
Extensible Programming and Modeling
Languages

Ted Kaminski, Yogesh Mali, August Schwerdfeger
and Eric Van Wyk

University of Minnesota

September 20, 2012, Lund, Sweden

Page 1

I Languages are not monolithic.

I But most language tools primarily support monolithic design
and implementation.

Page 2

Extensible Language Frameworks — ableP

I add features to a “host” language — Promela
I new language constructs - their syntax and semantics

I select (altitude: 1000 .. 10000);
I select (altitude: 1000 .. 10000 step 100);
I select (altQuality: High, Med, Low);
I DTSpin constructs: timer t; t = 1; expire(t);

I new semantics of existing constructs
semantic analysis, translations to new target languages, ...

I type checking
I advanced ETCH-style type inference and checking

Page 3

Various means for extending Promela

I select (v: 1 .. 10) added in SPIN version 6.
I DTSPIN features

I as CPP macros — lightweight
I or modifying the SPIN implementation — heavyweight

I ETCH, enhanced type checking
I built their own scanner and parser using SableCC

I ableP — middleweight approach

Page 4

An example

An altitude switch model that uses

I enhanced select statements

I DTSPIN-like constructs

I tabular Boolean expressions (à la RSML and SCR)

An instance of ableP parses and analyzes the model, then
generates its translation to pure Promela.

% java -jar ableP.aviation.jar AltSwitch.xpml

% spin -a AltSwitch.pml

Page 5

Our approach:
I Users choose (independently developed) extensions.

I Tools compose the extensions and Promela host language.

I Distinguish
1. extension user

I has no knowledge of language design or implementations

2. extension developer
I must know about language design and implementation

1. Tools and formalisms support automatic composition.

2. Modular analyses ensure the composition results in a working
translator.

I Value easy composition over expressivity, accept some
restrictions

I on syntax
I new constructs are translated to “pure” Promela

I ableP “instances” are smart pre-processors

Page 6

Extending ableP with independently developed extensions

I Extension user directs underlying tools to
I compose chosen extensions and the host language

I and then create a custom translator for the extended language

I Silver grammar modules define sets of specifications
I composition is set union, order does not matter

I Consider the Silver specification for this composition.

Page 7

Developing language extensions

Two primary challenges:

1. composable syntax — enables building a scanner and parser
I context-aware scanning [GPCE07]
I modular determinism analysis [PLDI09]
I Copper

2. composable semantics — analysis and translations

I attribute grammars with forwarding, collections and
higher-order attributes

I set union of specification components
I sets of productions, non-terminals, attributes
I sets of attribute defining equations, on a production
I sets of equations contributing values to a single attribute

I modular well-definedness analysis [SLE12]
I monolithic termination analysis [SLE12]
I Silver

Page 8

Context aware scanning

I Scanner recognizes only tokens valid for current “context”

I keeps embedded sub-languages, in a sense, separate
I Consider:

I chan in, out;

for i in a { a[i] = i*i ; }

I Two terminal symbols that match “in”.
I terminal IN ’in’ ;
I terminal ID /[a-zA-Z][a-zA-Z 0-9]*/

submits to {promela kwd };

I terminal FOR ’for’ lexer classes {promela kwd };

Page 9

Allows parsing of embedded C code

c_decl {

typedef struct Coord {

int x, y; } Coord; }

c_state "Coord pt" "Global" /* goes in state vector */

int z = 3; /* standard global decl */

active proctype example()

{ c_code { now.pt.x = now.pt.y = 0; };

do :: c_expr { now.pt.x == now.pt.y }

-> c_code { now.pt.y++; }

:: else -> break

od;

c_code { printf("values %d: %d, %d,%d\n",

Pexample->_pid, now.z, now.pt.x, now.pt.y);

};

}

// assert(false) /* trigger an error trail */

//}

Page 10

Semantics for host language assignment constructs

grammar edu:umn:cs:melt:ableP:host:core:abstractsyntax;

abstract production defaultAssign

s::Stmt ::= lhs::Expr rhs::Expr

{ s.pp = lhs.pp ++ " = " ++ rhs.pp ++ " ;\n" ;

lhs.env = s.env; rhs.env = s.env;

s.defs = emptyDefs();

s.errors := lhs.errors ++ rhs.errors ;

}

Adding extension constructs involves writing similar productions.

Page 11

Adding ETCH-like semantic analysis.

grammar edu:umn:cs:melt:ableP:extensions:typeChecking ;

synthesized attribute typerep::TypeRep

occurs on Expr, Decls ;

aspect production varRef

e::Expr ::= id::ID

{ e.typerep = ... retrieve from declaration

found in e.env ... ; }

aspect production defaultAssign

s::Stmt ::= lhs::Expr rhs::Expr

{ s.errors <- if isCompatible(lhs.typerep, rhs.typerep)

then []

else [mkError ("Incompatible types ...")];

}

Page 12

Extensibility: safe composability

Host

Ext 1

Ext 2

Problem

New attributes
N

e
w

 p
ro

d
u
ct

io
n
s

independent
extensions

Page 13

Extensibility: safe composability

Page 14

Extensions get undefined semantics from host translation.

grammar edu:umn:cs:melt:ableP:extensions:enhancedSelect ;

abstract production selectFrom

s::Stmt ::= sl::’select’ v::Expr es::Exprs

{

s.pp = "select (" ++ v.pp ++ ":" ++ es.pp ++ "); \n" ;

s.errors := v.errors ++ es.errors ++

if ... check that all expressions in ’es’ have

same type as ’v’ ...

then [mkError ("Error: select statement " ++

"requires same type ... ")]

else [] ;

forwards to ifStmt(mkOptions (v, es)) ;

}

Page 15

Modular analysis

Ensuring that the composition will be successful.

Page 16

Context free grammars

GH ∪ G 1
E ∪ G 2

E ∪ ... G i
E

I ∪ of sets of nonterminals, terminals, productions

I Composition of all is an context free grammar.

I Is it non-ambiguous, useful for deterministic (LR) parsing?

I conflictFree(GH ∪ G 1
E) holds

I conflictFree(GH ∪ G 2
E) holds

I conflictFree(GH ∪ G i
E) holds

I conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ... ∪ G i
E) may not hold

Page 17

Attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... AG i
E

I ∪ of sets of attributes, attribute equations, occurs-on
declarations

I Composition of all is an attribute grammar.

I Completeness: ∀ production, ∀ attribute, ∃ an equation

I complete(AGH ∪ AG 1
E) holds

I complete(AGH ∪ AG 2
E) holds

I complete(AGH ∪ AG i
E) holds

I complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ... ∪ AG i
E) may not hold

I similarly for non-circularity of the AG

Page 18

Detecting problems, ensuring composition

When can some analysis of the language specification be applied?
When ...

1. the host language is developed ?

2. a language extensions is developed ?

3. when the host and extensions are composed ?

4. when the resulting language tools are run ?

Page 19

Libraries, and modular type checking

I Libraries “just work”

I Type checking is done by the library writer, modularly.

I Language extensions should be like libraries, composition of
“verified” extensions should “just work.”

Page 20

Modular determinism analysis for grammars, 2009

GH ∪ G 1
E ∪ G 2

E ∪ ... G i
E

I isComposable(GH ,G 1
E) ∧ conflictFree(GH ∪ G 1

E) holds

I isComposable(GH ,G 2
E) ∧ conflictFree(GH ∪ G 2

E) holds

I isComposable(GH ,G i
E) ∧ conflictFree(GH ∪ G i

E) holds

I these imply conflictFree(GH ∪ G 1
E ∪ G 2

E ∪ ...) holds

I (∀i ∈ [1, n].isComposable(GH ,G i
E) ∧

conflictFree(GH ∪ {G i
E)})

=⇒ conflictFree(GH ∪ {G 1
E , . . . ,G n

E})

I Some restrictions to extension introduced syntax apply, of
course.

Page 21

Modular completeness analysis for attribute grammars

AGH ∪ AG 1
E ∪ AG 2

E ∪ ... AG i
E

I modComplete(AGH ∪ AG 1
E) holds

I modComplete(AGH ∪ AG 2
E) holds

I modComplete(AGH ∪ AG i
E) holds

I these imply complete(AGH ∪ AG 1
E ∪ AG 2

E ∪ ...) holds

I (∀i ∈ [1, n].modComplete(AGH ,AG i
E))

=⇒ complete(AGH ∪ {AG 1
E , ...,AG n

E}).

I similarly for non-circularity of the AG

I Again, some restrictions on extensions.

Page 22

So ...

I ableP supports the simple composition of language extensions

I This creates translators and analyzers for customized
Promela-based languages.

I extensions can be verified to (syntactically) compose, with
other verified extensions — done by extension developers

I adding (independently developed) extensions that add new
features and new analysis on host features is supported

I Challenge: SPIN verification still occurs on the generated pure
Promela specification.

I Future work
I More extensions: multi-dimensional array, unit/dimension

analysis, ...
I Improve type analaysis
I Semantic analysis of embedded C code?

Page 23

Thanks for your attention.

Questions?

http://melt.cs.umn.edu/

evw@cs.umn.edu

Page 24

http://melt.cs.umn.edu/
evw@cs.umn.edu

