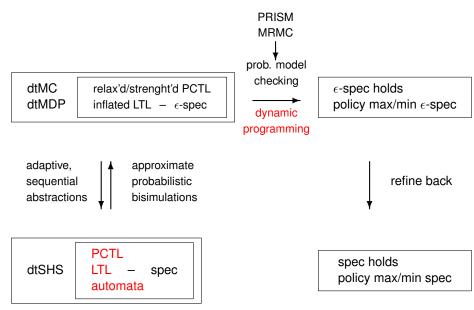
Outline

Formal abstractions for verification of complex models

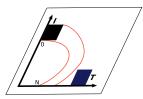
- Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

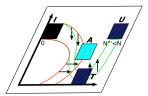
Analysis and control synthesis problems



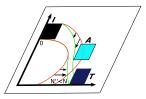
Analysis and control synthesis problems



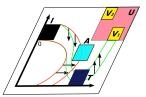
reachability (safety/invariance)



sequential reachability (trajectory planning)



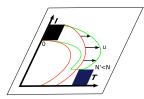
reach-avoid (constrained reachability)



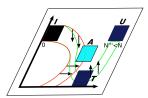
 ∞ -horizon objectives (i.o., eventually always)

• properties expressed via PCTL, LTL (DFA or Büchi automata)

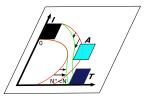
Analysis and control synthesis problems



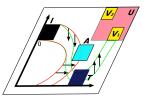
synthesis for reachability games (2 - 1/2 players)



sequential reachability (trajectory planning)



synthesis for reach-avoid (pursuit evasion games)



 ∞ -horizon objectives (i.o., eventually always)

• properties expressed via PCTL, LTL (DFA or Büchi automata)

Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$

Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$

• consider realization $s_k \in S$, $k \in [0, N]$ – then

$$\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = \begin{cases} 1, & \text{if } \forall k \in [0, N] : s_{k} \in S \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \mathcal{P}_{\pi}(S) = P_{\pi}\left(\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = 1\right) = E_{\pi}\left[\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k})\right]$$

Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$

• consider realization $s_k \in S$, $k \in [0, N]$ – then

$$\prod_{k=0}^{N} \mathbf{1}_{\mathcal{S}}(s_k) = \begin{cases} 1, & \text{if } \forall k \in [0, N] : s_k \in S \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \mathcal{P}_{\pi}(S) = P_{\pi}\left(\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = 1\right) = E_{\pi}\left[\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k})\right]$$

• select $\epsilon \in [0, 1]$ – probabilistic safe/invariant set with safety level ϵ is

$$S(\epsilon) \doteq \{ s \in \mathbb{S} : \mathcal{P}_s(S) \ge \epsilon \} \quad (here \ \pi = \delta_s)$$

Probabilistic invariance: computation

 computation of P_s(S) (and thus of S(ε)) via dynamic programming: sequential update, backward in time, of multi-stage value function

 $V_k(s): [0, N] \times S \rightarrow \mathbb{R}^+,$

accounting for current and expected future rewards - in particular

$$V_{\mathsf{N}}(s) = \mathbf{1}_{\mathcal{S}}(s), \quad V_{k}(s) = \int_{\mathcal{S}} V_{k+1}(x) T_{s}(dx|s)$$
 $\boxed{V_{0}(s) = \mathcal{P}_{s}(S)}$

Probabilistic invariance: computation

 computation of P_s(S) (and thus of S(ε)) via dynamic programming: sequential update, backward in time, of multi-stage value function

 $V_k(s): [0, N] \times S \rightarrow \mathbb{R}^+,$

accounting for current and expected future rewards - in particular

$$V_{\mathsf{N}}(s) = \mathbf{1}_{\mathcal{S}}(s), \quad V_k(s) = \int_{\mathcal{S}} V_{k+1}(x) \mathcal{T}_s(dx|s)$$
 $\boxed{V_0(s) = \mathcal{P}_s(S)}$

control dependent models: find optimal policy µ, optimizing recursively over

$$V_k(s, u) : [0, N] \times \mathbb{S} \times \mathbb{U} \to \mathbb{R}^+$$

Computing probabilistic invariance

issues

- non-standard (max, multiplicative) value functions
- Continuous control space
- hybrid state space
- ⇒ solution of DP is seldom analytical

Computing probabilistic invariance

issues

- non-standard (max, multiplicative) value functions
- Continuous control space
- hybrid state space
- \Rightarrow solution of DP is seldom analytical
 - numerical solutions are needed
- \Rightarrow problem # 1: difference between real solution and computed solution
- ⇒ problem # 2: Bellman's *curse of dimensionality*

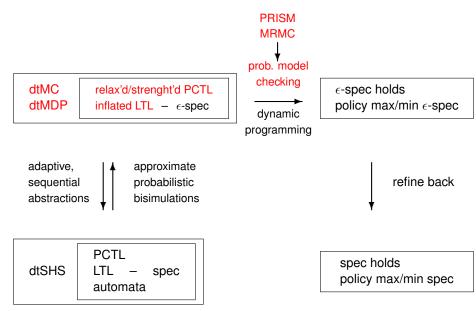
Outline

Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

Dynamical properties as temporal specifications



Approximate model checking of probabilistic invariance

• model (S, T_s), invariance set $S \in S$, finite time horizon N, safety level ϵ

[AA et al. - EJC 11]

- model ((S, T_s)), invariance set $S \in S$, finite time horizon N, safety level ϵ
- δ -approximate ($\mathfrak{S}, \mathcal{T}_s$) with finite-state dt-MC ($\mathfrak{Z}, \mathfrak{T}$)
- * compute approximation error $f(\delta, N)$
- $S \rightarrow S_{\delta}$: define formula $\Phi_{S_{\delta}}$ characterizing set S_{δ} , label states in \mathfrak{Z}

- model (S, T_s), invariance set $S \in S$, finite time horizon N, safety level ϵ
- δ -approximate ($\mathfrak{S}, \mathcal{T}_s$) with finite-state dt-MC ($\mathfrak{Z}, \mathfrak{T}$)
- * compute approximation error $f(\delta, N)$
- $S \rightarrow S_{\delta}$: define formula $\Phi_{S_{\delta}}$ characterizing set S_{δ} , label states in \mathfrak{Z}
- ⇒ probabilistic safe set

$$\begin{split} \mathbf{S}(\epsilon) &= \{\mathbf{s} \in \mathbb{S} : \mathbb{P}_{\mathbf{s}}(\mathbf{S}) \geq \epsilon\} \\ &= \{\mathbf{s} \in \mathbb{S} : (1 - \mathbb{P}_{\mathbf{s}}(\mathbf{S})) \leq 1 - \epsilon\} \end{split}$$

- model ((S, T_s)), invariance set $S \in S$, finite time horizon N, safety level ϵ
- δ -approximate ($\mathfrak{S}, \mathcal{T}_s$) with finite-state dt-MC ($\mathfrak{Z}, \mathfrak{T}$)
- * compute approximation error $f(\delta, N)$
- $S \rightarrow S_{\delta}$: define formula $\Phi_{S_{\delta}}$ characterizing set S_{δ} , label states in \mathfrak{Z}
- ⇒ probabilistic safe set

$$S(\epsilon) = \{ s \in \mathbb{S} : \mathbb{P}_s(S) \ge \epsilon \}$$

= $\{ s \in \mathbb{S} : (1 - \mathbb{P}_s(S)) \le 1 - \epsilon \}$

can be related to

$$\begin{split} Z_{\delta}(\epsilon) &\doteq \mathsf{Sat}\left(\mathbb{P}_{\leq 1-\epsilon}\left(\mathsf{true}\ \mathfrak{U}^{\leq N} \neg \Phi_{S_{\delta}}\right)\right) \\ &= \{z \in \mathfrak{Z} : z \models \mathbb{P}_{\leq 1-\epsilon}\left(\mathsf{true}\ \mathfrak{U}^{\leq N} \neg \Phi_{S_{\delta}}\right)\} \end{split}$$

[AA et al. - EJC 11]

- model (S, T_s) , invariance set $S \in S$, finite time horizon N, safety level ϵ
- δ -approximate (S, T_s) with finite-state dt-MC (\mathcal{Z}, \mathcal{T})
- * compute approximation error $f(\delta, N)$
- $S \rightarrow S_{\delta}$: define formula $\Phi_{S_{\delta}}$ characterizing set S_{δ} , label states in \mathcal{Z}

define

 \Rightarrow

$$egin{aligned} & \mathcal{S}(\epsilon) = \{ m{s} \in \mathbb{S} : \mathcal{P}_{m{s}}(m{S}) \geq \epsilon \} \ & Z_{\delta}(\epsilon) = \operatorname{Sat} \left(\mathbb{P}_{\leq \mathbf{1} - \epsilon} \left(\operatorname{true} \ \mathcal{U}^{\leq N} \ \neg \Phi_{\mathcal{S}_{\delta}}
ight)
ight) \end{aligned}$$

- Select $\eta > 0$: $\eta/2 \in (0, 1 \epsilon)$
- **3** pick δ : $f(\delta, N) \leq \eta/2$
- compute $Z_{\delta}(\epsilon + \eta/2)$

$$\mathcal{S}(\epsilon+\eta)\subseteq \hat{\mathcal{S}}_\eta(\epsilon)\subseteq \mathcal{S}(\epsilon)$$

[AA et al. - EJC 11]

Verification of over- or under-specifications in PCTL

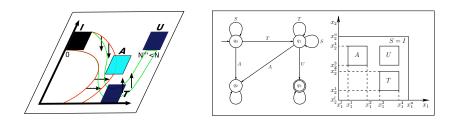
- any PCTL formula can be expressed via equivalent DP recursions
- consider PCTL formula $\mathbb{P}_{\sim \epsilon}(\Psi)$ on SHS (\mathcal{S}, T_s)
- δ-approximate SHS (S, T_s) as a dt-MC (Z, T)
- compute approximation error $f(\delta, N)$

Verification of over- or under-specifications in PCTL

- any PCTL formula can be expressed via equivalent DP recursions
- consider PCTL formula $\mathbb{P}_{\sim \epsilon}(\Psi)$ on SHS (\mathcal{S}, T_s)
- δ-approximate SHS (S, T_s) as a dt-MC (Z, T)
- compute approximation error $f(\delta, N)$
- compute $g(\Psi, f)$, a function based on formula & error
- model check $\mathbb{P}_{\sim \epsilon \pm g(\Psi, f)}(\Psi)$ on $(\mathcal{Z}, \mathcal{T})$
- 1 if PCTL formula is "robust", then conclusion holds for $\mathbb{P}_{\sim \epsilon}(\Psi)$ on SHS
- 2 else refine $\delta \rightarrow$ reduce $f(\delta, N) \rightarrow$ decrease $g(\Psi, f)$

[D'Innocenzo, AA, J.-P. Katoen - HSCC 12]

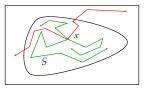
Approximate model checking of automata specifications



- generalization to "richer" set of properties over dtSHS
- specifications expressed as a DFA or a Büchi automata
- probabilistic reachability-like computation over product construction

[AA et al. - HSCC 11; I. Tkachev et al. - HSCC13]

Characterization & computation of ∞ -horizon properties

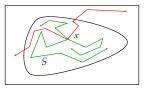


• consider target set *T*; invariant set $S = T^c = S \setminus T$; $\forall s \in S$:

$$P_s(\forall n \geq 0: s_n \in \mathbf{S}) \quad \leftrightarrow \quad 1 - P_s(\texttt{true} \ \mathfrak{U} \ \mathbf{T})$$

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12]

Characterization & computation of ∞ -horizon properties



• consider target set *T*; invariant set $S = T^c = S \setminus T$; $\forall s \in S$:

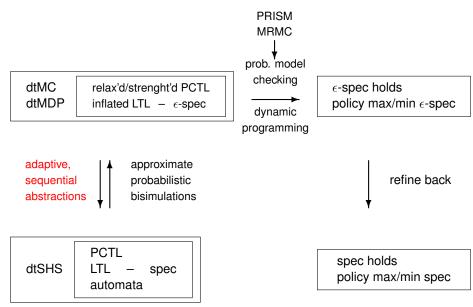
$$P_s(\forall n \geq 0: s_n \in S) \quad \leftrightarrow \quad 1 - P_s(\texttt{true} \ U \ T)$$

- existence and computation of absorbing set B: $\forall x \in B$, $T_s(B|x) = 1$
- characterization study of existence/uniqueness of (non-trivial) solutions of Bellman equations

convergence of Bellman recursions, contractivity of operators

computation – formal reduction to finite-horizon problems

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12]



• approximation via δ -partitioning: $S = \bigcup_{q \in \Omega} \{q\} \times S_q = \bigcup_{q \in \Omega, i=1,...,m_q} \{q\} \times S_q^i$

under Lip-continuity assumptions on density of kernel T_s,

$$h(i,j), \quad i,j=1,\ldots,m_q,q\in Q$$

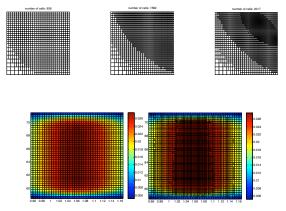
• for any $z_q^i \in S_\delta$, $\forall s : s \land z_q^i \in S_q^i$, error is

$$f(\delta, N) \doteq \left| \mathcal{P}_{s}(S) - \mathcal{P}_{z_{q}^{i}}(S_{\delta}) \right| \leq \max_{i=1,...,m_{q},q \in \Omega} N\delta_{q,i} \sum_{j=1,...,m_{\ell},r \in \Omega} h(i,j),$$

$$\delta = \max_{i=1,\dots,m_q,q\in\mathcal{Q}} \delta_{q,i}, \ \delta_{q,i} = \operatorname{diam}\left(S_q^i\right)$$

error is linear in N, $\delta_{q,i}$ and depends on local constants $h(i,j) \rightarrow$ local tuning [AA et al. - EJC 11, S. Soudjani, AA - QEST 11]

- software (in the making) for sequential, adaptive grid generation based on approximation error
- formula-based abstractions



[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]

error generalization

- discontinuous and partially degenerate kernels
- ill-conditioned kernels (different time scales, e.g. biology)
- error refinement by higher-order approximations
 - δ : faster convergence upon tuning
 - N: possibly bounded in time (allows considering ∞ -horizon properties)

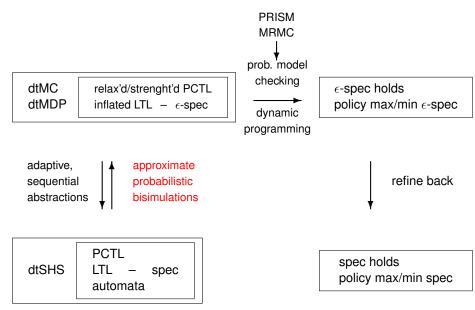
[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13; I. Tkachev, AA - HSCC 13]

error generalization

- discontinuous and partially degenerate kernels
- ill-conditioned kernels (different time scales, e.g. biology)
- error refinement by higher-order approximations
 - δ : faster convergence upon tuning
 - N: possibly bounded in time (allows considering ∞-horizon properties)
- alternative: formula-free abstractions

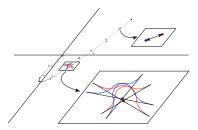
[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13; I. Tkachev, AA - HSCC 13]

Approximate probabilistic bisimulations



Approximate probabilistic bisimulations

• above abstraction leads to approximate probabilistic bisimulation [Larsen & Skou, 91] - alternatively ...



- consider models $(T_{s,i}, S_i)$ with solution processes $s_i(k), i = 1, 2, k \ge 0$
- parallel composition of models with output $s_{1,2}(k) = s_1(k) s_2(k)$

Definition

A function $\psi : S_1 \times S_2 \to \mathbb{R}^+$ is a probabilistic bisimulation function if $\psi(s_{1,2}) \ge \|s_1 - s_2\|^2$ and if $\psi_{s_0}(s_{1,2}(k))$ is a supermartingale.

• ψ is an upper bound on the distance btw solutions of two models: $P_{s_0} \left(\sup_{k \ge 0} \|s_1(k) - s_2(k)\|^2 \ge \epsilon \right) \le \psi_{s_0}(s_{1,2}(0))/\epsilon$ [AA - ENTCS 13]

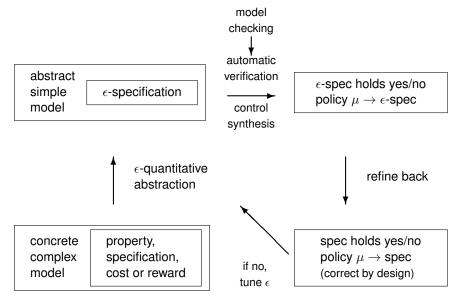
Outline

Formal abstractions for verification of complex models

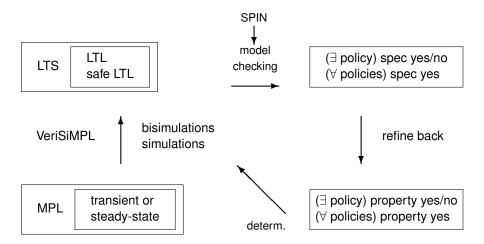
- 2) Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

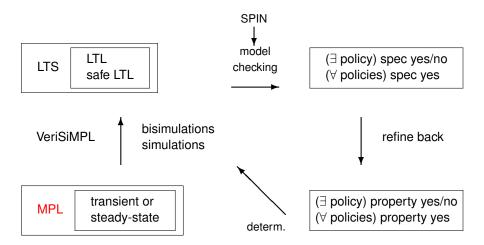
Formal abstractions for verification of complex models



Formal abstractions for verification of MPL models



Introduction to MPL systems



Introduction to MPL systems

- Max-Plus-Linear (MPL) systems are event-driven models
- applications: railway scheduling, planning of production lines, network calculus

- x(k) is the time of *k*-th event, $k \in \mathbb{N} \cup \{0\}$
- timing updates: maximization (\oplus) and addition (\otimes) operations

 \rightarrow max-plus algebra

Max-plus algebra

•
$$\epsilon = -\infty$$
, $\mathbb{R}_{\epsilon} = \mathbb{R} \cup \{\epsilon\}$
• $\alpha, \beta \in \mathbb{R}_{\epsilon}$, $A, B \in \mathbb{R}_{\epsilon}^{m \times p}$, $C \in \mathbb{R}_{\epsilon}^{p \times n}$

•
$$\alpha \oplus \beta \stackrel{\mathsf{def}}{=} \max(\alpha, \beta)$$

•
$$\alpha \otimes \beta \stackrel{\mathsf{def}}{=} \alpha + \beta$$

Max-plus algebra

•
$$\epsilon = -\infty$$
, $\mathbb{R}_{\epsilon} = \mathbb{R} \cup \{\epsilon\}$
• $\alpha, \beta \in \mathbb{R}_{\epsilon}$, $A, B \in \mathbb{R}_{\epsilon}^{m \times p}$, $C \in \mathbb{R}_{\epsilon}^{p \times n}$

• $\alpha \oplus \beta \stackrel{\text{def}}{=} \max(\alpha, \beta)$

 $\bullet \ \alpha \otimes \beta \stackrel{\mathrm{def}}{=} \alpha + \beta$

•
$$[A \oplus B]_{i,j} \stackrel{\text{def}}{=} [A]_{i,j} \oplus [B]_{i,j}$$
, for $i = 1, \dots, m$ and $j = 1, \dots, p$

•
$$[A \otimes C]_{i,j} \stackrel{\text{def}}{=} \bigoplus_{k=1}^{p} [A]_{i,k} \otimes [C]_{k,j}$$
, for $i = 1, \dots, m$ and $j = 1, \dots, n$

Max-plus-linear models

Definition (Autonomous MPL model)

$$x(k+1)=A\otimes x(k),$$

where $A \in \mathbb{R}^{n \times n}_{\epsilon}$ and $k \in \mathbb{N} \cup \{0\}$

Example

A simple railway model [Heidergott, 06]

$$x(k+1) = \begin{bmatrix} 2 & 5 \\ 3 & 3 \end{bmatrix} \otimes x(k), \quad \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} \max\{2 + x_1(k), 5 + x_2(k)\} \\ \max\{3 + x_1(k), 3 + x_2(k)\} \end{bmatrix}$$

[Baccelli et al., 92]

Max-plus-linear models

Definition (Autonomous MPL model)

$$x(k+1)=A\otimes x(k),$$

where $A \in \mathbb{R}^{n \times n}_{\epsilon}$ and $k \in \mathbb{N} \cup \{0\}$

Example

A simple railway model [Heidergott, 06]

$$x(k+1) = \begin{bmatrix} 2 & 5 \\ 3 & 3 \end{bmatrix} \otimes x(k), \quad \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} \max\{2 + x_1(k), 5 + x_2(k)\} \\ \max\{3 + x_1(k), 3 + x_2(k)\} \end{bmatrix}$$

Definition (Non-autonomous MPL model)

$$x(k+1) = A \otimes x(k) \oplus B \otimes u(k),$$

where $B \in \mathbb{R}^{n \times m}_{\epsilon}$ and $u \in \mathbb{R}^{m}$ (synthesis = scheduling)

[Baccelli et al., 92]

Outline

Formal abstractions for verification of complex models

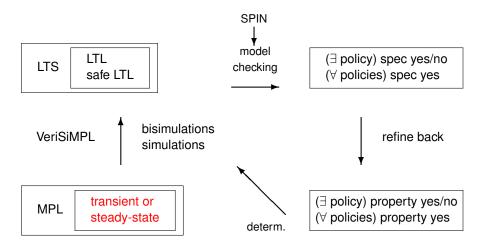
- 2) Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

Formal verification of max-plus linear models

- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

4 Concluding remarks

Classical analysis of MPL models



Classical analysis of MPL models

- study of transient and periodic regimes, of asymptotics
- classical analysis based on algebraic or geometric properties

Definition

- **()** max-plus eigenvector $x \in \mathbb{R}^n$: $A \otimes x = \lambda \otimes x \Rightarrow x(k+1) = \lambda \otimes x(k)$
- ② cycles on precedence graph ⇒ periodic regime with period *c*: $\forall k \ge k_0, x(k + c) = \lambda^{\otimes^c} \otimes x(k)$

Example

• eigenspace (periodic regime with period 1 and $\lambda = 4$):

$$\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 5\\4 \end{bmatrix}, \begin{bmatrix} 9\\8 \end{bmatrix}, \begin{bmatrix} 13\\12 \end{bmatrix}, \begin{bmatrix} 17\\16 \end{bmatrix}, \begin{bmatrix} 21\\20 \end{bmatrix}, \begin{bmatrix} 25\\24 \end{bmatrix}, \begin{bmatrix} 29\\28 \end{bmatrix}, \begin{bmatrix} 33\\32 \end{bmatrix}, \begin{bmatrix} 37\\36 \end{bmatrix}, \begin{bmatrix} 41\\40 \end{bmatrix}, \begin{bmatrix} 45\\44 \end{bmatrix}, \dots$$

If periodic regime with period c = 2 (transient $k_0 = 3$):

 $\begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix}, \begin{bmatrix} 12 \\ 10 \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 20 \\ 18 \end{bmatrix}, \begin{bmatrix} 23 \\ 23 \end{bmatrix}, \begin{bmatrix} 28 \\ 26 \end{bmatrix}, \begin{bmatrix} 31 \\ 31 \end{bmatrix}, \begin{bmatrix} 36 \\ 34 \end{bmatrix}, \begin{bmatrix} 39 \\ 39 \end{bmatrix}, \begin{bmatrix} 44 \\ 42 \end{bmatrix}, \begin{bmatrix} 47 \\ 47 \end{bmatrix}, \dots$

Outline

Formal abstractions for verification of complex models

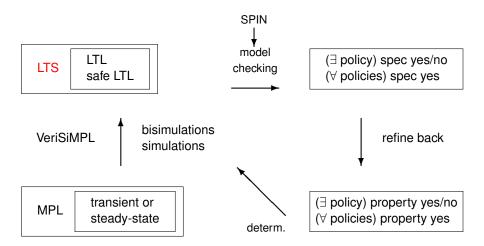
- 2) Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

Formal verification of max-plus linear models

- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

4 Concluding remarks

Labeled transition system (LTS)



Labeled transition system (LTS)

• consider AP, a set of atomic propositions

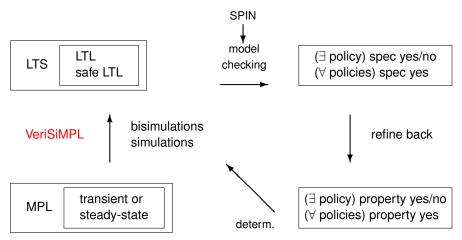
Definition

A labeled transition system (L, S, δ) consists of

- S: a set of states
- L: a set of labels in 2^{AP}
- $\delta \subseteq S \times L \times S$: a transition relation
- labels can be defined over states
- LTS can be deterministic vs non-deterministic
- LTS can be infinite vs finite

[Baier & Katoen, 08]

Finite LTS as abstractions of MPL models



Finite LTS as abstractions of MPL models

procedure

- S: construct collection of LTS states from partitions of MPL state space
- 2 δ : determine LTS transitions via one-step reach over MPL
- **O** L: compute labels related to MPL timing \rightarrow induce set of AP

Finite LTS as abstractions of MPL models

procedure

- S: construct collection of LTS states from partitions of MPL state space
- 2 δ : determine LTS transitions via one-step reach over MPL
- **O** L: compute labels related to MPL timing \rightarrow induce set of AP

Definition (Regular matrix)

A matrix $A \in \mathbb{R}_{\epsilon}^{m \times n}$ is called regular (row-finite) if it contains at least one element different from ϵ in each row (in practice, no instantaneous events)

LTS states: state-space partitioning

- autonomous MPL model can be expressed as PWA system
- PWA dynamics are associated to polytopic regions
- collection of regions is a cover of \mathbb{R}^n (in general not a partition)
- partition constructed via further refinement

LTS states: state-space partitioning

- autonomous MPL model can be expressed as PWA system
- PWA dynamics are associated to polytopic regions
- collection of regions is a cover of \mathbb{R}^n (in general not a partition)
- partition constructed via further refinement
- obtained state-space partition defines states of LTS
- partition is not arbitrary: it is adapted to underlying dynamics

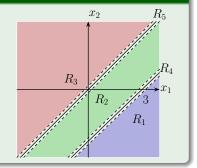
State-space partitioning, an example

Example

• after refinement, total of 5 regions:

$$R_1 = \{x \in \mathbb{R}^2 : x_1 - x_2 < 0\}$$

 $R_2 = \{x \in \mathbb{R}^2 : x_1 - x_2 = 0\}$
 $R_3 = \{x \in \mathbb{R}^2 : x_1 - x_2 > 3\}$
 $R_4 = \{x \in \mathbb{R}^2 : x_1 - x_2 = 3\}$
 $R_5 = \{x \in \mathbb{R}^2 : 0 < x_1 - x_2 < 3\}$



Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in \mathbb{R}^n is the finite intersection of sets defined by

$$\mathbf{x}_i - \mathbf{x}_j \simeq_{i,j} \alpha_{i,j},$$

where $\simeq_{i,j} \in \{<,\leq\}, \alpha_{i,j} \in \mathbb{R} \cup \{+\infty\}$, for $1 \le i \ne j \le n$

- DBM allow compact matrix representation
- DBM are easy to manipulate (projections, emptiness and inclusion check)

Difference-bound matrices (DBM)

Definition (DBM)

A difference-bound matrix in \mathbb{R}^n is the finite intersection of sets defined by

$$\mathbf{x}_i - \mathbf{x}_j \simeq_{i,j} \alpha_{i,j},$$

where $\simeq_{i,j} \in \{<,\leq\}, \alpha_{i,j} \in \mathbb{R} \cup \{+\infty\}$, for $1 \le i \ne j \le n$

- DBM allow compact matrix representation
- DBM are easy to manipulate (projections, emptiness and inclusion check)
- image/inverse image of DBM over MPL dynamics is again a DBM

LTS transitions: one-step reachability

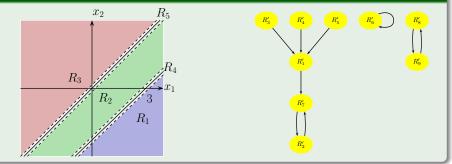
- consider any two TS states (partitioning regions) R, R'
- $R \to R'$ iff there exists a $x(k) \in R$ such that $x(k+1) \in R'$: check whether $R' \cap \{x(k+1) : x(k) \in R\} \neq \emptyset$

LTS transitions: one-step reachability

- consider any two TS states (partitioning regions) R, R'
- $R \to R'$ iff there exists a $x(k) \in R$ such that $x(k+1) \in R'$: check whether $R' \cap \{x(k+1) : x(k) \in R\} \neq \emptyset$
- use DBM representation, DBM forward-mapping via PWA dynamics, DBM emptiness check

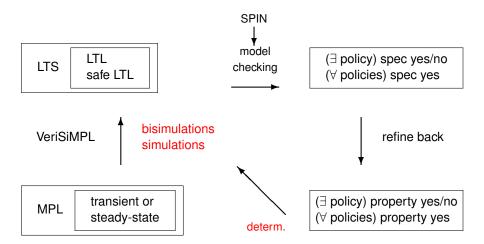
LTS transitions, an example

Example



- determinism vs non-determinism of obtained TS
- above R_i original partitions, R'_i refined partitions (determinization)

Relationship between LTS and MPL



Relationship between LTS and MPL

Theorem

- TS simulates the original MPL model
- TS bisimulates the MPL model if and only if it is deterministic
- non-deterministic TS can be "determinized" by refining partitioning regions
- however, refinement procedure may not terminate

Theorem

- if TS is deterministic over the periodic regime, then TS is globally deterministic
- every irreducible MPL model admits finite deterministic TS abstraction

LTS labels

Definition

• state labels:

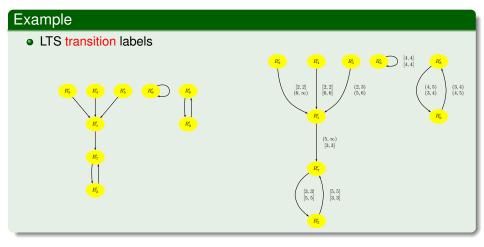
all possible values of $x_i(k) - x_j(k)$, for $1 \le i < j \le n$ time difference of same-event variables

• transition labels:

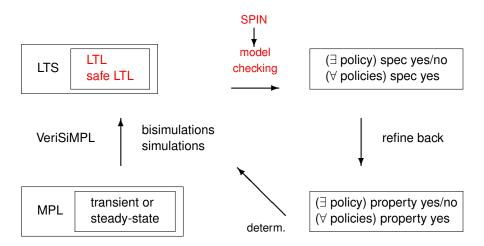
all possible values of $x_i(k+1) - x_i(k)$, for $1 \le i \le n$ time difference of successive events

labels are vectors of intervals, can be represented as DBM

LTS labels, an example



Computational benchmark for abstraction



Computational benchmark for abstraction

- A randomly generated with elements taking values between 1 and 100
- row-finite matrix A: with 2 finite elements placed randomly in each row
- 10 independent experiments per dimension mean values are displayed:

size	time for	time for	time for	total	total
of MPL	generation of	generation of	generation of	number of	number of
model	states	transitions	labels	LTS states	LTS transitions
3	0.1 [s]	0.4 [s]	0.1 [s]	3.6	4.3
5	0.2 [s]	0.4 [s]	0.1 [s]	8.6	13.8
7	0.9 [s]	0.5 [s]	0.3 [s]	37.2	289.3
9	4.1 [s]	0.8 [s]	1.6 [s]	120.0	1.7·10 ³
11	24.8 [s]	15.2 [s]	16.1 [s]	613.2	1.9·10 ⁴
13	3.5 [m]	5.5 [m]	2.8 [m]	1.9·10 ³	1.9·10 ⁵
15	53.6 [m]	2.0 [h]	39.4 [m]	7.4·10 ³	2.0·10 ⁶

- coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB
- bottleneck: generation of transitions

Computational benchmark for reachability analysis

- A randomly generated with elements taking values between 1 and 100
- row-finite matrix A: with 2 finite elements placed randomly in each row
- 10 independent experiments per dimension mean values are displayed:
- set of initial conditions is selected as the unit hypercube

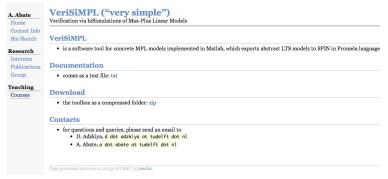
size	time for	number of	time for	
of MPL	generation of	regions of	generation of	
model	PWA system	PWA system	reach tube	
3	0.09[s]	5	0.09 [s]	
10	4.73[s]	700	8.23 [s]	
18	29.13 [m]	1.58 ·10 ⁵	5.82 [h]	

- comparison MPL vs MPT
- generation time for reach tube of 10-dimensional MPL model, different time horizons

time horizon	20	40	60	80	100
MPL	11.02[s]	17.94 [s]	37.40 [s]	51.21 [s]	64.59 [s]
MPT	47.61 [m]	1.19[h]	2.32[h]	3.03[h]	3.73 [h]

Formal analysis of MPL models is now "very simple" VeriSiMPL – Verification via biSimulation of MPL models

- abstract MPL model as LTS (in MATLAB)
- export LTS abstraction (as PROMELA script) into SPIN model checker
- consider properties in LTL logic
- verify property via SPIN over LTS and export outcome back to MPL model

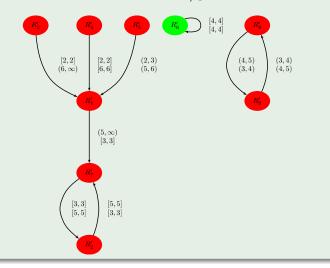


http://sourceforge.net/projects/verisimpl

MPL verification in practice

Example

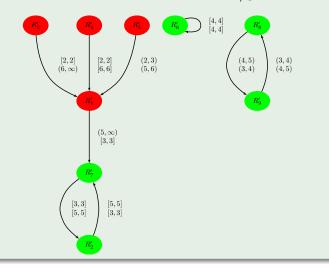
• automatically identify MPL eigenspace: $\bigvee_{\varphi \in L=AP} (\Box \varphi \land |\varphi| = 0)$



MPL verification in practice

Example

• automatically identify MPL periodic regime: $\Psi = \bigvee_{\varphi \in L=AP} \Box(\varphi \land \bigcirc^{c} \varphi)$



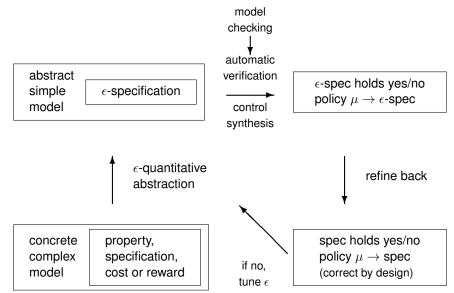
Outline

Formal abstractions for verification of complex models

- 2) Formal verification of stochastic hybrid systems
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
 - Analysis and control synthesis problems
 - Computable analysis and control synthesis via abstractions

4 Concluding remarks

Formal abstractions for verification of complex models



Computable analysis and synthesis via formal verification

- theory: correct-by-design controller synthesis
- computations: coupling abstraction techniques with existing model checking software
- SHS: composition, concurrency, continuous-time
- MPL models: probabilistic delays \rightarrow SHS techniques
- applications: energy, biology, networked control systems

Acknowledgments

main collaborators: J. Lygeros, M. Prandini, J.-P. Katoen, C. Tomlin, B. De Schutter

students:

D. Adzkiya

K. Staňková

S. Haesaert

I. Tkachev

S.E.Z. Soudjani

M. Zamani

topics: stochastic hybrid systems, max-plus linear models

Alessandro Abate

Thanks for your attention!

For more info:

Selected key references

 <u>A. Abate</u>, "Approximation Metrics based on Probabilistic Bisimulations for General State-Space Markov Processes: a Survey," Electronic Notes in Theoretical Computer Sciences, 2012, In Press.

- <u>A. Abate</u>, A. D'Innocenzo, and M.D. Di Benedetto, "Approximate Abstractions of Stochastic Hybrid systems," IEEE Transactions on Automatic Control, vol. 56, nr. 11, pp. 2688-2694, 2011.

- <u>A. Abate</u>, J.P Katoen, J. Lygeros, and M. Prandini, "Approximate Model Checking of Stochastic Hybrid Systems," European Journal of Control, nr. 6, pp. 624-641, 2010.

- <u>A. Abate</u>, J. Lygeros, and S. Sastry, "Probabilistic Safety and Optimal Control for Survival Analysis of *Bacillus Subtilis*," Systems and Control Letters, vol. 59, nr. 1, pp. 79-85, 2010.

- <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry: "Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid Systems," Automatica, vol. 44, nr. 11, pp. 2724-2734, Nov. 2008.

- I. Tkachev and <u>A. Abate</u>, "Computation of ruin probabilities for general discrete-time Markov models," Journal of Applied Probability. 2011, Under Review.

– S. Soudjani and <u>A. Abate</u>, "Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes," SIAM Journal on Applied Dynamical Systems. 2012, Under Review.

- I. Tkachev and <u>A. Abate</u>, "Characterization and computation of infinite horizon specifications over Markov processes," IEEE Transactions on Automatic Control. 2011, Under Review.

 I. Tkachev and <u>A. Abate</u>, "Regularization of Bellman equations for infinite-horizon probabilistic properties," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

- S. Soudjani and <u>A. Abate</u>, "Probabilistic Invariance of Mixed Deterministic-Stochastic Dynamical Systems," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

– A. D'Innocenzo, <u>A. Abate</u> and J.-P. Katoen, "Robust PCTL model checking," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

 I. Tkachev and <u>A. Abate</u>, "On infinite-horizon probabilistic properties and stochastic bisimulation functions," 50th IEEE Conference on Decision and Control and European Control Conference (CDC 11), Orlando, FL, December 2011, pp. 526–531.

- S. Soudjani and <u>A. Abate</u>, "Adaptive Gridding for Abstraction and Verification of Stochastic Hybrid Systems," Quantitative Evaluation of SysTems (QEST 11), Aachen (DE), Sept. 2011, pp. 59–69.

- <u>A. Abate</u>, J.-P. Katoen, and A. Mereacre, "Quantitative Automata Model Checking of Autonomous Stochastic Hybrid Systems," Hybrid Systems: Computation and Control (HSCC 11), Chicago, IL, April 2011, pp. 83 - 92.

Additional references

– J. Ding, M. Kamgarpour, S. Summers, <u>A. Abate</u>, J. Lygeros and C.J. Tomlin, "A dynamic game framework for verification and control of stochastic hybrid systems," Automatica. 2011, Under Review.

- <u>A. Abate</u> and M. Prandini, "Approximate abstractions of stochastic systems: a randomized method," Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, December 2011, pp. 4861–4866.

- <u>A. Abate</u>, A. D'Innocenzo, M.D. Di Benedetto and S. Sastry, "Markov Set-Chains as abstractions of Stochastic Hybrid Systems," Hybrid Systems: Computation and Control (HSCC 08), Saint Louis (MS), April 2008.

- <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry, "Approximation of General Stochastic Hybrid Systems by Switching Diffusions with Random Hybrid Jumps," Hybrid Systems: Computation and Control, Saint Louis (MS), April 2008.

- <u>A. Abate</u>, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, "Computational Approaches to Reachability Analysis of Stochastic Hybrid Systems," Hybrid Systems: Computation and Control, Pisa (IT), April 2007.

- <u>A. Abate</u>, "Probabilistic Bisimulations of Switching and Resetting Diffusions," 49th IEEE Conference of Decision and Control, Atlanta, GA, Dec. 2010, pp. 5918 - 5923.

 <u>A. Abate</u>, "A Contractivity Approach for Probabilistic Bisimulations of Diffusion Processes," 48th IEEE Conference of Decision and Control, Shanghai, CN, Dec. 2009, pp. 2230-2235.

– <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry, "An approximate dynamic programming approach to probabilistic reachability for stochastic hybrid systems," 47th IEEE Conference of Decision and Control, Cancun, MX, Dec. 2008, pp. 4018-4023.