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In your opinion, what lasting legacy has YACC brought 
to language development?

YACC made it possible for many people who were not 
language experts to make little languages (also called 
domain-specific languages) to improve their 
productivity. Also, the design style of YACC - base the 
program on solid theory, implement the theory well, and 
leave lots of escape hatches for the things you want to 
do that don’t fit the theory - was something many Unix 
utilities embodied. It was part of the atmosphere in 
those days, and this design style has persisted in most 
of my work since then.

Interview with Stephen C. Johnson in “The A-Z of programming languages: YACC,” 
Computerworld, 09.07.2008
http://news.idg.no/cw/art.cfm?id=094E3B6E-17A4-0F78-311509693E8E95C1
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Computation as main feature differentiator
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Modeling a physical system
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Numerical integration
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Numerical integration
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Sophisticated solver … ?

v

iCL

� Let’s compute a solution to an ideal oscillator

34

Sophisticated solver … ?

� Let’s compute a solution to an ideal oscillator

� We can make the error small … but only locally!
� It accumulates for long time behavior
� So, … how come we can engineer today’s complex 

systems?! 

v

iCL
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The models in engineering an embedded 
system
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Desiderata of an execution engine model 

� Declarative
– No implementation details

� Stateless
– State explicitly formulated (e.g., as input)

� Function composition
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– Repeated application of a monotonically increasing partial 
function converges to a fixed point

A declarative formalism with fix-point 
semantics
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– Repeated application of a monotonically increasing partial 
function converges to a fixed point

– One implementation is a data dependency schedule

A declarative formalism with fix-point 
semantics
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Constant Gain Scope

Time as a potentially infinite stream of values

� Stream(Type) = Type : Stream(Type)
� Blocks as a function application

– Delay x0 u = x0 : u

� Resulting formalism
– Causal block diagrams

– Stream-based semantics

1/z21

Delay

{12, 4, 7, …} {5, 12, 4, …}

{5, 5, 5, …}
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Can we use this framework to define a 
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of 
evaluations

T T T T T T T

Ts
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Can we use this framework to define a 
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of 
evaluations
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t(0)

evaluation

t(1)

t(2)t(3)

t(4)

t(5)

Can we use this framework to define a 
variable-step solver?

� Separate
– Time (explicit)

– Evaluations (ordered)

� Time as a function of 
evaluations
– Step is variable

– Step may be 0

– Step may be negative
� Time may recede

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla, "Towards Computational 
Hybrid System Semantics for Time-Based Block Diagrams," in Proceedings of the 3rd IFAC 
Conference on Analysis and Design of Hybrid Systems, pp. 376-385, Zaragoza, Spain, 2009
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The two stages of a stream based functional 
solver
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previous increment

The two stages of a stream based functional 
solver
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previous increment
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Towers of Hanoi

A Cyber-Physical System?

A Cyber-Physical System!

Justyna Zander and Pieter J. Mosterman,  “Technical Engine for Democratizing Modeling, Simulation, and Prediction," in 
Winter Simulation Conference, December, 2012
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Local control laws

� Green block
– Should be on top

– If it is on top, move one spot over and then move one spot over

– If it is at bottom, move two spots over

� Red block
– Should be on bottom

– If it is on top, move two spots over

– If it is on bottom, move two spots over

– Should have the highest priority

Green block

56http://www.mathworks.com/matlabcentral/fileexchange/38515
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Stereoscopic analysis to find the stack of 
blocks

� Multiple values at one time step

left video frame right video frame
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Stereoscopic analysis to find the stack of 
blocks

� Multiple values at one time step

XOR

left video frame right video frame
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Stereoscopic analysis to find the stack of 
blocks

� Multiple values at one time step

XOR

left video frame right video frame

mean(XOR)
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nozzle

rails

block R

block B

nozzle motor

slider motor

block G

air pump

gravity

R,C

R

I

R,C

component hardstop_external_ini < foundation.mechanical.transl ational.branch
% Translational Hard Stop With External Initial Pos ition

parameters
stiff_up = { 1e6, ’N/m’ };      % Contact stiffness at upper bound
stiff_low = { 1e6, ’N/m’ };     % Contact stiffness at lower bound
D_up = { 150, ’N*s/m’ };         % Contact damping at upper bound
D_low = { 150, ’N*s/m’ };        % Contact damping at lower bound

end

inputs
upper_bnd = { 0.1, ’m’ };       % U:right
lower_bnd = { -0.1, ’m’ };      % L:left
x_initial = { 0.0, ’m’ };       % I:left

end

variables
x = { 0, ’m’ };

end

function setup
if stiff_up <= 0

pm_error( ’simscape:GreaterThanZero’ , ‘Stiffness ')
end
x = 0.0;

end

equations
if ((x + x_initial) > upper_bnd)

% Slider hits upper bound
f == stiff_up * ((x + x_initial) - upper_bnd) + D_up * v;

elseif ((x + x_initial) < lower_bnd)
% Slider hits lower bound
f == stiff_low * ((x + x_initial) - lower_bnd) + D_low * v;

else
% Slider is between hardstops
f == {0 'N'}; 

end
x.der == v;

end
end

R,C

component(Hidden=true) branch
% Translational Branch
% Defines a translational branch with R and C external nodes.
% Also defines associated through and across variables.

nodes
R = foundation.mechanical.translational.translational; % R:left
C = foundation.mechanical.translational.translational; % C:right

end

variables
f = { 0, 'N' };
v = { 0, 'm/s' };

end

function setup
through( f, R.f, C.f );
across( v, R.v, C.v );

end

end

air pump

R,C

R,C
R,C R

R
I
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Explicitly modeling the execution engine

Completely modeled solver and rate 
transition with the discontinuous world …

… all with two basic ‘sequential’ blocks
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Control synthesis for a surface mount device 
using model checking

http://www.mathworks.com/matlabcentral/fileexchange/authors/4449

69http://www.mathworks.com/matlabcentral/fileexchange/authors/4449

Control synthesis for a surface mount device 
using model checking
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Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, , 
vol. 20, nr. 1, pp. 2-13, January 2012
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Model checking to generate a counterexample

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "A Computational Model of 
Time for Stiff Hybrid Systems Applied to Control Synthesis," in Control Engineering Practice, , 
vol. 20, nr. 1, pp. 2-13, January 2012 72

Characteristics of the semantic domain

� Declarative
– Purely functional (no side effects)

� Ordered evaluations

� Untimed
– Time as explicit function, t(e)

– Time is not strictly increasing

� Broadly applicable to dynamic systems
– Differential equations, difference equations, discrete events

Pieter J. Mosterman, Justyna Zander, Grégoire Hamon, and Ben Denckla,  "Towards Computational 
Hybrid System Semantics for Time-Based Block Diagrams," in 3rd IFAC Conference on 
Analysis and Design of Hybrid Systems (ADHS'09), A. Giua, C. Mahulea, M. Silva, and J. Zaytoon 
(eds.), pp. 376-385, Zaragoza, Spain, September 16-18, 2009, plenary paper.
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Scenarios—emerging behavior
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Conclusions

� Today’s systems are open
– Interact across various modalities

� Computational models include a variety of semantics
– Many interacting approximations

� We should understand our computational methods

� Model solvers 
– A functional stream-based approach

– Formalize computational semantics of the execution engine

� Exploit the abstraction
– Computational methods for analysis, design, and synthesis

� Bring disciplines together
– Engineering, Computer Science, Physics, Mathematics
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