
1© 2012 The MathWorks, Inc.

Modeling Approximation of
Computational Semantics for Cyber-
Physical System Design

Pieter J. Mosterman

Senior Research Scientist
Design Automation Department

Adjunct Professor
School of Computer Science

2

In your opinion, what lasting legacy has YACC brought
to language development?

YACC made it possible for many people who were not
language experts to make little languages (also called
domain-specific languages) to improve their
productivity. Also, the design style of YACC - base the
program on solid theory, implement the theory well, and
leave lots of escape hatches for the things you want to
do that don’t fit the theory - was something many Unix
utilities embodied. It was part of the atmosphere in
those days, and this design style has persisted in most
of my work since then.

Interview with Stephen C. Johnson in “The A-Z of programming languages: YACC,”
Computerworld, 09.07.2008
http://news.idg.no/cw/art.cfm?id=094E3B6E-17A4-0F78-311509693E8E95C1

3© 2012 The MathWorks, Inc.

Modeling Approximation of
Computational Semantics for Cyber-
Physical System Design

Pieter J. Mosterman

Senior Research Scientist
Design Automation Department

Adjunct Professor
School of Computer Science

4

Agenda

� Cyber-physical systems
� Modeling cyber-physical systems

� Modeling approximations

� A solver model for control synthesis

� Conclusions

5

Computation as main feature differentiator

6

Computation as main feature differentiator

7

Computation as main feature differentiator

8

System integration

System Integration

Timing
Concurrency

Interfaces
Shared resources

…

9

System integration

10

System integration

11

System integration

12

System integration

13 14

15 16

17

Cyber-Physical Systems

Open
Robust
Natural

18

19 20

Network

Network

21

Physics

Network

Physics

22

Information

Network

Physics

Information

23

Cyber-physical systems

Information

Network

Physics

24

Information

Cyber-physical systems

Physics

Information

Network

Electronics

Network

Physics

25

Agenda

� Cyber-physical systems
� Modeling cyber-physical systems

� Modeling approximations

� A solver model for control synthesis

� Conclusions

26

system

model

model

system
under study

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University

What is a model anyway?

27

system

model

model

system
under study

With the most appropriate formalism

At the most appropriate level of
abstraction

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University

What is a model anyway?

28

system

model

model

system
under study

Jean Bézivin

“Everything is a model”

Jean-Marie Favre

“Nothing is a model”

Pieter J. Mosterman

“Nothing is not a model”

Hans Vangheluwe

“Model everything”

system
model

system under study

model

system

In collaboration with Hans Vangheluwe, McGill University

What is a model anyway?

Computer Automated Multiparadigm
Modeling

(CAMPaM)

29

Modeling a physical system

CL
C

q
V =

L

p
I = dt

tdp
tv

dt

tdq
ti

)(
)(

)(
)(

=

=

v

i

Capacitor:

Inductor:

An ideal oscillator:

dt

tdi
Ltv

dt

tdv
Cti

)(
)(

)(
)(

=

=

Maxwell:

30

Numerical integration

kt

kx

1+kε

1+kt

1+kx

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

31

Numerical integration

kt

kx

1+kε

1+kt

1+kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

)(1+kt tε

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

)(1+ke tε
When x(t) changes little, hk can be large!

32

Numerical integration

kt

kx

1+kε

1+kt

1+kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

�� ++= +
+

Trapezoidal: average the end points

Taylor series expansion for error analysis

)(
!2

)(

!1

)(
)()(32

1 kk
k

k
k

kk hOh
tx

h
tx

txtx +++=+
���

)(1+kt tε

),(txfx =�

kkkke htxtxtx)()()(ˆ 1 �+=+

Euler: step h in time along

kx�
1ˆ +kx

)(1+ke tε

Change step size based on estimate: 2
11 !2

)(
)(ˆ)(ˆ k

k
ktke h

tx
txtx

��
≈− ++

33

Sophisticated solver … ?

v

iCL

� Let’s compute a solution to an ideal oscillator

34

Sophisticated solver … ?

� Let’s compute a solution to an ideal oscillator

� We can make the error small … but only locally!
� It accumulates for long time behavior
� So, … how come we can engineer today’s complex

systems?!

v

iCL

35

The models in engineering an embedded
system

physical theoretical computational

dt

tdv
mtF

)(
)(=

verifyvalidate

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University 36

The models in engineering an embedded
system

physical theoretical computational

dt

tdv
mtF

)(
)(=

validate

verifyvalidate

refine

void main () {
int i;

}

In collaboration with Hans Vangheluwe, McGill University

37

Agenda

� Cyber-physical systems
� Modeling cyber-physical systems

� Modeling approximations

� A solver model for control synthesis

� Conclusions

38

Desiderata of an execution engine model

� Declarative
– No implementation details

� Stateless
– State explicitly formulated (e.g., as input)

� Function composition

39

– Repeated application of a monotonically increasing partial
function converges to a fixed point

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 5
5

40

– Repeated application of a monotonically increasing partial
function converges to a fixed point

– One implementation is a data dependency schedule

A declarative formalism with fix-point
semantics

1/z21

Constant Gain Delay Scope

1 6 512
5

1 6 512
1/z21

Constant Gain Delay Scope

5

0:2 0:00:3 0:4 0:1

41

Constant Gain Scope

Time as a potentially infinite stream of values

� Stream(Type) = Type : Stream(Type)
� Blocks as a function application

– Delay x0 u = x0 : u

� Resulting formalism
– Causal block diagrams

– Stream-based semantics

1/z21

Delay

{12, 4, 7, …} {5, 12, 4, …}

{5, 5, 5, …}

42

Can we use this framework to define a
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

T T T T T T T

Ts

43

Can we use this framework to define a
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations

Ts

2*Ts

tim
e

evaluation

44

t(0)

evaluation

t(1)

t(2)t(3)

t(4)

t(5)

Can we use this framework to define a
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of
evaluations
– Step is variable

– Step may be 0

– Step may be negative
� Time may recede

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "Towards Computational
Hybrid System Semantics for Time-Based Block Diagrams," in Proceedings of the 3rd IFAC
Conference on Analysis and Design of Hybrid Systems, pp. 376-385, Zaragoza, Spain, 2009

45

The two stages of a stream based functional
solver







−
= ∑ =

otherwise

eoddif

ey

ihiu
ey

e

e

i
e

)(

)1(

)()(
)(1

()∑ =

−+−= e

it

ihiuiu
ey

1 2

)1()()1(
)(

Euler integration

Trapezoidal integration

46

The two stages of a stream based functional
solver







−
= ∑ =

otherwise

eoddif

ey

ihiu
ey

e

e

i
e

)(

)1(

)()(
)(1

()∑ =

−+−= e

it

ihiuiu
ey

1 2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

Euler integration

Trapezoidal integration

Error computation

increment

increment

47

previous increment

The two stages of a stream based functional
solver







−
−−−= ∑ =

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)(1

() ()∑ =
−−−+−−−+−= e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

previous increment

Euler integration

Trapezoidal integration

Error computation

increment

increment

48

previous increment







−
−−−= ∑=

otherwise

eoddif

ey

ipihiuihiu
ey

e

e

i
e

)(

)1(

)()2()2()()(
)(1

() ()∑=
−−−+−−−+−= e

it ip
ihiuiuihiuiu

ey
1

)1(
2

)3()2()3(

2

)1()()1(
)(

()
toleheu

eheueu
ed <−−−−−+−=)2()2(

2

)3()2()3(
)(

previous increment

Euler integration

Trapezoidal integration

Error computation

increment

increment

The two stages of a stream based functional
solver

49

Agenda

� Cyber-physical systems
� Modeling cyber-physical systems

� Modeling approximations

� A solver model for control synthesis

� Conclusions

Towers of Hanoi

A Cyber-Physical System?

A Cyber-Physical System!

Justyna Zander and Pieter J. Mosterman, “Technical Engine for Democratizing Modeling, Simulation, and Prediction," in
Winter Simulation Conference, December, 2012

55

Local control laws

� Green block
– Should be on top

– If it is on top, move one spot over and then move one spot over

– If it is at bottom, move two spots over

� Red block
– Should be on bottom

– If it is on top, move two spots over

– If it is on bottom, move two spots over

– Should have the highest priority

Green block

56http://www.mathworks.com/matlabcentral/fileexchange/38515

57

Stereoscopic analysis to find the stack of
blocks

� Multiple values at one time step

left video frame right video frame
58

Stereoscopic analysis to find the stack of
blocks

� Multiple values at one time step

XOR

left video frame right video frame

59

Stereoscopic analysis to find the stack of
blocks

� Multiple values at one time step

XOR

left video frame right video frame

mean(XOR)

slider

nozzle

rails

block R

block B

nozzle motor

slider motor

block G

air pump

gravity

R,C

R

I

R,C

component hardstop_external_ini < foundation.mechanical.transl ational.branch
% Translational Hard Stop With External Initial Pos ition

parameters
stiff_up = { 1e6, ’N/m’ }; % Contact stiffness at upper bound
stiff_low = { 1e6, ’N/m’ }; % Contact stiffness at lower bound
D_up = { 150, ’N*s/m’ }; % Contact damping at upper bound
D_low = { 150, ’N*s/m’ }; % Contact damping at lower bound

end

inputs
upper_bnd = { 0.1, ’m’ }; % U:right
lower_bnd = { -0.1, ’m’ }; % L:left
x_initial = { 0.0, ’m’ }; % I:left

end

variables
x = { 0, ’m’ };

end

function setup
if stiff_up <= 0

pm_error(’simscape:GreaterThanZero’ , ‘Stiffness ')
end
x = 0.0;

end

equations
if ((x + x_initial) > upper_bnd)

% Slider hits upper bound
f == stiff_up * ((x + x_initial) - upper_bnd) + D_up * v;

elseif ((x + x_initial) < lower_bnd)
% Slider hits lower bound
f == stiff_low * ((x + x_initial) - lower_bnd) + D_low * v;

else
% Slider is between hardstops
f == {0 'N'};

end
x.der == v;

end
end

R,C

component(Hidden=true) branch
% Translational Branch
% Defines a translational branch with R and C external nodes.
% Also defines associated through and across variables.

nodes
R = foundation.mechanical.translational.translational; % R:left
C = foundation.mechanical.translational.translational; % C:right

end

variables
f = { 0, 'N' };
v = { 0, 'm/s' };

end

function setup
through(f, R.f, C.f);
across(v, R.v, C.v);

end

end

air pump

R,C

R,C
R,C R

R
I

67

Explicitly modeling the execution engine

Completely modeled solver and rate
transition with the discontinuous world …

… all with two basic ‘sequential’ blocks

68

Control synthesis for a surface mount device
using model checking

http://www.mathworks.com/matlabcentral/fileexchange/authors/4449

69http://www.mathworks.com/matlabcentral/fileexchange/authors/4449

Control synthesis for a surface mount device
using model checking

70

Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, ,
vol. 20, nr. 1, pp. 2-13, January 2012

71

Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "A Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, ,
vol. 20, nr. 1, pp. 2-13, January 2012 72

Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations

� Untimed
– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "Towards Computational
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.

73

Scenarios—emerging behavior

74

Agenda

� Cyber-physical systems
� Modeling cyber-physical systems

� Modeling approximations

� A solver model for control synthesis

� Conclusions

75

Conclusions

� Today’s systems are open
– Interact across various modalities

� Computational models include a variety of semantics
– Many interacting approximations

� We should understand our computational methods

� Model solvers
– A functional stream-based approach

– Formalize computational semantics of the execution engine

� Exploit the abstraction
– Computational methods for analysis, design, and synthesis

� Bring disciplines together
– Engineering, Computer Science, Physics, Mathematics

76

Acknowledgments

Justyna Zander
Harvard University

SimulatedWay, Berlin

Hans Vangheluwe
University of Antwerp

McGill University

Many thanks for their continuing collaboration!

77

®

