LCCC Workshop: System Design Meets Equation-based Languages
Sep 20, 2012

:‘:

Carl D. Laird, Assistant Professor

PyO Mo — Chemical Engineering, Texas A&M University

O pt' m IZ&'[I on William E. Hart, Jean-Paul Watson, John D. Siirola
M Od - | | N g Sandia National Laboratories, Albuquerque, NM

i N Pyth on David L. Woodruff, Professor

Business Management, University of California, Davis

@ Springer

Artie McFerrin Department of
CHEMICAL ENGINEERING

Thursday, September 20, 12

TEXAS A*xM>*<ENGINEERING

Pyomo - Python Optimization Modeling Objects

e Algebraic equation-based modeling language for
optimization
- ¢.g AMPL, GAMS, AIMMS
- acausal, equation-based modeling

- currently no support for differential equations
- 1tially driven by large-scale MILP

e Designed by Math Programmers for Math Programmers

- open-source, extensible alternative to existing tools
- used to enable research and engineering solutions

e | work on algorithms and applications
- [am a user of modeling languages, ... right?

Artie McFerrin Department of
AI|M CHEMICAL ENGINEERING 2

TTTTTTTTTTTTTTTTTT
Thursday, September 20, 12

Typical Algebraic Modeling Language

Model
Detinition
File

Solver
Interface

Solution

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Typical Algebraic Modeling Language

Model
Detinition
File

Solver
Interface

Data

File Solution

e Provide powerful, high-level problem specification
e Familiar math programming constructs (Sets, expressions)

e Very limited programming / scripting capability
- model transformations? language extensions?
- plotting? functions? numerical libraries?

Artie McFerrin Department of
AI|M CHEMICAL ENGINEERING 3

TTTTTTTTTTTTTTTTTT
Thursday, September 20, 12

Seasonal Drivers 1n Infectious Disease Spread

Seasonal Nonlinear Discrete-
Drivers? Time Disease Model

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model

Large Mixed Integer Non-Linear Programming Problem

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Seasonal Drivers 1n Infectious Disease Spread

Nonlinear Discrete-
Time Disease Model

AL

Large Mixed Integer Non-Linear Programming Problem

y*: binaries
Solve the Initalised from
Relaxed MIP NLP Instance MIP values

DATA

!

Initial
Constraints e
and Variable A Model ¢
Bounds
Add Constraint
able Points to
Bounds Refine Convex
} Relaxation

e McFerrin Department
AlM CHEMICAL ENGINEERING
TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

uB

No

DONE

Parallel Decomposition in Interior-Point Methods

.) 4)
min /(@) min - f(2) = p- 3 In(a;)
s.t. c(z)=0 | > | :

>0 s.t. ec(z)=0
\- — v \- v

5 |

N ()T A m 2 |
V(@) +Ve(z)" -A-z =0 Vi(z) 4+ Ve(@)TA — pX e =0

e(z) =0 z=puX lte
X -z = pe ¥ c(z) =
(z>0,z >0) (z >0)

4 N

Wi+, 4+ 0wl Ve(xyp) Az \ _ | Vou(zg) + Ve(zp) T\,
Ve(zp)T —8¢l A\ c(xy.)

(Wi = V2.L = Vi f(ax) + Vage(zp))

K (511‘.- 5(.‘ Z O) (Z" = Z""Y/‘Tl) /

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Parallel Decomposition in Interior-Point Methods

. min f(z) A mir f(z) —u-Zln(xs)\
t. | >) i
s.t. ec(z)=0
N Y,

z=uX le
< c(g;) —
(x > 0)
4 Wi+ Zp + 0wl Ve(zy) Az \ _ | Veu(zg) + Vel(zp) ! Ap h
Ve(zp)T —8c1 AN] T c(zp)

("v"ﬁ'k = V?,C = V?,f(,l,;\) + v;%;z'c(l'k)/\)

K (5113. de 2 O) (ZA' - Z""x’;l) /

Artie McFerrin Department of
AI|M CHEMICAL ENGINEERING 5

TTTTTTTTTTTTTTTTTT
Thursday, September 20, 12

Parallel Decomposition 1n Interior-Point Methods

e Nonlinear Stochastic Optimization
e Large-scale Parameter Estimation

e Design Under Uncertainty

e Spatially Decomposable Problems

e Very large-scale NLP Problems
- Highly Structured

TTTTTTTTTTTTTTTTTT

Thursday September 20, 12

Parallel Decomposition in Interior-Point Methods

Nonlinear Stochastic Optimization
[arge-scale Parameter Estimation
Design Under Uncertainty
Spatially Decomposable Problems

Very large-scale NLP Problems
- Highly Structured

TTTTTTTTTTTTTTTTTT

Thursday September 20, 12

Parallel Decomposition 1n Interior-Point Methods

Parallel solution of structured
linear system

Artie McFerrin Department of
CHEMICAL ENGINEERING 7
TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

Parallel Decomposition 1n Interior-Point Methods

Parallel construction/evaluation
of equations, J, H

Parallel solution of structured
linear system

Artie McFerrin Department of
CHEMICAL ENGINEERING 7
TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

Sostewart
Novaay OCoRrde

")
Sondery |

Derry Seatymens

ot
wn © . Belfasto

0409 Craigaven O Lisourn
Downgatick

umagno

o
Bantriige

F—

i

aDssagrasee

Examples of Applications

Svanse

Parallel Parameter Estimation for Spatial

5
T
/ { £ Baagon
colyes %
Harrogate
\ L
o \
Irish Sea Biackpool ©_Preston s Qleeds i

3 TR Fiesae o4
o Owaketeid

Transportation Affecting Disease Spread

1O ==/ \ W
Rsomap R\ ke
R @ Northampion s cime
NG @ Cimonage
Woratetard N S AN A N o
2 | Mion s pediora
Hererd , Cctennaem BN)

avetowest g B 'u_mﬂ sc:ugm}‘"
a s S /TSN
i NSO Newpa s \ (
ool uansea S Conpmiya 05/ ot 2 S
n < QCardiff o pristol > !
CECOAS OBristol AR
Weston. Super.Mare , Woliig0)< c,.,?,w.;\: s
i i \Maidstone.
Bomyasie Ci U S/ Craney, NI
S Plownton — St/ g
Baedor vaton— o A o
Relook vy “w Southamptsn@__ | /Bogmon QHasings e\
Exeter Boumemmouth 3 B of Bouiogresur-Me
e T, @800 ersan Poraci Easoume S
b Aatot/ Bamoun
Newguay 5 Bosmin i V%)
P& o Towey BBratam RS
Reanen st Auste | Plymoutn \ A
Pereance " Geamoun aisgan
Duse / Armiens
& ¥ A%
s |]

Optimal Response to Water

Contamination Events

Artie McFerrin Department of

CHEMICAL ENGINEERING

TEXAS A&M UNIVERSITY

Thursday, September 20, 12

Model
Definition

Solver

File Interface

Solution

Optimization Filo

Package

Write Input FilesT l Parse Output Files

Compiled C++
Matlab

Python

Fragile tool chain

Thursday, September 20, 12

1. Design new language 2. Use programming language

- modeling, scripting - develop components

syntax in another language

- compiler tools - import types/functionality

rtie McFerrin Department o

A Ferrin Depa; t of
CHEMICAL ENGINEERING 10

TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

1. Design new language 2. Use programming language

- modeling, scripting - develop components

syntax in another language

- compiler tools - import types/functionality

e Selected to develop in Python (Choice 2)

- tired of writing parsers

- not language experts

- existing tools are not actively updated

- not responsible for full language functionality and packages

- want full-featured language and user-extensibility (for “free”)

rtie McFerrin Department o

A Ferrin Depa; t of
CHEMICAL ENGINEERING 10

TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

Requirements

e Powertful
- full support for standard math programming constructs
(LP, MILP, NLP, MINLP, ...)
- full-featured programming environment (model interrogation, scripting,
functions, classes, standard & numerical libraries)
- extensive solver integration - “out-of-the-box™

e Open
- licensed under BSD (i.e. really open-source)
- reduce barriers to adoption, ease of collaboration
- transparency

e Flexible

- extensible by users, contributors, not only by us
- portable (Windows, Linux, OS X)

e Easy
- language constructs familiar to math programmers - Abstract Models
- scripting / programming capability well-defined
- substantial documentation

ATM ‘ CHEMInCRL ENGINEERING 11

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Why Python?

e [.icense
- open-source

e [Language Features

- familiar, lean syntax, rich set of existing data types, object-
oriented, exceptions, dynamic loading, ...

e Support and stability
- highly stable, well-supported

e Documentation
- extensive online documentation, several books

e Libraries
- significant external libraries, numerical & scientific packages

e Portability

- widely available on many platforms

ATM ‘ CHEMInCRL ENGINEERING 12

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Simple Modeling Example: Knapsack

S . set of items (set)

Vs : value of item ¢ (param)
w; . weight of item ¢ (param)
Winaz : maximum weight (param)
1 : binary indicator (var)

max E V; - Xy

ics
S.t. E wz 1 'CEZ S Wmax
icS
e e e—— —
r; €4{0,1} VieS
AJM | CHEWICAL EnGineering 13

Thursday, September 20, 12

S: set of items

v;: value of items

w;: weight of items
W,: maximum weight

x;: binary indicator

max E V; Xy

1€S

S.t. sz - Xy S Wm
1€S
et {O, 1}

from coopr.pyomo import *

mode = AbstractModel ()

model .ITEMS = Set()

model.v = Param(model.ITEMS, within=PositiveReals)
model .w = Param(model.ITEMS, within=PositiveReals)
model.w_max = Param(within=PositiveReals)

modeTl . x = vVar(model.ITEMS, within=Binary)

def value_rule(model):
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
model.value = Objective(sense=maximize)

def weight_rule(model):
return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max
model.weight = Constraint()

0T TN P — ————

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items modeT — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model1.ITEMS = Set()
W i ST Weight model .v = Param(model.ITEMS, within=PositiveReals)

{14 model.w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

01 F B e — ———

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

L model .w = Param(model.ITEMS, within=PositiveReals)

L. binary indicator model.w_max = Param(within=PositiveReals)

model . x = var(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

Uj. value of items mode] — AbstractModel()

W;: Welght of items model1.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- kﬁruiry’iruiicaimn? model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
SH Zvi oy def value_rule(model): . | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

s G {(Lil} model.weight = Constraint()

€S

01 F B e — ———

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

Uj. value of items mode] — AbstractModel()

W;: Welght of items model1.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- kﬁruiry’iruiicaimn? model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.t. sz‘ il Wm def weight_rule(model) :

return sum(model.w[i]*model.x[1] for i in model.ITEMS) \
<= model.w_max

s G {(Lil} model.weight = Constraint()

1ES

T e — ———

Knapsack Problem: Abstract Model

Thursday, September 20, 12

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

N model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = var(model.ITEMS, within=Binary)
qrpy Zv’i oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.T. sz B0ttt Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

Tt {O, 1} model.weight = Constraint()

€S

LT T T R A — T

Knapsack Problem: Abstract Model

Thursday, September 20, 12

Model 1s completely abstract - there 1s no data

S: set of items from coopr.pyomo import *

v;: value of items mode] — AbstractModel()

W;: Welght of items model.ITEMS = Set()
W . maximum Weight model.v = Param(model.ITEMS, within=PositiveReals)

(4] model .w = Param(model.ITEMS, within=PositiveReals)

Lj- binal“y indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
qrpy Zvi oy def value_rule(model): | | o
return sum(model.v[i]*model.x[1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.t. sz i 7 5 Wm def weight_rule(model):

return sum(model.w[i]*model.x[i1] for i in model.ITEMS) \
<= model.w_max

hit e {O, 1} model.weight = Constraint()

€S

Knapsack Problem: Abstract Model

Thursday, September 20, 12

Model 1s completely abstract - there 1s no data

S: set of items . from coopr.pyomo import ¥

v;: value of items mode] — AbstractModel()

W;: Welght of items model1.ITEMS = Set()
W . I Weight model.v = Param(model.ITEMS, within=PositiveReals)

(4] model.w = Param(model.ITEMS, within=PositiveReals)

Lj- binary indicator model.w_max = Param(within=PositiveReals)

model . x = vVar(model.ITEMS, within=Binary)
A Zvi oy def value_rule(model): N | o
return sum(model.v[i]*model.x[i1] for i in model.ITEMS)
€S model.value = Objective(sense=maximize)

S.t. sz’ Ui Wm def weight_rule(model):

return sum(model.w[i]*model.x[1] for i in model.ITEMS) \
<= model.w_max

Tr; € {O, 1} model.weight = Constraint()

1ES

> pyomo --solver=glpk knapsack.py akesson art.dat

Knapsack Problem: Abstract Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Knapsack Problem: Concrete Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {"hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Knapsack Problem: Concrete Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Knapsack Problem: Concrete Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Knapsack Problem: Concrete Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = vVar(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Knapsack Problem: Concrete Model

Thursday, September 20, 12

from coopr.pyomo import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {"hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
wW_max = 14

model = ConcreteModel ()
model.ITEMS = Set(initialize=v.keys())
model.x = var(model.ITEMS, within=Binary)

model.value = Objective(
expr = sum(v[i1]*model.x[1] for 1 1n model.ITEMS),
sense = maximize)

model.weight = Constraint(
expr = sum(w[i1]*model.x[1] for 1 1n model.ITEMS) <= W_max)

Scripting

Knapsack Problem: Concrete Model

Thursday, September 20, 12

Solver Interfaces

CPLEX
GUROBI
Xpress
GLPK
CBC
/ PICO
LP OpenOpt
MILP
NLP
MINLP
A0 | chemical Enemezmivg 30

Thursday, September 20, 12

Solver Interfaces

CPLEX
GUROBI
Xpress
GLPK
CBC
PICO
OpenOpt

CPLEX

GUROBI

ol [POPT
Solver Col;

oliny

Bonmin

Couenne

Library

Artie McFerrin Department of
CHEMICAL ENGINEERING 30
TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

Solver Interfaces

CPLEX
GUROBI
Xpress
GLPK
CBC
PICO
OpenOpt

CPLEX

GUROBI

ol [POPT
Solver Col;

oliny

Bonmin

Couenne

Library

Artie McFerrin Department of
CHEMICAL ENGINEERING 30
TTTTTTTTTTTTTTTTTT

i

Thursday, September 20, 12

Other Pyomo Features

e Advanced scripting capability
- functions, OO, model interrogation & transformation

e Extensive set operations, tuples, multi-dimensional

e [.0ad data from different sources
- AMPL dat files, CSV files, Excel, databases

e Support for custom workflow with plugins
- €.g. preprocess, create modeldata, save 1nstance

e And more with extensions...

Artie McFerrin Department of
AHM ‘ CHEMICAL ENGINEERING 31

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

e Pyomo 1s an equation-based, algebraic modeling language
for optimization

e Pyomo 1s an object-oriented framework for building
optimization-based applications

e Based on Python
- simple syntax for modeling
- full-featured language

e Significant solver integration

e Open-source and Extensible
- PySP: Stochastic Programming Framework
- PH: Progressive Hedging Framework
- Generalized Disjunctive Programming Capability
- Blocks - Connectors
- Piecewise-linear Constructs

ATM ‘ CHEMICRL ENGINEERING 32

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Some Closing Comments

o Performance?
- Python 1s slow... but not that slow
- Time dominated by solution, not construction

- Compiled code for solver/AD max Z Vi - T
i€S
o Flat Model Specification .t N g < W
- Abstract models iHit
- Computer scientists z; €40,1}
e Object-Oriented Modeling
- Concrete models _:'\
- Programmatic creation '\
- Engineers 'e |

o Karl Astrom’s Comment: Don’t just do
what you did before with new technology

ATM ‘ CHEMIHCRL ENGINEERING 33

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

Aknowledgments (Development Community)

e Sandia National Laboratories
- Bill Hart
- Jean-Paul Watson
- John Siuirola

- David Hart
- Tom Brounstein

e University of California, Davis
- Prof. David L. Woodruff

- Prof. Roger Wets

o Texas A&M University
- Prof. Carl D. Laird
- Daniel Word

- James Young
- (Gabe Hackebeil

e Texas Tech University
- Zev Friedman

e Rose Hulman Institute
- Tim Ekl
- William & Mary
- Patrick Steele

e North Carolina State
- Kevin Hunter

Artie McFerrin Department of

CHEMICAL ENGINEERING

TEXAS A&M UNIVERSITY

T

Thursday, September 20, 12

-

Plus our many users, including:

- Unmiversity of California, Davis
- Texas A&M University

- University of Texas

- Unmiversity of Southern California

- George Mason University

- Jowa State University

- N.C. State University

- University of Washington

- Naval Postgraduate School

- Universidad de Santiago de Chile

- University of Pisa

- Lawrence Livermore National Lab

\— Los Alamos National Lab

- Rose-Hulman Institute of Technology

~

/

34

L.earn More

e Project Homepage F
http://software.sandia.gov/coopr

Pyomo —

Optimization
e The Book Mode"ng

in Python

e Pyomo and PySP papers

@ Springer

Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

ATM ‘ CHEMIHCRL ENGINEERING 35

TTTTTTTTTTTTTTTTTT

Thursday, September 20, 12

http://software.sandia.gov/coopr
http://software.sandia.gov/coopr

