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Motivation

In this work, we consider the optimal randomized quantization problem with a
constraint on the marginal distribution of the output, i.e.

qr(x)

r

(X, µ) (Y, d)

Common Randomness

x y

where X and Y are Polish spaces (complete, separable metric space) and qr(x) is
M-point quantizer.

Recall that M-point quantizer q(·) is a measurable function from X to Y whose
range cardinality is at most M.

r is the common randomness between the encoder and the decoder.

First, we have to define the randomization appropriately.
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Definitions and Notation

Let X denote quantizer’s input space and Y denote its output space.

Let P(X ⇥ Y) denote the set of probability measures on the product space X ⇥ Y .

Let µ and  d be fixed probability measures on X and Y respectively.

Yuksel and Linder in [1] and Borkar in [2] characterize the quantizers as a
stochastic kernels between X and Y as follows:

Q(dy|x) = �q(x)(dy)

where �q(x)(·) is Dirac measure at q(x).
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With this point of view, we can define the following subset of P(X ⇥ Y) which is
called quantizer set:

�Q(M) = {� 2 P(X ⇥ Y) : �(dx, dy) = µ(dx)Q(dy | x)

where Q(dy | x) = 1{q(x)2dy} s.t. q(x) is a M-point quantizer }

Randomly picking a quantizer equivalent to putting a probability measure on
�Q(M) and each probability measure on �Q(M) corresponds to different
randomization scheme.

We have to prove the measurability of �Q(M) in P(X ⇥ Y) in terms of some
�-algebra.

Naci Saldi (Queen’s University) Optimal Randomization in Quantizer Design with Marginal Constraint October 2012 5 / 24



We will work with the weak topology on P(X ⇥ Y) and the Borel �-algebra
generated by this topology.

Definition (Weak Convergence and Topology)
A sequence of probability measures {�n} in P(X ⇥ Y)converges weakly to � in
P(X ⇥ Y) if

lim
n!1

Z
h �n =

Z
h � for every h in Cb(X ⇥ Y).

Correspondingly, the weak topology on P(X ⇥ Y) is defined as the weakest topology
on P(X ⇥ Y) for which all functionals � 7!

R
h �, h 2 Cb(X ⇥ Y) are continuous.
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Measurability of Quantizer Set

The following proposition can be found in Borkar et al. [3] or in Borkar [2], as
an application of Choquet theorem [4].

Proposition (1)
Let X be a Polish space and let Y be a compact Polish space. Define the following
subset of P(X ⇥ Y):

�µ = {� 2 P(X ⇥ Y) : �(A ⇥ Y) = µ(A) for all A 2 B(X)}

where µ is a fix probability measure on X and let �E denote extreme points of �µ.
Then �µ is convex and compact in the weak topology. Furthermore, �E is a Borel set
in the weak topology.
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Lemma (1)
Let X be a Polish space and Y be a compact Polish space. Then �Q(M) is a Borel set

in the weak topology.

From Proposition 1 and Lemma 1, we have the following theorem.

Theorem (1)
Let X be a Polish space and let Y be a �-compact Polish space. Then �Q(M) is Borel

subset of P(X ⇥ Y) in the weak topology.

This theorem enables us to endow �Q(M) with a probability measure. Hence, we
can define the randomized quantizer set as follows:

�R(M) = {� 2 P(X ⇥ Y) : �(dx, dy) =
Z

�Q(M)
�̄(dx, dy)P(d�̄) where P 2 P(�Q(M))}
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Parametrization with Unit Interval

We parameterize �Q(M) with unit interval.

A well known isomorphism theorem states that all uncountable Borel spaces are
isomorphic to each other.

Since both �Q(M) and unit interval are uncountable Borel spaces, 9 function g

between unit interval and �Q(M) s.t. g is 1-1, measurable with measurable
inverse.

Let us write g as g(r) = �r(dx, dy). Then, we can write the elements in �R(M) as
follows:

�(dx, dy) =
Z

�Q(M)
�̄(dx, dy)P(d�̄) =

Z

[0,1]
�r(dx, dy)eP(dr)

where eP(A) = P({�̄ : g�1(�̄) 2 A}).
Based on this isomorphism, the following fact can be proved:

q(r, x) := qr(x) (�r(dx, dy) = µ(dx)�qr(x)(dy)) is a measurable function such that

q(r, ·) is a M-point quantizer for all r.
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Definition of the Problem

Recall that �R(M) is defined as follows:

�R(M) = {� 2 P(X ⇥ Y) : �(dx, dy) =
Z

�Q(M)

�̄(dx, dy)P(d�̄) where P 2 P(�Q(M))}

or equivalently

= {� 2 P(X ⇥ Y) : �(dx, dy) =
Z

[0,1]
�r(dx, dy)P(dr) , �r(dx, dy) = g(r), P 2 P([0, 1])}.

Define the following subset of P(X ⇥ Y):

�µ d = {� 2 P(X ⇥ Y) : �(dx, Y) = µ(dx), �(X, dy) =  d(dy)}.

where  d is a fixed probability measure on Y .

Define the following subset of �R(M):

� d
R (M) = {� 2 �R(M) : �(X, dy) =  d(dy)}

= �R(M) \ �µ d .
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Definition of the Problem

We will optimize over � d
R (M).

We can define average distortion function as a functional on P(X ⇥ Y):

L(�) =
Z

X⇥Y
c(x, y)�(dx, dy).

where c(x, y) is a continuous and non-negative function on X ⇥ Y .

Optimal randomized quantization with marginal constraint problem can be

written in the following form:

(P1) inf
�2� d

R (M)

L(�).
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Existence of the Minimizer

Lemma (2)
L(�(dx, dy)) =

R
X⇥Y c(x, y)�(dx, dy) is lower semi-continuous on P(X ⇥ Y) under

weak convergence, i.e.

lim inf
n!1

Z

X⇥Y
c(x, y)�n(dx, dy) �

Z

X⇥Y
c(x, y)�(dx, dy)

as �n ! � weakly.

If we can prove the compactness of � d
R (M), then we are done.

Instead, we show the compactness of some subset of � d
R (M) which is an optimal

class for this problem.
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First, we show that randomization can be restricted to a certain subset of �Q(M).

Then, we prove the compactness of the optimal class which is the randomization
of this subset.

To construct such a subset we use some results from optimal transport theory.

Definition
Probability measure P on X is said to be c-continuous if it satisfies

P({x : c(x, a)� c(x, b) = k}) = 0

for all a, b 2 Y , a 6= b, and for all k 2 <.

We have the following assumptions to prove the existence of the minimizer:

(a) µ is c-continuous.

(b) Y is compact.
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Observe that each quantizer induces a probability measure on Y whose support
cardinality is at most M.

Let PM(Y) denote the set of probability measures on Y which are induced by
M-point quantizers.

We are achieving a given distribution on Y by randomization of �Q(M) which is
essentially equivalent to randomization of PM(Y).

We can construct an equivalence class among probability measures in �Q(M)

based on their second marginals, i.e.

�1(dx, dy) ⇠ �2(dx, dy) if �1(X, dy) = �2(X, dy).

If we can find optimal elements in each equivalence class, then these elements
form an optimal set for the randomization.
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Let  2 PM(Y), then finding optimal elements in each equivalence class is
essentially equivalent to the optimal mass transfer problem with marginals µ and
 .

The following fact is due to the optimal mass transport theory: If the probability
measure µ on X is c-continuous, then there exists a unique optimal element in
each equivalence class [5, Cuesta-Albertos et al.].

Let �opt(M) be the collection of these optimal elements.

�opt(M) is the optimal subset of �Q(M) for the randomization.

In the rest of this section, the set, on which the randomization is applied, is
�opt(M) instead of �Q(M).
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If Y is compact, then we can conclude the compactness of �opt(M) under the
following assumption:

(c)
Z

X⇥Y
c(x, y)�(dx, dy) < 1 for all � 2 �opt(M)[6,Villani].

Let �Ropt(M) denote the randomization of �opt(M).

Hence, the original problem (P1) reduces to the following one:

(P2) inf
�2� d

Ropt(M)

Z
c(x, y)�(dx, dy)

To show the existence of the minimizer, it is enough to prove compactness of the
set � d

Ropt(M) which is equivalent to proving the compactness of �Ropt(M) since
�µ d is already compact.
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Let us define the following mapping between P(�opt(M)) and �Ropt(M):

s(P) =
Z

�opt(M)
�(dx, dy)P(d�).

s(·) is continuous.

Since the set of probability measures on compact sets is compact in the weak
topology, P(�opt(M)) is also compact.

Hence, the compactness of �Ropt(M) implies the compactness of the set
� d

Ropt(M).

Theorem (2)
There exists a minimizer for the following problem:

inf
�2�

 d
R

Z
c(x, y)�(dx, dy)

if the assumptions (a), (b) and (c) are satisfied.
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Approximation with Finite Randomization

Since the randomization should be common both to the decoder and the encoder,
infinite randomization may not be practical and realistic.

However, if the desired probability measure  d on Y is continuous, then we must
apply infinite randomization to achieve this.

Hence, we should relax the fixed output marginal constraint in order to get more
realistic optimal randomization schemes (i.e. finite randomization).
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Now, we will consider the following relaxed minimization problem:

(P3) inf
�2M�

 d

Z

X⇥Y
c(x, y)�(dx, dy)

where M�
 d

= {� 2 �R(M) : �(X, dy) 2 B( d, �)} and B( d, �) is a ball in P(Y)

with center  d and radius � in terms of Prokhorov metric which metrizes the
weak topology.
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The goal is to show that the set of finitely randomized quantizers is an optimal
class for this problem.

Let �FR(M) denote the finitely randomized quantizer set.

Clearly �FR(M) ⇢ �R(M).

Hence, we want to show:

inf
�2M� d

Z

X⇥Y
c(x, y)�(dx, dy) = inf

�2�FR(M)\M� d

Z

X⇥Y
c(x, y)�(dx, dy)

Lemma (3)
M"
 is a open set for any " and  in �R(M) in relative topology of weak convergence

where M"
 = {� 2 �R(M) : �(X, dy) 2 B( , �)}.

Hence, M�
 d

is an open set in �R(M).
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We want to replace any infinite randomization � in M�
 d

with �F in �FR(M)

which is living in some neighborhood M"
 0

⇢ M�
 d

of � and has less distortion
than �.

Lemma (4)
�FR(M) is dense in �R(M), i.e. for any � in �R(M) and for any " > 0 we can find �̂ in

�FR(M) such that �̂ 2 B(�, ").

Let us define the following subset of �R(M):

G = {� 2 �R(M) : L(�) < L(�0)}.

If L(·) is a continuous functional, then G is an open set.
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L(·) is continuous for compact X and Y and is continuous for general X and Y

under the following the assumption:

(a) lim
A!1

sup
�2�Q(M)

Z
c(x, y)1{c(x,y)�A}�(dx, dy) = 0.

Lemma (5)
M"
 0

\ G is a non-empty open set in �R(M).

Theorem (3)
Under the assumption (a) or the assumption that X and Y are compact, finite

randomization is an optimal class for the problem (P3), i.e.

inf
�2M� d

Z

X⇥Y
c(x, y)�(dx, dy) = inf

�2�FR(M)\M� d

Z

X⇥Y
c(x, y)�(dx, dy)
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Conclusion

In this work, we consider optimal randomized quantization with a constraint on
the output marginal distribution.

First, the quantizer set is represented as a set of probability measure on the
product space.

Then, appropriate randomization scheme is defined on this set.

The existence of the minimizer is proved for the fixed output marginal
constrained case under the assumption of compact Y and c-continuous µ on X.

The problem with relaxed output marginal constraint is investigated.

It is proved that the set of finite randomizations is an optimal class for the
relaxed problem.
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