Computable analysis and control synthesis over complex dynamical systems via formal verification

#### Alessandro Abate

Delft Center for Systems and Control, TU Delft Department of Computer Science, University of Oxford

April 2013

## Outline

Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

## Outline

#### Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

concrete property, complex specification, model cost or reward

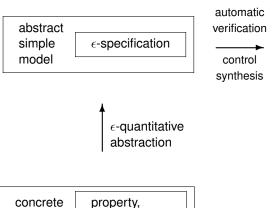
 $\epsilon$ -quantitative abstraction

concrete property, complex specification, model cost or reward



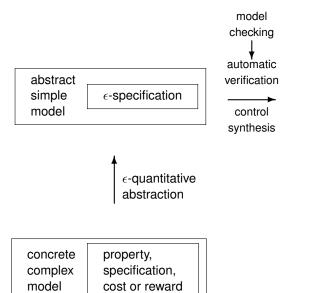
 $\epsilon$ -quantitative abstraction

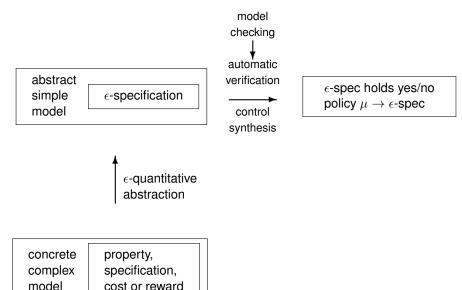
concreteproperty,complexspecification,modelcost or reward

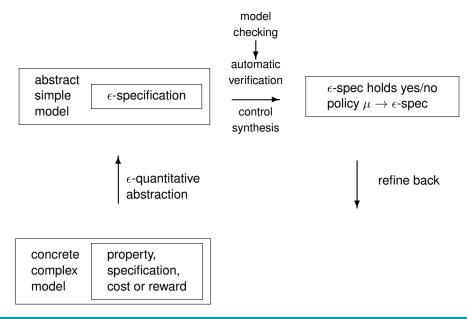


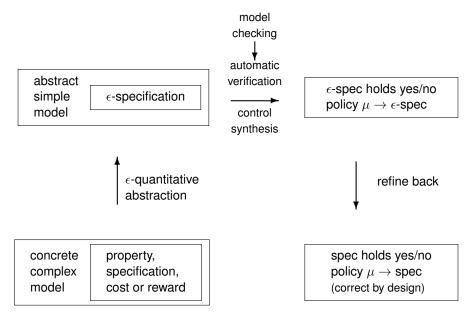
specification,

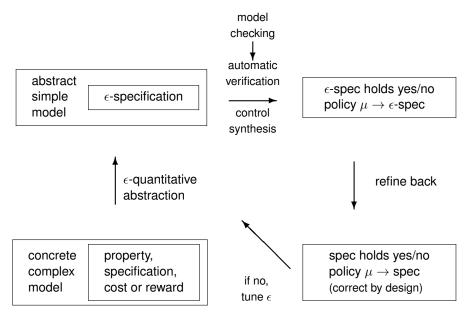
cost or reward











## Outline

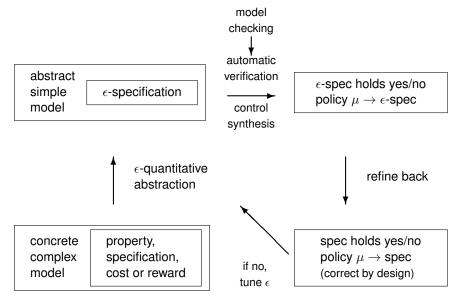
Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

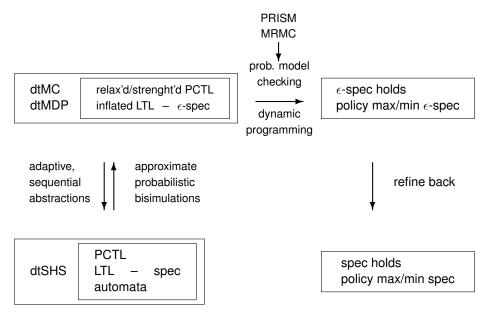
#### Formal verification of max-plus linear models

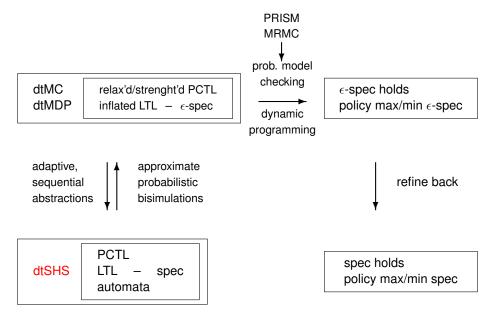
- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks



## Formal abstractions for verification of dtSHS





discrete-time models

finite-space Markov chainuncountable-space Markov process $(\mathcal{Z}, \mathcal{T})$  $(\mathcal{S}, T_s)$  $\mathcal{Z} = (z_1, z_2, z_3)$  $\mathcal{S} = \mathbb{R}^2$  $\mathcal{T} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$  $T_s(x|s) = \frac{e^{-\frac{1}{2}(x-m(s))^T \Sigma^{-1}(s)(x-m(s))}}{\sqrt{2\pi}|\Sigma(s)|^{1/2}}$  $P(z_1, \{z_2, z_3\}) = p_{12} + p_{13}$  $P(s, A) = \int_A T_s(dx|s), \quad A \in \mathcal{B}(\mathcal{S})$ 

discrete-time models

| finite-space Markov chain                                                                                                                   | uncountable-space Markov process                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $(\mathcal{Z}, \mathfrak{T})$                                                                                                               | (S, <i>T</i> <sub>s</sub> )                                                                          |
| $\mathcal{Z} = (z_1, z_2, z_3)$                                                                                                             | $S = \mathbb{R}^2$                                                                                   |
| $\mathfrak{T} = \left[ egin{array}{cccc} p_{11} & p_{12} & p_{13} \ p_{21} & \cdots & \cdots \ \cdots & \cdots & \cdots \end{array}  ight]$ | $T_{s}(x s) = rac{e^{-rac{1}{2}(x-m(s))^{T}\Sigma^{-1}(s)(x-m(s))}}{\sqrt{2\pi} \Sigma(s) ^{1/2}}$ |
| $P(z_1, \{z_2, z_3\}) = p_{12} + p_{13}$                                                                                                    | $P(s,A) = \int_A T_s(dx s),  A \in \mathbb{B}(\mathbb{S})$                                           |

⇒ discrete-time, stochastic hybrid systems

#### Definition

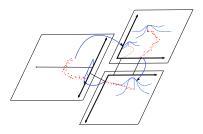
A discrete-time stochastic hybrid system is a pair  $(S, T_s)$ , where

•  $S = \bigcup_{q \in Q} (\{q\} \times \mathbb{R}^{n(q)}), Q$  a discrete set of modes,  $n : Q \to \mathbb{N}$ 

*T<sub>s</sub>*: S × S → [0, 1] specifies the dynamics of process at point *s* = (*q*, *x*):

$$T_{s}(ds'|s) = \begin{cases} T_{x}(dx'|(q,x))T_{q}(q|(q,x)), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),q')T_{q}(q'|(q,x)), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

• initial state 
$$\pi : S \rightarrow [0, 1]$$



#### Definition

A discrete-time stochastic hybrid system is a pair  $(S, T_s)$ , where

- $S = \bigcup_{q \in Q} (\{q\} \times \mathbb{R}^{n(q)}), Q$  a discrete set of modes,  $n : Q \to \mathbb{N}$
- $T_s: S \times S \rightarrow [0, 1]$  specifies the dynamics of process at point s = (q, x):

$$T_{s}(ds'|s) = \begin{cases} T_{x}(dx'|(q,x))T_{q}(q|(q,x)), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),q')T_{q}(q'|(q,x)), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

- initial state  $\pi : S \rightarrow [0, 1]$
- can be control dependent ( $u \in U$ ):

$$T_{s}(ds'|s,u) = \begin{cases} T_{x}(dx'|(q,x),u)T_{q}(q|(q,x),u), & \text{if } q' = q \text{ (no transition)} \\ T_{r}(dx'|(q,x),u,q')T_{q}(q'|(q,x),u), & \text{if } q' \neq q \text{ (transition)} \end{cases}$$

- policy μ: "string" of controls
- equivalent dynamical representation:  $s_{k+1} = f(s_k, \xi_k, u_k)$

#### Stochastic hybrid systems in risk analysis

$$\begin{cases} Z_{n+1} = g(Z_n, \theta_n) & Z_n \in \mathbb{R}, \\ \theta_{n+1} = h(Z_n, \theta_n, \xi_n) & \theta_n \in \{\Theta_1, \dots, \Theta_N\}, \\ \end{cases} \leftarrow \text{ interest}$$

where  $\xi_n$  i.i.d. random variables; g, h measurable;  $(Z_0, \theta_0)$  given

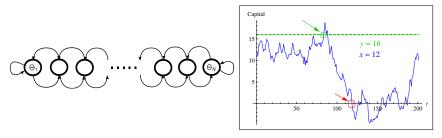


[I. Tkachev, AA - CDC 11]

### Stochastic hybrid systems in risk analysis

$$\begin{cases} Z_{n+1} = g(Z_n, \theta_n) & Z_n \in \mathbb{R}, \\ \theta_{n+1} = h(Z_n, \theta_n, \xi_n) & \theta_n \in \{\Theta_1, \dots, \Theta_N\}, & \leftarrow \text{ interest} \end{cases}$$

where  $\xi_n$  i.i.d. random variables; g, h measurable;  $(Z_0, \theta_0)$  given



• **objective:** what is the probability that, starting from initial capital  $Z_0 = x$ , high capitalization *y* is reached, while company's bankruptcy is avoided

[I. Tkachev, AA - CDC 11]

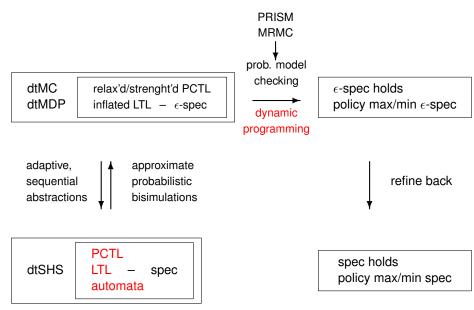
## Outline

Formal abstractions for verification of complex models

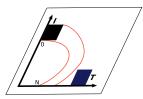
- Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

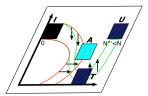
# Analysis and control synthesis problems



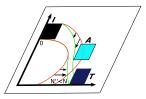
## Analysis and control synthesis problems



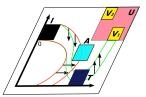
reachability (safety/invariance)



sequential reachability (trajectory planning)



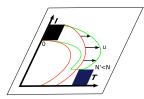
reach-avoid (constrained reachability)



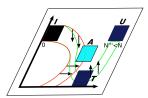
 $\infty$ -horizon objectives (i.o., eventually always)

• properties expressed via PCTL, LTL (DFA or Büchi automata)

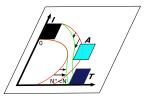
## Analysis and control synthesis problems



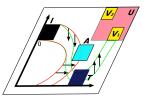
synthesis for reachability games (2 - 1/2 players)



sequential reachability (trajectory planning)



synthesis for reach-avoid (pursuit evasion games)



 $\infty$ -horizon objectives (i.o., eventually always)

• properties expressed via PCTL, LTL (DFA or Büchi automata)

## Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$ 

#### Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$ 

• consider realization  $s_k \in S$ ,  $k \in [0, N]$  – then

$$\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = \begin{cases} 1, & \text{if } \forall k \in [0, N] : s_{k} \in S \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \mathcal{P}_{\pi}(S) = P_{\pi}\left(\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = 1\right) = E_{\pi}\left[\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k})\right]$$

### Probabilistic safety/invariance: characterization

 probabilistic invariance is the probability that the execution associated with an initial distribution π stays in S (safe set) during the time horizon [0, N]:

 $\mathfrak{P}_{\pi}(S) := P_{\pi}(s_k \in S, \forall k \in [0, N])$ 

• consider realization  $s_k \in S$ ,  $k \in [0, N]$  – then

$$\prod_{k=0}^{N} \mathbf{1}_{\mathcal{S}}(s_k) = \begin{cases} 1, & \text{if } \forall k \in [0, N] : s_k \in S \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \mathcal{P}_{\pi}(S) = P_{\pi}\left(\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k}) = 1\right) = E_{\pi}\left[\prod_{k=0}^{N} \mathbf{1}_{S}(s_{k})\right]$$

• select  $\epsilon \in [0, 1]$  – probabilistic safe/invariant set with safety level  $\epsilon$  is

$$S(\epsilon) \doteq \{ s \in \mathbb{S} : \mathcal{P}_s(S) \ge \epsilon \} \quad (here \ \pi = \delta_s)$$

### Probabilistic invariance: computation

 computation of P<sub>s</sub>(S) (and thus of S(ε)) via dynamic programming: sequential update, backward in time, of multi-stage value function

 $V_k(s): [0, N] \times S \rightarrow \mathbb{R}^+,$ 

accounting for current and expected future rewards - in particular

$$V_{\mathsf{N}}(s) = \mathbf{1}_{\mathcal{S}}(s), \quad V_{k}(s) = \int_{\mathcal{S}} V_{k+1}(x) T_{s}(dx|s)$$
 $\boxed{V_{0}(s) = \mathcal{P}_{s}(S)}$ 

### Probabilistic invariance: computation

 computation of P<sub>s</sub>(S) (and thus of S(ε)) via dynamic programming: sequential update, backward in time, of multi-stage value function

 $V_k(s): [0, N] \times S \rightarrow \mathbb{R}^+,$ 

accounting for current and expected future rewards - in particular

$$V_{\mathsf{N}}(s) = \mathbf{1}_{\mathcal{S}}(s), \quad V_k(s) = \int_{\mathcal{S}} V_{k+1}(x) \mathcal{T}_s(dx|s)$$
 $\boxed{V_0(s) = \mathcal{P}_s(S)}$ 

control dependent models: find optimal policy µ, optimizing recursively over

$$V_k(s, u) : [0, N] \times \mathbb{S} \times \mathbb{U} \to \mathbb{R}^+$$

# Computing probabilistic invariance

#### issues

- non-standard (max, multiplicative) value functions
- Continuous control space
- hybrid state space
- ⇒ solution of DP is seldom analytical

# Computing probabilistic invariance

#### issues

- non-standard (max, multiplicative) value functions
- Continuous control space
- hybrid state space
- $\Rightarrow$  solution of DP is seldom analytical
  - numerical solutions are needed
- $\Rightarrow$  problem # 1: difference between real solution and computed solution
- ⇒ problem # 2: Bellman's *curse of dimensionality*

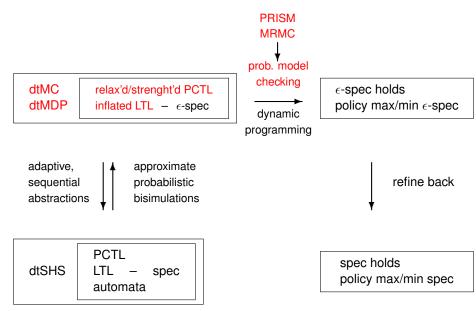
## Outline

Formal abstractions for verification of complex models

- Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

## Dynamical properties as temporal specifications



### Approximate model checking of probabilistic invariance

• model (S,  $T_s$ ), invariance set  $S \in S$ , finite time horizon N, safety level  $\epsilon$ 

[AA et al. - EJC 11]

- model ( $(S, T_s)$ ), invariance set  $S \in S$ , finite time horizon N, safety level  $\epsilon$
- $\delta$ -approximate ( $\mathfrak{S}, \mathcal{T}_s$ ) with finite-state dt-MC ( $\mathfrak{Z}, \mathfrak{T}$ )
- \* compute approximation error  $f(\delta, N)$
- $S \rightarrow S_{\delta}$ : define formula  $\Phi_{S_{\delta}}$  characterizing set  $S_{\delta}$ , label states in  $\mathfrak{Z}$

- model ( $S, T_s$ ), invariance set  $S \in S$ , finite time horizon N, safety level  $\epsilon$
- $\delta$ -approximate ( $\mathfrak{S}, \mathcal{T}_s$ ) with finite-state dt-MC ( $\mathfrak{Z}, \mathfrak{T}$ )
- \* compute approximation error  $f(\delta, N)$
- $S \rightarrow S_{\delta}$ : define formula  $\Phi_{S_{\delta}}$  characterizing set  $S_{\delta}$ , label states in  $\mathfrak{Z}$
- ⇒ probabilistic safe set

$$\begin{split} \mathbf{S}(\epsilon) &= \{\mathbf{s} \in \mathbb{S} : \mathbb{P}_{\mathbf{s}}(\mathbf{S}) \geq \epsilon\} \\ &= \{\mathbf{s} \in \mathbb{S} : (1 - \mathbb{P}_{\mathbf{s}}(\mathbf{S})) \leq 1 - \epsilon\} \end{split}$$

- model ( $(S, T_s)$ ), invariance set  $S \in S$ , finite time horizon N, safety level  $\epsilon$
- $\delta$ -approximate ( $\mathfrak{S}, \mathcal{T}_s$ ) with finite-state dt-MC ( $\mathfrak{Z}, \mathfrak{T}$ )
- \* compute approximation error  $f(\delta, N)$
- $S \rightarrow S_{\delta}$ : define formula  $\Phi_{S_{\delta}}$  characterizing set  $S_{\delta}$ , label states in  $\mathfrak{Z}$
- ⇒ probabilistic safe set

$$S(\epsilon) = \{ s \in \mathbb{S} : \mathbb{P}_s(S) \ge \epsilon \}$$
  
=  $\{ s \in \mathbb{S} : (1 - \mathbb{P}_s(S)) \le 1 - \epsilon \}$ 

can be related to

$$\begin{split} Z_{\delta}(\epsilon) &\doteq \mathsf{Sat}\left(\mathbb{P}_{\leq 1-\epsilon}\left(\mathsf{true}\ \mathfrak{U}^{\leq N} \neg \Phi_{S_{\delta}}\right)\right) \\ &= \{z \in \mathfrak{Z} : z \models \mathbb{P}_{\leq 1-\epsilon}\left(\mathsf{true}\ \mathfrak{U}^{\leq N} \neg \Phi_{S_{\delta}}\right)\} \end{split}$$

[AA et al. - EJC 11]

- model  $(S, T_s)$ , invariance set  $S \in S$ , finite time horizon N, safety level  $\epsilon$
- $\delta$ -approximate (S,  $T_s$ ) with finite-state dt-MC ( $\mathcal{Z}, \mathcal{T}$ )
- \* compute approximation error  $f(\delta, N)$
- $S \rightarrow S_{\delta}$ : define formula  $\Phi_{S_{\delta}}$  characterizing set  $S_{\delta}$ , label states in  $\mathcal{Z}$

#### define

 $\Rightarrow$ 

$$egin{aligned} & \mathcal{S}(\epsilon) = \{ m{s} \in \mathbb{S} : \mathcal{P}_{m{s}}(m{S}) \geq \epsilon \} \ & Z_{\delta}(\epsilon) = \operatorname{Sat} \left( \mathbb{P}_{\leq \mathbf{1} - \epsilon} \left( \operatorname{true} \ \mathcal{U}^{\leq N} \ \neg \Phi_{\mathcal{S}_{\delta}} 
ight) 
ight) \end{aligned}$$

- Select  $\eta > 0$  :  $\eta/2 \in (0, 1 \epsilon)$
- **3** pick  $\delta$  :  $f(\delta, N) \leq \eta/2$
- compute  $Z_{\delta}(\epsilon + \eta/2)$

$$\mathcal{S}(\epsilon+\eta)\subseteq \hat{\mathcal{S}}_\eta(\epsilon)\subseteq \mathcal{S}(\epsilon)$$

[AA et al. - EJC 11]

## Verification of over- or under-specifications in PCTL

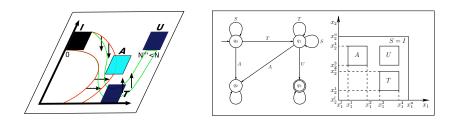
- any PCTL formula can be expressed via equivalent DP recursions
- consider PCTL formula  $\mathbb{P}_{\sim \epsilon}(\Psi)$  on SHS  $(\mathcal{S}, T_s)$
- δ-approximate SHS (S, T<sub>s</sub>) as a dt-MC (Z, T)
- compute approximation error  $f(\delta, N)$

## Verification of over- or under-specifications in PCTL

- any PCTL formula can be expressed via equivalent DP recursions
- consider PCTL formula  $\mathbb{P}_{\sim \epsilon}(\Psi)$  on SHS  $(\mathcal{S}, T_s)$
- δ-approximate SHS (S, T<sub>s</sub>) as a dt-MC (Z, T)
- compute approximation error  $f(\delta, N)$
- compute  $g(\Psi, f)$ , a function based on formula & error
- model check  $\mathbb{P}_{\sim \epsilon \pm g(\Psi, f)}(\Psi)$  on  $(\mathcal{Z}, \mathcal{T})$
- 1 if PCTL formula is "robust", then conclusion holds for  $\mathbb{P}_{\sim \epsilon}(\Psi)$  on SHS
- 2 else refine  $\delta \rightarrow$  reduce  $f(\delta, N) \rightarrow$  decrease  $g(\Psi, f)$

[D'Innocenzo, AA, J.-P. Katoen - HSCC 12]

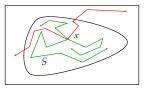
## Approximate model checking of automata specifications



- generalization to "richer" set of properties over dtSHS
- specifications expressed as a DFA or a Büchi automata
- probabilistic reachability-like computation over product construction

[AA et al. - HSCC 11; I. Tkachev et al. - HSCC13]

### Characterization & computation of $\infty$ -horizon properties

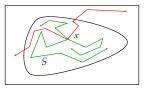


• consider target set *T*; invariant set  $S = T^c = S \setminus T$ ;  $\forall s \in S$ :

$$P_s(\forall n \geq 0: s_n \in \mathbf{S}) \quad \leftrightarrow \quad 1 - P_s(\texttt{true} \ \mathfrak{U} \ \mathbf{T})$$

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12]

## Characterization & computation of $\infty$ -horizon properties



• consider target set *T*; invariant set  $S = T^c = S \setminus T$ ;  $\forall s \in S$ :

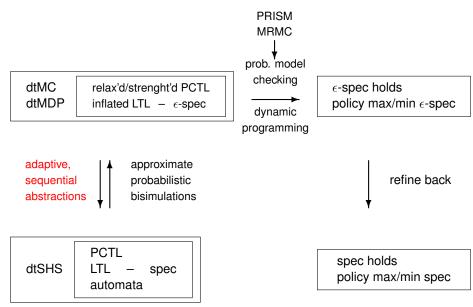
$$P_s(\forall n \geq 0: s_n \in S) \quad \leftrightarrow \quad 1 - P_s(\texttt{true} \ U \ T)$$

- existence and computation of absorbing set B:  $\forall x \in B$ ,  $T_s(B|x) = 1$
- characterization study of existence/uniqueness of (non-trivial) solutions of Bellman equations

convergence of Bellman recursions, contractivity of operators

computation – formal reduction to finite-horizon problems

[I. Tkachev, AA - CDC 11, HSCC 12, CDC12]



• approximation via  $\delta$ -partitioning:  $S = \bigcup_{q \in \Omega} \{q\} \times S_q = \bigcup_{q \in \Omega, i=1,...,m_q} \{q\} \times S_q^i$ 



under Lip-continuity assumptions on density of kernel T<sub>s</sub>,

$$h(i,j), \quad i,j=1,\ldots,m_q,q\in Q$$

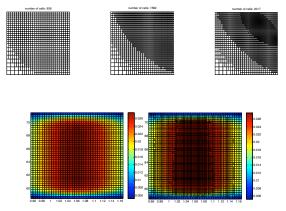
• for any  $z_q^i \in S_\delta$ ,  $\forall s : s \land z_q^i \in S_q^i$ , error is

$$f(\delta, N) \doteq \left| \mathcal{P}_{s}(S) - \mathcal{P}_{z_{q}^{i}}(S_{\delta}) \right| \leq \max_{i=1,...,m_{q},q \in \Omega} N\delta_{q,i} \sum_{j=1,...,m_{\ell},r \in \Omega} h(i,j),$$

$$\delta = \max_{i=1,\dots,m_q,q\in\mathcal{Q}} \delta_{q,i}, \ \delta_{q,i} = \operatorname{diam}\left(S_q^i\right)$$

error is linear in N,  $\delta_{q,i}$  and depends on local constants  $h(i,j) \rightarrow$  local tuning [AA et al. - EJC 11, S. Soudjani, AA - QEST 11]

- software (in the making) for sequential, adaptive grid generation based on approximation error
- formula-based abstractions



[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13]

#### error generalization

- discontinuous and partially degenerate kernels
- ill-conditioned kernels (different time scales, e.g. biology)
- error refinement by higher-order approximations
  - $\delta$ : faster convergence upon tuning
  - N: possibly bounded in time (allows considering  $\infty$ -horizon properties)

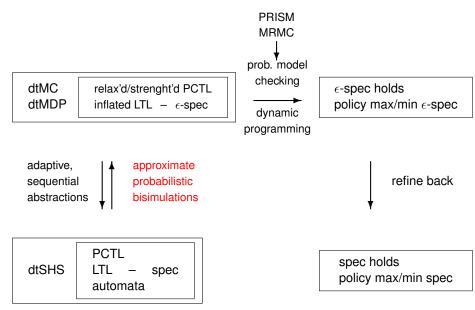
[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13; I. Tkachev, AA - HSCC 13]

#### error generalization

- discontinuous and partially degenerate kernels
- ill-conditioned kernels (different time scales, e.g. biology)
- error refinement by higher-order approximations
  - $\delta$ : faster convergence upon tuning
  - N: possibly bounded in time (allows considering ∞-horizon properties)
- alternative: formula-free abstractions

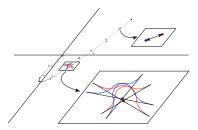
[S. Soudjani, AA - QEST 11, HSCC 12, ATVA12, SIAM 13; I. Tkachev, AA - HSCC 13]

# Approximate probabilistic bisimulations



### Approximate probabilistic bisimulations

• above abstraction leads to approximate probabilistic bisimulation [Larsen & Skou, 91] - alternatively ...



- consider models  $(T_{s,i}, S_i)$  with solution processes  $s_i(k), i = 1, 2, k \ge 0$
- parallel composition of models with output  $s_{1,2}(k) = s_1(k) s_2(k)$

#### Definition

A function  $\psi : S_1 \times S_2 \to \mathbb{R}^+$  is a probabilistic bisimulation function if  $\psi(s_{1,2}) \ge \|s_1 - s_2\|^2$  and if  $\psi_{s_0}(s_{1,2}(k))$  is a supermartingale.

•  $\psi$  is an upper bound on the distance btw solutions of two models:  $P_{s_0} \left( \sup_{k \ge 0} \|s_1(k) - s_2(k)\|^2 \ge \epsilon \right) \le \psi_{s_0}(s_{1,2}(0))/\epsilon$  [AA - ENTCS 13]

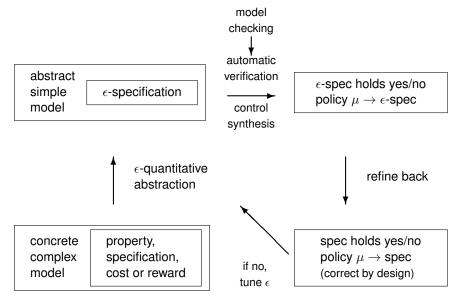
## Outline

Formal abstractions for verification of complex models

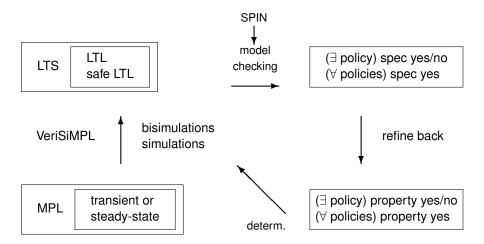
- 2) Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

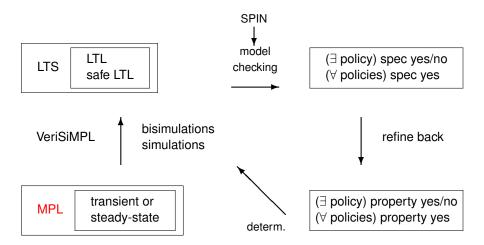
## Formal abstractions for verification of complex models



## Formal abstractions for verification of MPL models



## Introduction to MPL systems



## Introduction to MPL systems

- Max-Plus-Linear (MPL) systems are event-driven models
- applications: railway scheduling, planning of production lines, network calculus



- x(k) is the time of *k*-th event,  $k \in \mathbb{N} \cup \{0\}$
- timing updates: maximization  $(\oplus)$  and addition  $(\otimes)$  operations

 $\rightarrow$  max-plus algebra

## Max-plus algebra

• 
$$\epsilon = -\infty$$
,  $\mathbb{R}_{\epsilon} = \mathbb{R} \cup \{\epsilon\}$   
•  $\alpha, \beta \in \mathbb{R}_{\epsilon}$ ,  $A, B \in \mathbb{R}_{\epsilon}^{m \times p}$ ,  $C \in \mathbb{R}_{\epsilon}^{p \times n}$ 

• 
$$\alpha \oplus \beta \stackrel{\mathsf{def}}{=} \max(\alpha, \beta)$$

• 
$$\alpha \otimes \beta \stackrel{\mathsf{def}}{=} \alpha + \beta$$

### Max-plus algebra

• 
$$\epsilon = -\infty$$
,  $\mathbb{R}_{\epsilon} = \mathbb{R} \cup \{\epsilon\}$   
•  $\alpha, \beta \in \mathbb{R}_{\epsilon}$ ,  $A, B \in \mathbb{R}_{\epsilon}^{m \times p}$ ,  $C \in \mathbb{R}_{\epsilon}^{p \times n}$ 

•  $\alpha \oplus \beta \stackrel{\text{def}}{=} \max(\alpha, \beta)$ 

 $\bullet \ \alpha \otimes \beta \stackrel{\mathrm{def}}{=} \alpha + \beta$ 

• 
$$[A \oplus B]_{i,j} \stackrel{\text{def}}{=} [A]_{i,j} \oplus [B]_{i,j}$$
, for  $i = 1, \dots, m$  and  $j = 1, \dots, p$ 

• 
$$[A \otimes C]_{i,j} \stackrel{\text{def}}{=} \bigoplus_{k=1}^{p} [A]_{i,k} \otimes [C]_{k,j}$$
, for  $i = 1, \dots, m$  and  $j = 1, \dots, n$ 

## Max-plus-linear models

### Definition (Autonomous MPL model)

$$x(k+1)=A\otimes x(k),$$

where  $A \in \mathbb{R}^{n \times n}_{\epsilon}$  and  $k \in \mathbb{N} \cup \{0\}$ 

#### Example

A simple railway model [Heidergott, 06]

$$x(k+1) = \begin{bmatrix} 2 & 5 \\ 3 & 3 \end{bmatrix} \otimes x(k), \quad \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} \max\{2 + x_1(k), 5 + x_2(k)\} \\ \max\{3 + x_1(k), 3 + x_2(k)\} \end{bmatrix}$$

[Baccelli et al., 92]

## Max-plus-linear models

### Definition (Autonomous MPL model)

$$x(k+1)=A\otimes x(k),$$

where  $A \in \mathbb{R}^{n \times n}_{\epsilon}$  and  $k \in \mathbb{N} \cup \{0\}$ 

#### Example

A simple railway model [Heidergott, 06]

$$x(k+1) = \begin{bmatrix} 2 & 5 \\ 3 & 3 \end{bmatrix} \otimes x(k), \quad \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} \max\{2 + x_1(k), 5 + x_2(k)\} \\ \max\{3 + x_1(k), 3 + x_2(k)\} \end{bmatrix}$$

Definition (Non-autonomous MPL model)

$$x(k+1) = A \otimes x(k) \oplus B \otimes u(k),$$

where  $B \in \mathbb{R}^{n \times m}_{\epsilon}$  and  $u \in \mathbb{R}^{m}$  (synthesis = scheduling)

[Baccelli et al., 92]

## Outline

Formal abstractions for verification of complex models

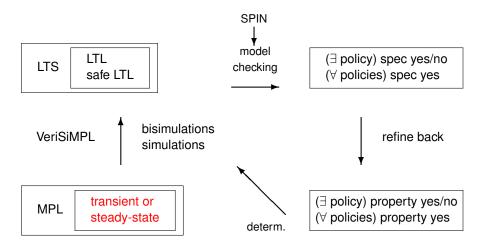
- 2) Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### Formal verification of max-plus linear models

- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

### 4 Concluding remarks

# Classical analysis of MPL models



## Classical analysis of MPL models

- study of transient and periodic regimes, of asymptotics
- classical analysis based on algebraic or geometric properties

#### Definition

- **()** max-plus eigenvector  $x \in \mathbb{R}^n$ :  $A \otimes x = \lambda \otimes x \Rightarrow x(k+1) = \lambda \otimes x(k)$
- ② cycles on precedence graph ⇒ periodic regime with period *c*:  $\forall k \ge k_0, x(k + c) = \lambda^{\otimes^c} \otimes x(k)$

### Example

• eigenspace (periodic regime with period 1 and  $\lambda = 4$ ):

$$\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 5\\4 \end{bmatrix}, \begin{bmatrix} 9\\8 \end{bmatrix}, \begin{bmatrix} 13\\12 \end{bmatrix}, \begin{bmatrix} 17\\16 \end{bmatrix}, \begin{bmatrix} 21\\20 \end{bmatrix}, \begin{bmatrix} 25\\24 \end{bmatrix}, \begin{bmatrix} 29\\28 \end{bmatrix}, \begin{bmatrix} 33\\32 \end{bmatrix}, \begin{bmatrix} 37\\36 \end{bmatrix}, \begin{bmatrix} 41\\40 \end{bmatrix}, \begin{bmatrix} 45\\44 \end{bmatrix}, \dots$$

If periodic regime with period c = 2 (transient  $k_0 = 3$ ):

 $\begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix}, \begin{bmatrix} 12 \\ 10 \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 20 \\ 18 \end{bmatrix}, \begin{bmatrix} 23 \\ 23 \end{bmatrix}, \begin{bmatrix} 28 \\ 26 \end{bmatrix}, \begin{bmatrix} 31 \\ 31 \end{bmatrix}, \begin{bmatrix} 36 \\ 34 \end{bmatrix}, \begin{bmatrix} 39 \\ 39 \end{bmatrix}, \begin{bmatrix} 44 \\ 42 \end{bmatrix}, \begin{bmatrix} 47 \\ 47 \end{bmatrix}, \dots$ 

## Outline

Formal abstractions for verification of complex models

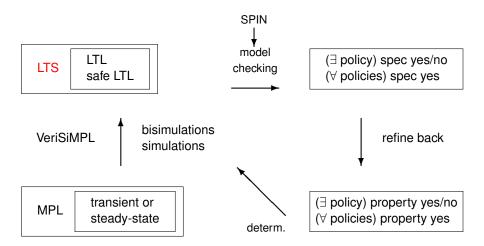
- 2) Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### Formal verification of max-plus linear models

- Analysis and control synthesis problems
- Computable analysis and control synthesis via abstractions

### 4 Concluding remarks

# Labeled transition system (LTS)



# Labeled transition system (LTS)

• consider AP, a set of atomic propositions

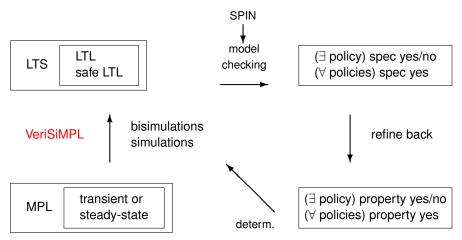
### Definition

A labeled transition system  $(L, S, \delta)$  consists of

- S: a set of states
- L: a set of labels in 2<sup>AP</sup>
- $\delta \subseteq S \times L \times S$ : a transition relation
- labels can be defined over states
- LTS can be deterministic vs non-deterministic
- LTS can be infinite vs finite

[Baier & Katoen, 08]

## Finite LTS as abstractions of MPL models



## Finite LTS as abstractions of MPL models

#### procedure

- S: construct collection of LTS states from partitions of MPL state space
- 2  $\delta$ : determine LTS transitions via one-step reach over MPL
- **O** L: compute labels related to MPL timing  $\rightarrow$  induce set of AP

## Finite LTS as abstractions of MPL models

#### procedure

- S: construct collection of LTS states from partitions of MPL state space
- 2  $\delta$ : determine LTS transitions via one-step reach over MPL
- **O** L: compute labels related to MPL timing  $\rightarrow$  induce set of AP

### Definition (Regular matrix)

A matrix  $A \in \mathbb{R}_{\epsilon}^{m \times n}$  is called regular (row-finite) if it contains at least one element different from  $\epsilon$  in each row (in practice, no instantaneous events)

## LTS states: state-space partitioning

- autonomous MPL model can be expressed as PWA system
- PWA dynamics are associated to polytopic regions
- collection of regions is a cover of  $\mathbb{R}^n$  (in general not a partition)
- partition constructed via further refinement

## LTS states: state-space partitioning

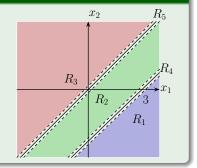
- autonomous MPL model can be expressed as PWA system
- PWA dynamics are associated to polytopic regions
- collection of regions is a cover of  $\mathbb{R}^n$  (in general not a partition)
- partition constructed via further refinement
- obtained state-space partition defines states of LTS
- partition is not arbitrary: it is adapted to underlying dynamics

### State-space partitioning, an example

#### Example

• after refinement, total of 5 regions:  

$$R_1 = \{x \in \mathbb{R}^2 : x_1 - x_2 < 0\}$$
  
 $R_2 = \{x \in \mathbb{R}^2 : x_1 - x_2 = 0\}$   
 $R_3 = \{x \in \mathbb{R}^2 : x_1 - x_2 > 3\}$   
 $R_4 = \{x \in \mathbb{R}^2 : x_1 - x_2 = 3\}$   
 $R_5 = \{x \in \mathbb{R}^2 : 0 < x_1 - x_2 < 3\}$ 



### Difference-bound matrices (DBM)

#### **Definition (DBM)**

A difference-bound matrix in  $\mathbb{R}^n$  is the finite intersection of sets defined by

$$\mathbf{x}_i - \mathbf{x}_j \simeq_{i,j} \alpha_{i,j},$$

where  $\simeq_{i,j} \in \{<,\leq\}, \alpha_{i,j} \in \mathbb{R} \cup \{+\infty\}$ , for  $1 \le i \ne j \le n$ 

- DBM allow compact matrix representation
- DBM are easy to manipulate (projections, emptiness and inclusion check)

### Difference-bound matrices (DBM)

#### Definition (DBM)

A difference-bound matrix in  $\mathbb{R}^n$  is the finite intersection of sets defined by

$$\mathbf{x}_i - \mathbf{x}_j \simeq_{i,j} \alpha_{i,j},$$

where  $\simeq_{i,j} \in \{<,\leq\}, \alpha_{i,j} \in \mathbb{R} \cup \{+\infty\}$ , for  $1 \le i \ne j \le n$ 

- DBM allow compact matrix representation
- DBM are easy to manipulate (projections, emptiness and inclusion check)
- image/inverse image of DBM over MPL dynamics is again a DBM

#### LTS transitions: one-step reachability

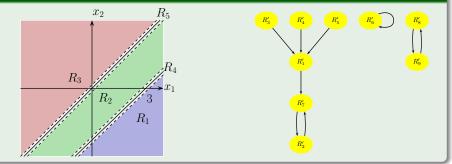
- consider any two TS states (partitioning regions) R, R'
- $R \to R'$  iff there exists a  $x(k) \in R$  such that  $x(k+1) \in R'$ : check whether  $R' \cap \{x(k+1) : x(k) \in R\} \neq \emptyset$

### LTS transitions: one-step reachability

- consider any two TS states (partitioning regions) R, R'
- $R \to R'$  iff there exists a  $x(k) \in R$  such that  $x(k+1) \in R'$ : check whether  $R' \cap \{x(k+1) : x(k) \in R\} \neq \emptyset$
- use DBM representation, DBM forward-mapping via PWA dynamics, DBM emptiness check

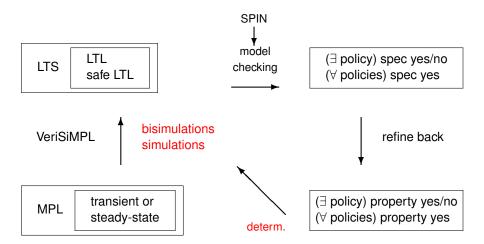
## LTS transitions, an example

#### Example



- determinism vs non-determinism of obtained TS
- above R<sub>i</sub> original partitions, R'<sub>i</sub> refined partitions (determinization)

## Relationship between LTS and MPL



### Relationship between LTS and MPL

#### Theorem

- TS simulates the original MPL model
- TS bisimulates the MPL model if and only if it is deterministic
- non-deterministic TS can be "determinized" by refining partitioning regions
- however, refinement procedure may not terminate

#### Theorem

- if TS is deterministic over the periodic regime, then TS is globally deterministic
- every irreducible MPL model admits finite deterministic TS abstraction

#### LTS labels

#### Definition

• state labels:

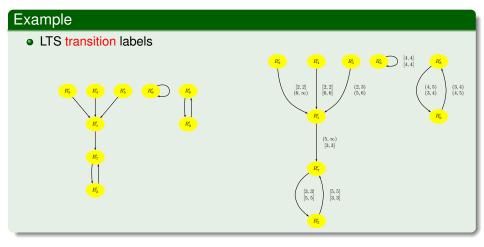
all possible values of  $x_i(k) - x_j(k)$ , for  $1 \le i < j \le n$ time difference of same-event variables

• transition labels:

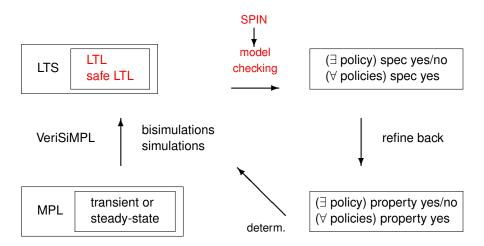
all possible values of  $x_i(k+1) - x_i(k)$ , for  $1 \le i \le n$  time difference of successive events

labels are vectors of intervals, can be represented as DBM

### LTS labels, an example



### Computational benchmark for abstraction



### Computational benchmark for abstraction

- A randomly generated with elements taking values between 1 and 100
- row-finite matrix A: with 2 finite elements placed randomly in each row
- 10 independent experiments per dimension mean values are displayed:

| size   | time for      | time for      | time for      | total               | total               |
|--------|---------------|---------------|---------------|---------------------|---------------------|
| of MPL | generation of | generation of | generation of | number of           | number of           |
| model  | states        | transitions   | labels        | LTS states          | LTS transitions     |
| 3      | 0.1 [s]       | 0.4 [s]       | 0.1 [s]       | 3.6                 | 4.3                 |
| 5      | 0.2 [s]       | 0.4 [s]       | 0.1 [s]       | 8.6                 | 13.8                |
| 7      | 0.9 [s]       | 0.5 [s]       | 0.3 [s]       | 37.2                | 289.3               |
| 9      | 4.1 [s]       | 0.8 [s]       | 1.6 [s]       | 120.0               | 1.7·10 <sup>3</sup> |
| 11     | 24.8 [s]      | 15.2 [s]      | 16.1 [s]      | 613.2               | 1.9·10 <sup>4</sup> |
| 13     | 3.5 [m]       | 5.5 [m]       | 2.8 [m]       | 1.9·10 <sup>3</sup> | 1.9·10 <sup>5</sup> |
| 15     | 53.6 [m]      | 2.0 [h]       | 39.4 [m]      | 7.4·10 <sup>3</sup> | 2.0·10 <sup>6</sup> |

- coded in MATLAB, run over 12-core Intel Xeon, 3.47 GHz, 24 GB
- bottleneck: generation of transitions

### Computational benchmark for reachability analysis

- A randomly generated with elements taking values between 1 and 100
- row-finite matrix A: with 2 finite elements placed randomly in each row
- 10 independent experiments per dimension mean values are displayed:
- set of initial conditions is selected as the unit hypercube

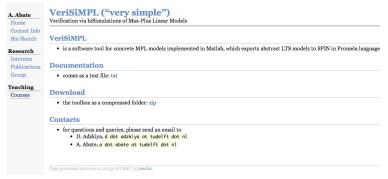
| size   | time for      | number of             | time for      |  |
|--------|---------------|-----------------------|---------------|--|
| of MPL | generation of | regions of            | generation of |  |
| model  | PWA system    | PWA system            | reach tube    |  |
| 3      | 0.09[s]       | 5                     | 0.09 [s]      |  |
| 10     | 4.73[s]       | 700                   | 8.23 [s]      |  |
| 18     | 29.13 [m]     | 1.58 ·10 <sup>5</sup> | 5.82 [h]      |  |

- comparison MPL vs MPT
- generation time for reach tube of 10-dimensional MPL model, different time horizons

| time horizon | 20        | 40        | 60        | 80        | 100       |
|--------------|-----------|-----------|-----------|-----------|-----------|
| MPL          | 11.02[s]  | 17.94 [s] | 37.40 [s] | 51.21 [s] | 64.59 [s] |
| MPT          | 47.61 [m] | 1.19[h]   | 2.32[h]   | 3.03[h]   | 3.73 [h]  |

#### Formal analysis of MPL models is now "very simple" VeriSiMPL – Verification via biSimulation of MPL models

- abstract MPL model as LTS (in MATLAB)
- export LTS abstraction (as PROMELA script) into SPIN model checker
- consider properties in LTL logic
- verify property via SPIN over LTS and export outcome back to MPL model

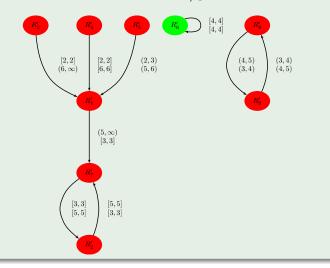


http://sourceforge.net/projects/verisimpl

# MPL verification in practice

#### Example

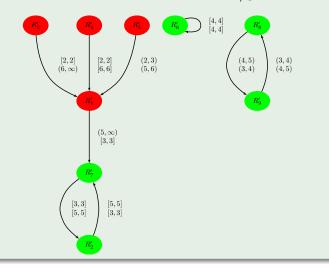
• automatically identify MPL eigenspace:  $\bigvee_{\varphi \in L=AP} (\Box \varphi \land |\varphi| = 0)$ 



# MPL verification in practice

#### Example

• automatically identify MPL periodic regime:  $\Psi = \bigvee_{\varphi \in L=AP} \Box(\varphi \land \bigcirc^{c} \varphi)$ 



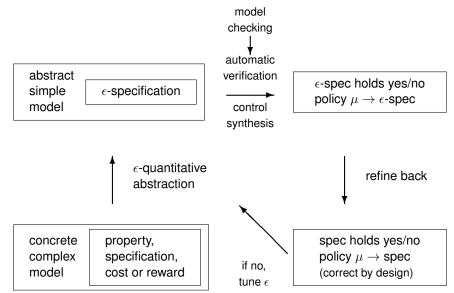
### Outline

Formal abstractions for verification of complex models

- 2) Formal verification of stochastic hybrid systems
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions
- Formal verification of max-plus linear models
  - Analysis and control synthesis problems
  - Computable analysis and control synthesis via abstractions

#### 4 Concluding remarks

#### Formal abstractions for verification of complex models



### Computable analysis and synthesis via formal verification

- theory: correct-by-design controller synthesis
- computations: coupling abstraction techniques with existing model checking software
- SHS: composition, concurrency, continuous-time
- MPL models: probabilistic delays  $\rightarrow$  SHS techniques
- applications: energy, biology, networked control systems

#### Acknowledgments

main collaborators: J. Lygeros, M. Prandini, J.-P. Katoen, C. Tomlin, B. De Schutter

#### students:



D. Adzkiya



K. Staňková



S. Haesaert



I. Tkachev



S.E.Z. Soudjani



M. Zamani

topics: stochastic hybrid systems, max-plus linear models

Alessandro Abate

Thanks for your attention!

For more info:

#### Selected key references

 <u>A. Abate</u>, "Approximation Metrics based on Probabilistic Bisimulations for General State-Space Markov Processes: a Survey," Electronic Notes in Theoretical Computer Sciences, 2012, In Press.

- <u>A. Abate</u>, A. D'Innocenzo, and M.D. Di Benedetto, "Approximate Abstractions of Stochastic Hybrid systems," IEEE Transactions on Automatic Control, vol. 56, nr. 11, pp. 2688-2694, 2011.

- <u>A. Abate</u>, J.P Katoen, J. Lygeros, and M. Prandini, "Approximate Model Checking of Stochastic Hybrid Systems," European Journal of Control, nr. 6, pp. 624-641, 2010.

- <u>A. Abate</u>, J. Lygeros, and S. Sastry, "Probabilistic Safety and Optimal Control for Survival Analysis of *Bacillus Subtilis*," Systems and Control Letters, vol. 59, nr. 1, pp. 79-85, 2010.

- <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry: "Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid Systems," Automatica, vol. 44, nr. 11, pp. 2724-2734, Nov. 2008.

- I. Tkachev and <u>A. Abate</u>, "Computation of ruin probabilities for general discrete-time Markov models," Journal of Applied Probability. 2011, Under Review.

– S. Soudjani and <u>A. Abate</u>, "Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes," SIAM Journal on Applied Dynamical Systems. 2012, Under Review.

- I. Tkachev and <u>A. Abate</u>, "Characterization and computation of infinite horizon specifications over Markov processes," IEEE Transactions on Automatic Control. 2011, Under Review.

 I. Tkachev and <u>A. Abate</u>, "Regularization of Bellman equations for infinite-horizon probabilistic properties," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

- S. Soudjani and <u>A. Abate</u>, "Probabilistic Invariance of Mixed Deterministic-Stochastic Dynamical Systems," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

– A. D'Innocenzo, <u>A. Abate</u> and J.-P. Katoen, "Robust PCTL model checking," Hybrid Systems: Computation and Control (HSCC 12), Beijing, PRC, Apr 2012.

 I. Tkachev and <u>A. Abate</u>, "On infinite-horizon probabilistic properties and stochastic bisimulation functions," 50th IEEE Conference on Decision and Control and European Control Conference (CDC 11), Orlando, FL, December 2011, pp. 526–531.

- S. Soudjani and <u>A. Abate</u>, "Adaptive Gridding for Abstraction and Verification of Stochastic Hybrid Systems," Quantitative Evaluation of SysTems (QEST 11), Aachen (DE), Sept. 2011, pp. 59–69.

- <u>A. Abate</u>, J.-P. Katoen, and A. Mereacre, "Quantitative Automata Model Checking of Autonomous Stochastic Hybrid Systems," Hybrid Systems: Computation and Control (HSCC 11), Chicago, IL, April 2011, pp. 83 - 92.

#### Additional references

– J. Ding, M. Kamgarpour, S. Summers, <u>A. Abate</u>, J. Lygeros and C.J. Tomlin, "A dynamic game framework for verification and control of stochastic hybrid systems," Automatica. 2011, Under Review.

- <u>A. Abate</u> and M. Prandini, "Approximate abstractions of stochastic systems: a randomized method," Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, December 2011, pp. 4861–4866.

- <u>A. Abate</u>, A. D'Innocenzo, M.D. Di Benedetto and S. Sastry, "Markov Set-Chains as abstractions of Stochastic Hybrid Systems," Hybrid Systems: Computation and Control (HSCC 08), Saint Louis (MS), April 2008.

- <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry, "Approximation of General Stochastic Hybrid Systems by Switching Diffusions with Random Hybrid Jumps," Hybrid Systems: Computation and Control, Saint Louis (MS), April 2008.

- <u>A. Abate</u>, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, "Computational Approaches to Reachability Analysis of Stochastic Hybrid Systems," Hybrid Systems: Computation and Control, Pisa (IT), April 2007.

- <u>A. Abate</u>, "Probabilistic Bisimulations of Switching and Resetting Diffusions," 49th IEEE Conference of Decision and Control, Atlanta, GA, Dec. 2010, pp. 5918 - 5923.

 <u>A. Abate</u>, "A Contractivity Approach for Probabilistic Bisimulations of Diffusion Processes," 48th IEEE Conference of Decision and Control, Shanghai, CN, Dec. 2009, pp. 2230-2235.

– <u>A. Abate</u>, M. Prandini, J. Lygeros, and S. Sastry, "An approximate dynamic programming approach to probabilistic reachability for stochastic hybrid systems," 47th IEEE Conference of Decision and Control, Cancun, MX, Dec. 2008, pp. 4018-4023.