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OPTEC - Optimization in Engineering Center

Center of Excellence of KU Leuven, since 2005
70 people, working jointly on methods and applications of optimization,
in 5 departments:

Electrical Engineering

Chemical Engineering
Computer Science
Civil Engineering

any real world applications at OPTEC...




OPTEC Research Example: Time Optimal Robot Motion

Robot shall
write as fast

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

Time-Optimal Path Tracking for Robots:
A Convex Optimization Approach

Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz Diehl

as possible.

Global solution found
in 2 ms due to

convex reformulation

1
min / 1 ds
a(),b(-),7(-) J b(s)

b(0) = 53

b(1) = 32

V' (s) = 2a(s)

b(s) >0

7(s) < 7(s) < 7(s)
for s € 0, 1].

subject to  7(s) = m(s)a(s) + c(s)b(s) + g(s) B




Overview

® Optimization in Engineering Center OPTEC
@ State of the Art in Optimal Control Algorithms (ACADO)
® CasADi: A Framework to WRITE Optimal Control Algorithms



Optimal Control Problem in Continuous Time

T
| ql(ninin(li)ze /O L(J(t)* U(IL)) dt —+ E (ZI(T))

subject to

x(0) —zo = 0,
z(t)— f(x(1), ()>=0, t € [0,
ha(t)u(t) 2 0. te
r(z(T)) =

(fixed initial value)

|, (ODE model)
(path constraints)
(terminal constraints).

How to solve these nonlinear problems reliably and fast?



Sequential Approach (Single Shooting): Eliminate States

u

minimize Z Li(zi(u), zi(u),w;)  +  E(2n(u))

1 =0
subject to hi(Zi(uw), zi(u),u;) < 1 =0,....N—1
r(En(u) <
states x(7:¢)
Pros:
0 7 . .
® Only control degrees of freedom (for NMPC) /1., diserefized controls u(r:q)
® Can couple with “Vanilla NLP” solver qoi | A G
Cons: 0 g ,

® Sparsity of problem lost
® Unstable systems cannot be treated

Historically first “direct” approach (“single shooting”, Sargent&Sullivan 1978)



Simultaneous Approach: Keep States in NLP

REUTIOCEl  SUDAPEST, HUNGARY
9TH WORLD CONGRESS e SIS

A MULTIPLE SHOOTING ALGORITHM FOR DIRECT SOL
PROBLEMS * UTION OF OPTIMAI CONTROL

Hans Georg Bock and Karl J. Plitt

Institut fiir Angewandte Mathematik, SFB 72,

Universitdt
Federal Republlc of Germany a Bonn, 5300 Bonn,
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Variants: y > oSS
Direct Multiple Shooting and Collocation // s
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Pros:

® Sparsity of problem kept
® Unstable systems can be treated, nonlinearity reduced
Cons:

® Large scale problems

® Need to develop (or use) structure exploiting NLP solver

......
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Nonlinear Program (NLP) in Multiple Shooting

N-1
Ill%Ill/%n%LZE‘ ; i(xiszi,u)  +  E(xN)
subject to X0 @ = 0,
Tit] — czisui) = 0, 1=0,...,N—1
( czisui) = 0, 1=0,...,N—1
hi(zi, ziu;) < 0, i=0,...,N—1
rax) < 0.

Structured parametric Nonlinear Program
® [nitial Value 2o is often not known beforehand (“online data” in NMPC)
® Discrete time dynamics from ODE simulation (we will need sensitivities!)



Sequential Convex Programming (SCP)

® Summarize problem as

:glelliRl}‘ f(x) with convex f and ()
s.t.  g(x)+ ME =0,
x € (),

Step 1: Linearize nonlinear constraints at z* to obtain convex problem:

min f(z)

rcR"

s.t.  g(x®) ;1’. —zF) 4+ ME =0,

x € ().

Step 2: Solve convex problem to obtain next iterate.
Obtain new value of parameter ¢ and go to step 1)

® Convergence to (and tracking of) local minima under mild assumptions [1]

[1] Tran Dinh, Savorgnan, Diehl: Adjoint-based predictor-corrector SCP for parametric
nonlinear optimization. SIAM Journal on Optimization (in print)



ACADO Toolkit 1

® ACADO = Automatic Control and Dynamic Optimization

Open source (LGPL) C++: www. acadotoolkit. org

Implements direct multiple shooting [2] and real-time iterations [3]
User interface close to mathematical syntax

Automatic C-Code Export for Microsecond Nonlinear MPC [4]

® Developed at OPTEC by B. Houska, H.J. Ferreau, M. Vukov, ...
® ~3000 downloads since first release in 2009

[1] Houska, Ferreau, D., OCAM, 2011

[2] Bock, Plitt, IFAC WC, 1984

[3] D., Bock, Schloder, Findeisen, Nagy, Allgower, JPC, 2002
[4] Houska Ferreau, D. Automatlca 2011




Mathematical Formulation:

minimize T
5(')>V(')’m(')’u(')’T
subject to
s(t) = v(t)
_u(t)=0.2v(t)?
() = T
m(t) = —0.01u(t)?
s(0) = 0 s(T7T) =10
vi0) = 0 v(T) =20
m(0) = 1
0 < v(t) < 17
—-1.1 < u(t) £ 1.1
5 < T < 15

Rocket Example in ACADO Language

DifferentialState s,v,m;
Control u;
Parameter T;
DifferentialEquation £fC 0.0, T );

OCP ocp( 0.0, T );
ocp.minimizeMayerTerm( T );

f << dot(s)
f << dot(v) (u-0.2*%v*v)/m;
f << dot(m) -0.01*ux*u;
ocp.subjectTo( f );

Vs

ocp.subjectTo( AT_START,
ocp.subjectTo( AT_START,
ocp.subjectTo( AT_START,
ocp.subjectTo( AT_END ,
ocp.subjectTo( AT_END ,
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OptimizationAlgorithm algorithm(ocp);
algorithm.solve();



ACADO Results Plot (after few milliseconds)
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NMPC Practice: Estimation AND Optimization

® Moving Horizon Estimation (MHE): Get State by Least Squares Optimization
® Nonlinear Model Predictive Control (NMPC): Solve Optimal Control Problem
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Gauss-Newton in ACADO:
ocp.minimizeMayerTerm()—> ocp.minimizeL.SQ();



ACADO Code Generation for Tethered Airplanes

® 22 states, nonlinear, unstable
® 2 controls
® 1 s horizons in past / future

4 ms execution time for one optimization problem (on i7 2.5 GHz)

[Note: NMPC today 100 000x faster than 1997] @
HIG HWIND
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MHE+NMPC Experiments (Aug 22, 2012)




Overview

® Optimization in Engineering Center OPTEC
® State of the Art in Optimal Control Algorithms (ACADO)
® CasADi: A Framework to WRITE Optimal Control Algorithms



Optimal Control Problem (OCP) Solvers

Two implementation approaches

@ Write/use a general-purpose OCP solver

e Examples: MUSCOD-II, ACADO Toolkit, DyOS, DIRCOL
o + Easy to set up for the average user

o + Can be very efficient for medium size problems

o — Many OCPs cannot be formulated

@ Write special-purpose OCP solvers

o OCP—NLP using algebraic modelling language
o -+ Full control of NLP formulation, easier to extend
e — So far only for collocation methods

@ Both approaches taken at OPTEC using two in-house software tools

o ACADO Toolkit: A general-purpose OCP solver for NMPC
o CasADi: A framework for writing OCP solvers




Computer Algebra System for Algorithmic Differentiation

What is CasADi?

A framework for C++, Python and Octave for quick, yet efficient,
implementation of algorithms for numeric optimization

In particular

Facilitates OCP—NLP transcription for collocation methods and
shooting methods (e.g. single-shooting method in 30 lines of code)

Permissive open-source license (LGPL)

WWW.casadl.org



Main components of CasADi

@ A symbolic framework with state-of-the-art algorithmic
differentiation (all eight flavours of AD)

@ Interfaces to other tools; NLP solvers, ODE/DAE integrators, ...
@ In-house tools; NLP solvers, ODE/DAE integrators, ...

@ Framework for import and symbolic reformulation of OCPs from
Modelica

Implementation

@ Written in self-contained C+-+ code

@ Full-featured front-ends to Python and Octave using SWIG




Main developers

Joel Andersson Joris Gillis




Drive a Van der Pol oscillator to the origin with minimal control effort:
minimize: 2
v.pu / u(t)? dt
0

subject to:  x(t) = [ ;
0

— ()

\]

5<u(t) <10, te]o,t]

Solve with a direct-single shooting method. J




@ The ODE:

][]

p %

@ Can be formulated in CasADi-Python:

# Declare variables # ODE right hand side
u = ssym("u") vdot = (1 - pxp)*v - p + u
v = ssym("v") pdot = v

p —_ ssym("p")
@ Syntax = Matlab Symbolic Toolbox

@ ODE can also be imported from Modelica




@ These expressions define the ODE rhs function f : R? x R — R?:

f = SXFunction( \
daeIn( x = vertcat([v,pl), p = u), \
daeOut (ode = vertcat([vdot,pdot])))

@ Creating a function means topologically sorting the expression graph

@ Function can be evaluated:

o In the CasADi interpretor: numerically or symbolically
e By generating and compiling C-code
o Through just-in-time compilation (using LLVM framework)

@ Derivatives in CasADi are calculated by automatic differentiation




@ Assume a piecewise constant control with 20 intervals and let & be

10 s.
nk = 20 # Control discretization (uniform)
th = 10.0 # Length of the time horizon

@ Get the discrete time dynamics by allocating an ODE integrator
instance, e.g. using CasADi's interface to Sundials:

f_d = CVodesIntegrator(f)
f_d.setOption("tf",th/nk) # Interval length
f_d.init()

@ Integrators in CasADi are differentiable functions in CasADi and can
be differentiated an arbitrary number of times

@ Derivatives calculated through forward/adjoint sensitivity analysis




The integrator allows us to form an expression for the state at the final
time:

U = msym("U",nk) # Controls for each interval
X0 = [0,1] # The initial state
# Build a graph of integrator calls
X = X0
for k in range(nk):
X, ,_,_ =1TI.call([X,U[k]])

this defines NLP objective functions and constraints:

# Objective function: ||U|["2
F = MXFunction([U], [mul(U.T,U)])

# Terminal constraints: x=[0,0]
G = MXFunction([U], [X])




Solve NLP by using one of the interfaced NLP solvers, e.g. [IPOPT:

import numpy # Standard linear algebra routines

# Allocate an NLP solver
solver = IpoptSolver(F,G)
solver.init ()

# Set bounds and initial guess

solver.setInput (-0.75*numpy.ones(nk), NLP_LBX)
solver.setInput (1.0*numpy.ones(nk), NLP_UBX)
solver.setInput (numpy.zeros(nk) ,NLP_X_INIT)
solver.setInput (numpy.zeros(2) ,NLP_LBG)
solver.setInput (numpy.zeros(2) ,NLP_UBG)

# Solve the problem
solver.solve()




CasADi

Use standard Python packages visualizing the solution:
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CasADi Users

Other OCP methods successfully implemented using CasADi

@ Direct collocation (J. Andersson, J. Akesson & F. Magnusson, M. Zanon & S. Gross,
J. Steinberg, J. Gillis ...)

@ Direct multiple-shooting (J. Andersson, K. Gevelen, J. Frasch)
@ Distributed multiple-shooting (A. Kozma & C. Savorgnan)

@ Pseudospectral optimization (c. Andersson)




Benchmarking CasADi vs AMPL Solver Library

Problem

Fvar

gpp 250
readingl 10001

porous2 4900
orthrgds 10003
clnlbeam 1499
svanberg 5000
orthregd 10003
trainh 20000
orthrgdm 10003
dtoc2 5994

Dimensions

F#con
498

5000
4900
5000
1000
5000
5000
10002
5000
3996

Time ASL [s]

Total
0.492
0.712
1.916
0.949
0.776
2.492
0.332
3.932
0.328
0.296

AD

0.272
0.408
0.188
0.568
0.184
0.520
0.208
1.984
0.208
0.124

Time CasADi [s]

Total
0.500
0.306
1.736
0.512
0.784
2.300
0.160
2.804
0.156
0.224

AD

0.264
0.104
0.036
0.164
0.184
0.272
0.060
0.896
0.068
0.048

Diff.

-3 %
-76 %
-81 %
71 %

0%
-48 %
71 %
-55 %
-67 %
-61 %

@ CasADi VM outperformed ASL VM by a factor 2 on average

@ Most of the time spent in linear solver anyway

@ Note: =5x faster still with C-codegen or just-in-time




CasADi Usage in Leuven: Complex Plane Orbits

® Within ERC Project HIGHWIND, running from 2011-2016

ERC

HIGHWIND

SIMULATION, OPTIMIZATION € CONTROL OF
HIGH-ALTITUDE WIND POWER GENERATORS



What is the Optimal Wind Turbine ?
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What is the Optimal Wind Turbine ?

® Due to high speed, wing tips are
most efficient part of wing

® Best winds are in high altitudes

Could we construct a wind turbine
with only wing tips and generator?



Crosswind Kite Power

® Fly kite fast in crosswind direction
® Very strong force




Crosswind Kite Power

® Fly kite fast in crosswind direction
® Very strong force

But where could a generator be driven?




One Variant: On-Board Generator

® attach small wind turbines to kite
® cable transmits power

Question:

what are the optimal periodic orbits ?



CasADi Usage in Leuven: Complex Plane Orbits

® Complex aerodynamic models
® Periodic boundary conditions

® Connecting two tethers can increase the power output
significantly...

® ...but leads to even more complex models and optimal control
problems



Single vs. Dual Airfoils: Optimal Large System

Trajectory for 500m? of Airborne Surface

O Single
500 x  Dual secondary
¥  Dual main :
_‘400_ ......... O
3 :
N 300_...:Oo .............. A
: o :
200F--------- SERRR E) e -fcauuas o X!
:Ooo ox X ;
) X
100 —---62 N
Q%< . . . . . .
w 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

x [m]

Complex OCPs solved with CasADi, Collocation, IPOPT,
from [Zanon et al., submitted]




Visualization of Single vs. Dual Airfoils




® Optimal Control Tools now 100000x faster than 1997, and ACADO
Code Generation is currently tested in a variety of fast real world
applications (cranes, airplanes, vehicles, induction motors, ...)

® But non-standard problems need non-standard solvers: CasADi
allows the user to easily write competitive state-of-the-art optimal
control algorithms specifically designed for one problem class

® CasADi distributed under permissive LGPL license and used by a
growing number of people in and outside Leuven (e.g. Jmodelica)

Ca SAD i WWW.casadl.org



Appendix



CasADi Performance

Benchmarking using CUTEr

@ 10 NLPs from Bob Vanderbei's AMPL translation of CUTEr
@ AMPL used to parse/pre-optimize AMPL models

@ Solved using IPOPT 3.10 with MA27 as linear solver in two ways

o Using AMPL Solver Library's (ASL) interface to IPOPT
o Using CasADi’s .nl import and interface to IPOPT
o Only virtual machines (VM) for both tools, no codegen




Complete CasADi Code for OCP Solution

from casadi import *

nk = 50 # Control discretization
th = 10.0 # End time

# Declare variables
u = ssym("u")
v = SSYID("V")
P = ssym("p")
x = vertcat([v,pl)

# ODE right hand side

vdot = (1 - p*p)*v - p + u
pdot = v

xdot = vertcat([vdot,pdot])

# DAE residual function
= SXFunction(daeIn(x=x,p=u),daelut(ode=xdot))

Hh

Create an integrator

= CVodesIntegrator(f)
.setOption("tf",th/nk) # final time
.init()

Mo

**

All controls (use matrix graph)
U = msym("U",nk) # nk-by-1 symbolic variable

# The initial state (x = [0,1])
X0 = [0,1]

# Build a graph of integrator calls
X =XO0
for k in range(nk):

X, ,_,_ =I.call([X,U[k]])

# Objective function: ||U|[|"2
F = MXFunction([U], (mul(U.T,U)])

# Terminal constraints: x=[0,0]
G = MXFunction([U], [X])

# Allocate an NLP solver
solver = IpoptSolver(F,G)
solver.init()

# Set bounds and initial guess
solver.setInput(-0.75%ones(nk), NLP_LBX)
solver.setInput(1.0*ones(nk), NLP_UBX)
solver.setInput (zeros(nk) ,NLP_X_INIT)
solver.setInput(zeros(2) ,NLP_LBG)
solver.setInput(zeros(2) ,NLP_UBG)

# Solve the problem
solver.evaluate()



ACADO Code Generation for Benchmark CSTR

Ca(t) = ug(cao — Ca(t)) — ki (P (t))ca(t) — ks (3 () (ca(t))?
Cp(t) = —uqcp(t) + ki (P (t))ca(t) — ko (P ())cp(t)

) kA
B(t) = (B — B(t)) + ——— (I (t) — B (1))
pCpVR

1
— — [k (3 (£))ca(t)H + ko (D () Ca(t)H,
rG
+ ka(3(t))(ca(t))’Hs)

dy(t) = (U3 + kAR (£) — Ik (1)) -

my Cpy

CSTR Benchmark by [Klatt, Engell, Kremling, Allgower 1995]




ACADO Code Generation for Benchmark CSTR

Ca(t) = ug(cao — Ca(t)) — ki (P (t))ca(t) — ks (3 () (ca(t))?
Cp(t) = —uqcp(t) + ki (P (t))ca(t) — ko (P ())cp(t)

. kA
B(t) = (B — B(t)) + ——— (I (t) — B (1))

pCpVR
1
— — [k (3 (£))ca(t)H + ko (D () Ca(t)H,
rG
+ ka(3(t))(ca(t))’Hs)

. 1
Ik (t) = ——

(uz + kpAr(3 () — Ik (D)) -

CSTR Benchmark by [Klatt, Engell, Kremling, Allgower 1995]

: Y .
%A,B,CD - CPU Times for ACADO:
CPU time (s) %

Integration & sensitivities 121 30
Condensing 08 24
QP solution (with qpOASES)? 180 44
Remaining operations <5 <2
A complete real-time iteration 404 100

From [Houska, Ferreau, D., Automatica, 2011]

NMPC now 100 000x faster than 1997 (200x by CPU, 500x by algorithms)



(SCP Real-Time lteration Contraction Estimate)

yIon

Contraction estimate for primal dual errors [1]:

0 & & €k Ekt+1

o441 = 1< (o e = 24 4 - ¥

+ (co + 3 ||€kr1 — Ekll) 1€ke1 — Ekll

Depends only on nonlinearity of equalities, independent of active set changes!

[1] Tran Dinh, Savorgnan, Diehl: Adjoint-based predictor-corrector SCP for parametric
nonlinear optimization. SIAM J. Opt. 2013 (in print)



Optimal Control Family Tree

(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
State Space

_

(bad inequality
treatment)

Indirect Methods,
Pontryagin:

Solve Boundary

Value Problen

Single Shooting:
Only discretized
controls in NLP

(sequential)

Collocation:
Discretized controls
and states in NLP
(simultaneous)

Direct Methods:
Transform into
Nonlinear Program
(NLP)

—

Multiple Shooting:

Controls and node

start values in NLP
(simultaneoiis)




