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In your opinion, what lasting legacy has YACC brought
to language development?

YACC made it possible for many people who were not
language experts to make little languages (also called
domain-specific languages) to improve their
productivity. Also, the design style of YACC - base the
program on solid theory, implement the theory well, and
leave lots of escape hatches for the things you want to
do that don't fit the theory - was something many Unix
utilities embodied. It was part of the atmosphere in
those days, and this design style has persisted in most
of my work since then.

Interview with Stephen C. Johnson in “The A-Z of programming languages: YACC,"
Computerworld, 09.07.2008
hitp://news.idg.nolcw/art.cfmid=094E 3B6E-17A4-0F 78-311509693E8E95C1
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Modeling a physical system
. q iy = da(t)
C tor: \V =— Maxwell: 1(t) =——+
apacitor: V C (t) ot
L dp(t
Inductor: | = b v(t) = ﬂ
L L dt
An ideal oscillator: i(t) = C?
di(t)
v(t)=L——=
(t) o
29
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Numerical integration

Euler: step hiin time along x = f (x,t)
%o () = X(t) + X(t )N,
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Numerical integration

Euler: step hiin time along x = f (x,t)

Relt)|= X0 +X(EON,

Trapezoidal: average the end points

< — Xt [ X(t)
X((tk+1) - X(tk) 2

Taylor series expansion for error analysis
X ) o)

1
Ee(tkﬂ) €| (tk+1)
When x(t) changes little, h, can be large!

X(ti) = X(8) +

31
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Numerical integration

Euler: step hiin time along x = f (x,t)

Relt)|= X0 +X(EON,

Trapezoidal: average the end points

< — X(te) [ X(t)
X((tk+1) - X(tk) 2

Taylor series expansion for error analysis
X(t, X(t,
b =x6) + 28 X el o

1
Ee (tk+1) €| (tk+1)

4\ MathWorks
Sophisticated solver ... ?
= Let's compute a solution to an ideal oscillator

XY Plat

@ @ X(t,
Change step size based on estimate: X, (t,.,) = X (tc.1) = (2:‘) h
- 32
| 4\ MathWorks
Sophisticated solver ... ?
= Let's compute a solution to an ideal oscillator
) XY Graph S [=] ES

XY Plat

= We can make the error small ... but only locally!
= It accumulates for long time behavior

= So, ... how come we can engineer today’s complex
systems?!

1
-
? 1 0 1
X Axis
33
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The models in engineering an embedded
system
physical theoretical computational
o |rgee0 | L [rgmino
dt }
L validate i [1 verify i
o3 L I | P o
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The models in engineering an embedded
system
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0 frpem®0 | [T O S
dt }
L validate i [1 v&ify i
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eI I | P — || .
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Desiderata of an execution engine model

= Declarative

— No implementation details
= Stateless

— State explicitly formulated (e.g., as input)
= Function composition

4\ MathWorks

A declarative formalism with fix-point
semantics
A LATTICE-THEORETICAL FIXPOINT THEOREM

AND ITS APPLICATIONS

ALFRED TARSKI Pacific J. Math. 5 (955), 235- 309

— Repeated application of a monotonically increasing partial
function converges to a fixed point

L 1
[ o> w0

Constant Gain Delay Scope
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A declarative formalism with fix-point
semantics

A LATTICE-THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALFRED TARSKI Pacific J. Math. 5 (955), 235- 309

— Repeated application of a monotonically increasing partial
function converges to a fixed point

e T =
Constant Gain Delay Scope

— One implementation is a data dependency schedule

52] 1 0936 g 12 [To0] 5
1 1z @
Constant Gain Delay Scope
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Time as a potentially infinite stream of values

= Stream(Type) = Type : Stream(Type)
= Blocks as a function application
— DelayxOu=x0:u

{5,5,5, ...}
{12,4,7, ..} (5,12, 4, ..}
Delay

= Resulting formalism
— Causal block diagrams
— Stream-based semantics

41

4\ MathWorks

Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of
evaluations

S L

TTTTTTT
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Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)

= Time as a function of
evaluations

time

evaluation
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Can we use this framework to define a
variable-step solver?

= Separate
— Time (explicit)
— Evaluations (ordered)
= Time as a function of
evaluations )
— Step is variable 1(3)1(2)
— Step may be 0
— Step may be negative
= Time may recede

(4)
(1)
1(0)

O—>0—>0-

evaluation

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Bekid)efiowar ds Computational
Hybrid System Semantics for Time-Based Block Diagrams," in Proceedings of the 3¢ IFAC

Conference on Analysis and Design of Hybrid Systems, pp. 376-385, Zaragoza, Spain, 2009
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The two stages of a stream based functional
solver

Euler integration

" u(iyh(i) if odd(e)
otherwise

Trapezoidal integration

(6= ZZ(UG —1)+:a))h<i -9
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The two stages of a stream based functional
solver

Euler integration

increment
_ES L u(h@) if odd(e)
Ye(8) = %(e—l) otherwise
Trapezoidal integration
increment
_ve UE-D+uhi-1
CEIA >

Error computation

d(e =/ L€ 3)“‘(;' 2hE-3) | e- 2h(e-@)| <tol
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The two stages of a stream based functional
solver

Euler integration

increment _previous increment

_ ,:UG)hG) u(-2h(i-2)p(i) | if odd(e)
Ye(8) = %(e—l) otherwise

Trapezoidal integratio

increment pravious increment

y@=y°,u —1)+;a))ha -1 | (ui= 3)+uY;— 2hi-3) P

Error computation

d(e) = (U €- 3)+U(:— 2)%(8_3)

-lue- 2)h(e—ez <tol

47
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The two stages of a stream based functional
solver

u ¥
di da
warlable-step

solver
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Local control laws

= Green block
— Should be on top
— Ifitis on top, move one spot over and then move one spot over

— Ifitis at bottom, move two spots over
[ Greenbiok

55
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Stereoscopic analysis to find the stack of
blocks

= Multiple values at one time step

left video frame right video frame

hitp:/fwmathworks com/matlabentralffileexchaf3gs15

[

Stereoscopic analysis to find the stack of
blocks

= Multiple values at one time step

| —
)
l
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Stereoscopic analysis to find the stack of
blocks

= Multiple values at one time step

mean(XOR)

4

XOR

left video frame right video frame
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component  hardstop_external _ini < f

indation.mechani

| tional branch

9 Translational Hard Stop With Extemal Initial Pos

parameters
stiff_up ={ 1e6, Nim'
stiff_low ={1e6,

N g
D_up ={150, ‘N'sim’ )
Dlow ={150, 'N'sim' )
end

inputs
upper_bnd ={01,
01,

function  setup.
it siiff

equati ons

if ((x +x_initial) > upper_bnd)
%Sl ider hits/ upper bound

9% Contact siiffness at upper bound
9% Contact siffness at lower bound
9% Contact damping at upper bound
9% Contact damping at lower bound

% Usright
% Lileft
9% Lleft

, ‘Stiffness ")

ition

f == stiff_up * ((x +x_initial) - upper_bnd) + Dup * v;
elseif ((x +x_initial) < |ower_bnd)

9% 5lider hiYs ower bound
£ == stiff_low* ((x +x

el se

1

%Sl ider is between hardstops
= (0N}

nitial) = Tower_bnd) + D_low * v;

conponent (H dden=true) branch

9% Trans| ati onal Brancl
9% Defines a translational

%Al so defines associated through and across variabl es.

nodes
R

@
end
vari abl es
f 0, N };
Tmist )

function setup
through( f, Rf, Cf )
across( v, Rv, Cv):
end

end

branch with R and C external

nodes

oundat i on. mechani cal . transl ati onal . trans| ational; %8 Feft
oundat i on. mechani cal . trans| ati onal . transl ati onal ; %C right

Bl
\w—”E‘J
¢

'&a&%%[j i
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Explicitly modeling the execution engine

0de4S (Dormand-Prince) v
discrete (o contiuous states) Completely modeled solver and rate
transition with the discontinuous world ...

... all with two basic ‘sequential’ blocks

‘ode23s (stiff/Mod. Rosenbrock)
‘0de23t (mod. stiff/Trapezoidal)
0de23th (siff/TR-80F2)

dgelaylater

ety

<utaos mour devis
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Control synthesis for a surface mount device
using model checking
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Control synthesis for a surface mount device
using model checking

ety remrse

S mmreng| ™

Pt =

D>
hitp:/fwww.mathworks.com/matiabcentralffileexchalagthors/4449 69
4\ MathWorks'
Model checking to generate a counterexample
Counterexample 1 an
3.4 |- centrol force. i H i H H
i b L [ I
38 ~&—no control
—x—force profile
301
p:
42 < 20|
8
®
44 5 10
8
46 o
®
48
0 5
=10
0.01 0.02 0.03 0.04 0.05
time

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Bekld)eht Computational Model of
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, ,
vol. 20, nr. 1, pp. 2-13, January 2012 7
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Model checking to generate a counterexample
Counterexample 1 an
3.4 |- centrol force.
4
4.2
44
] L
46
48
0 5 10 15 20 25 30
Time )
Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Bekid)eh& Computational Model of
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Characteristics of the semantic domain

= Declarative
— Purely functional (no side effects)
= Ordered evaluations
= Untimed
— Time as explicit function, t(€)
— Time is not strictly increasing
= Broadly applicable to dynamic systems
— Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Bekl&@etTowards Computational
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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Conclusions Acknowledgments
= Today's systems are open
— Interact across various modalities
= Computational models include a variety of semantics Justyna Zander
— Many interacting approximations Harvard University
X SimulatedWay, Berlin
= We should understand our computational methods
= Model solvers Hans Vangheluwe
— Afunctional stream-based approach University of Antwerp

. . . . . McGill University
— Formalize computational semantics of the execution engine

= Exploit the abstraction Many thanks for their continuing collaboration!
— Computational methods for analysis, design, and synthesis
= Bring disciplines together
— Engineering, Computer Science, Physics, Mathematics
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Accelerating the pace of engineering and science
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