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Pyomo - Python Optimization Modeling Objects

e Algebraic equation-based modeling language for
optimization
- ¢.g AMPL, GAMS, AIMMS
- acausal, equation-based modeling

- currently no support for differential equations
- 1tially driven by large-scale MILP

e Designed by Math Programmers for Math Programmers

- open-source, extensible alternative to existing tools
- used to enable research and engineering solutions

e | work on algorithms and applications
- [ am a user of modeling languages, ... right?
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Typical Algebraic Modeling Language
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Typical Algebraic Modeling Language

Model
Detinition
File

Solver
Interface

Data

File Solution

e Provide powerful, high-level problem specification
e Familiar math programming constructs (Sets, expressions)

e Very limited programming / scripting capability
- model transformations? language extensions?
- plotting? functions? numerical libraries?
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Seasonal Drivers 1n Infectious Disease Spread

Seasonal Nonlinear Discrete-
Drivers? Time Disease Model
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Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model
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Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model

Large Mixed Integer Non-Linear Programming Problem
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Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model

AL

Large Mixed Integer Non-Linear Programming Problem

y*: binaries
Solve the Initalised from
Relaxed MIP NLP Instance MIP values

DATA

!

Initial
Constraints e
and Variable A Model ¢
Bounds
Add Constraint
able Points to
Bounds Refine Convex
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Parallel Decomposition in Interior-Point Methods
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Parallel Decomposition in Interior-Point Methods
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Parallel Decomposition 1n Interior-Point Methods

e Nonlinear Stochastic Optimization
e Large-scale Parameter Estimation

e Design Under Uncertainty

e Spatially Decomposable Problems

e Very large-scale NLP Problems
- Highly Structured
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Parallel Decomposition in Interior-Point Methods

Nonlinear Stochastic Optimization
[arge-scale Parameter Estimation
Design Under Uncertainty
Spatially Decomposable Problems

Very large-scale NLP Problems
- Highly Structured
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Parallel Decomposition 1n Interior-Point Methods

Parallel solution of structured
linear system
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Parallel Decomposition 1n Interior-Point Methods

Parallel construction/evaluation
of equations, J, H

Parallel solution of structured
linear system
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Optimal Response to Water

Contamination Events
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Model
Definition

Solver

File Interface

Solution

Optimization Filo

Package

Write Input FilesT l Parse Output Files

Compiled C++
Matlab

Python

Fragile tool chain
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1. Design new language 2. Use programming language

- modeling, scripting - develop components

syntax in another language

- compiler tools - import types/functionality
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1. Design new language 2. Use programming language

- modeling, scripting - develop components

syntax in another language

- compiler tools - import types/functionality

e Selected to develop in Python (Choice 2)

- tired of writing parsers

- not language experts

- existing tools are not actively updated

- not responsible for full language functionality and packages

- want full-featured language and user-extensibility (for “free”)
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Requirements

e Powertful
- full support for standard math programming constructs
(LP, MILP, NLP, MINLP, ...)
- full-featured programming environment (model interrogation, scripting,
functions, classes, standard & numerical libraries)
- extensive solver integration - “out-of-the-box™

e Open
- licensed under BSD (i.e. really open-source)
- reduce barriers to adoption, ease of collaboration
- transparency

e Flexible

- extensible by users, contributors, not only by us
- portable (Windows, Linux, OS X)

e Easy
- language constructs familiar to math programmers - Abstract Models
- scripting / programming capability well-defined
- substantial documentation
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Why Python?

e [ .icense
- open-source

e [Language Features

- familiar, lean syntax, rich set of existing data types, object-
oriented, exceptions, dynamic loading, ...

e Support and stability
- highly stable, well-supported

e Documentation
- extensive online documentation, several books

e Libraries
- significant external libraries, numerical & scientific packages

e Portability

- widely available on many platforms
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Simple Modeling Example: Knapsack

S . set of items (set)

Vs : value of item ¢ (param)
w; . weight of item ¢ (param)
Winaz : maximum weight (param)
1 : binary indicator (var)

max E V; - Xy

ics
S.t. E wz 1 'CEZ S Wmax
icS
e e e—— —
r; €4{0,1} VieS
AJM | CHEWICAL EnGineering 13
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S: set of items

v;:  value of items

w;: weight of items
W,: maximum weight

x;: binary indicator

max E V; Xy

1€S

S.t. sz - Xy S Wm
1€S
et {O, 1}

from coopr.pyomo import *

mode = AbstractModel ()

model .ITEMS = Set()

model.v = Param( model.ITEMS, within=PositiveReals )
model .w = Param( model.ITEMS, within=PositiveReals )
model.w_max = Param( within=PositiveReals )

modeTl . x = vVar( model.ITEMS, within=Binary )

def value_rule(model):
return sum( model.v[i]*model.x[1] for i in model.ITEMS )
model.value = Objective( sense=maximize )

def weight_rule(model):
return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max
model.weight = Constraint( )

0T TN P — ————

Knapsack Problem: Abstract Model
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S: set of items from coopr.pyomo import *
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S: set of items from coopr.pyomo import *
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Model 1s completely abstract - there 1s no data

S: set of items from coopr.pyomo import *

v;:  value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param( model.ITEMS, within=PositiveReals )

(4] model .w = Param( model.ITEMS, within=PositiveReals )

Lj- binal“y indicator model.w_max = Param( within=PositiveReals )

model . x = vVar( model.ITEMS, within=Binary )
qrpy Zvi oy def value_rule(model): | | o
return sum( model.v[i]*model.x[1] for i in model.ITEMS )
€S model.value = Objective( sense=maximize )

S.t. sz i 7 5 Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

hit e {O, 1} model.weight = Constraint( )

€S

Knapsack Problem: Abstract Model
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Model 1s completely abstract - there 1s no data

S: set of items . from coopr.pyomo import ¥

v;:  value of items mode] — AbstractModel()

W;: Welght of items model1.ITEMS = Set()
W . I Weight model.v = Param( model.ITEMS, within=PositiveReals )

(4] model.w = Param( model.ITEMS, within=PositiveReals )

Lj- binary indicator model.w_max = Param( within=PositiveReals )

model . x = vVar( model.ITEMS, within=Binary )
A Zvi oy def value_rule(model): N | o
return sum( model.v[i]*model.x[i1] for i in model.ITEMS )
€S model.value = Objective( sense=maximize )

S.t. sz’ Ui Wm def weight_rule(model):

return sum(model.w[i]*model.x[1] for i in model.ITEMS) \
<= model.w_max

Tr; € {O, 1} model.weight = Constraint( )

1ES

> pyomo --solver=glpk knapsack.py akesson art.dat

Knapsack Problem: Abstract Model
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from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set( initialize=v.keys() )
model.x = var( model.ITEMS, within=Binary )

model.value = Objective(
expr = sum( v[i1]*model.x[1] for 1 1n model.ITEMS ),
sense = maximize )

model.weight = Constraint(
expr = sum( w[i1]*model.x[1] for 1 1n model.ITEMS ) <= W_max )

Knapsack Problem: Concrete Model
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Scripting

Knapsack Problem: Concrete Model
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Solver Interfaces

CPLEX
GUROBI
Xpress
GLPK
CBC
/ PICO
LP OpenOpt
MILP
NLP
MINLP
A0 | chemical Enemezmivg 30
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Solver Interfaces

CPLEX
GUROBI
Xpress
GLPK
CBC
PICO
OpenOpt

CPLEX

GUROBI

ol [POPT
Solver Col;

oliny

Bonmin

Couenne

Library

Artie McFerrin Department of
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Solver Interfaces
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Other Pyomo Features

e Advanced scripting capability
- functions, OO, model interrogation & transformation

e Extensive set operations, tuples, multi-dimensional

e [.0ad data from different sources
- AMPL dat files, CSV files, Excel, databases

e Support for custom workflow with plugins
- €.g. preprocess, create modeldata, save 1nstance

e And more with extensions...

Artie McFerrin Department of
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e Pyomo 1s an equation-based, algebraic modeling language
for optimization

e Pyomo 1s an object-oriented framework for building
optimization-based applications

e Based on Python
- simple syntax for modeling
- full-featured language

e Significant solver integration

e Open-source and Extensible
- PySP: Stochastic Programming Framework
- PH: Progressive Hedging Framework
- Generalized Disjunctive Programming Capability
- Blocks - Connectors
- Piecewise-linear Constructs
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Some Closing Comments

o Performance?
- Python 1s slow... but not that slow
- Time dominated by solution, not construction

- Compiled code for solver/AD max Z Vi - T
i€S
o Flat Model Specification .t N g < W
- Abstract models iHit
- Computer scientists z; €40,1}
e Object-Oriented Modeling
- Concrete models _:'\
- Programmatic creation '\
- Engineers 'e |

o Karl Astrom’s Comment: Don’t just do
what you did before with new technology
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Plus our many users, including:

- Unmiversity of California, Davis
- Texas A&M University

- University of Texas

- Unmiversity of Southern California

- George Mason University

- Jowa State University

- N.C. State University

- University of Washington

- Naval Postgraduate School

- Universidad de Santiago de Chile

- University of Pisa

- Lawrence Livermore National Lab

\— Los Alamos National Lab

- Rose-Hulman Institute of Technology
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L.earn More

e Project Homepage F
http://software.sandia.gov/coopr

Pyomo —

Optimization
e The Book Mode"ng

in Python

e Pyomo and PySP papers

@ Springer

Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)
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