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e Good tools for
* Extensions for some classes of
Linear Systems Nonlinear Systems.

‘ (Robust control based on small gain
theorem, IQC approach, gain scheduling,

Extensions etc...)

Nonlinear Systems

Goal: Develop a Mathematical Framework for Analysis and
Synthesis of Networked Control Systems.




Networked Control Systems

Involving a data rate-limited
communication channel
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Networked Control Systems

Involving a data rate-limited
communication channe

Finite-level quantization is involved in the
. feedback loop.

Involving an event-
triggered sensor

controller [¢===~'




Classical Framework does not work?

Ex1: Stabilization of an uncertain plant over a rate-limited communication channel.

A ; Small Gain Theorem Is NOT Applicable!!
- Achievable input-output property (Martins):
er Suppose Ja € K s.t. ||z]ler < a(]le1]ler)-
— P —« el
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Classical Framework does not work?

Ex2: Stability analysis of a feedback system involving a uniform quantizer.

Aq(u
v.q GUR—I_E md q()
”"2 2d ------ :—:
r1 w;lfw Y df—
> G 1 >
— —d u
G : SISO, LTI —
q : uniform quantizer — —md

q(u) -u Aq u

1+ Tal eq = 29 - -
_T_X & Stability Condition

A4 : quantization error ”G”£°°-ind <1




A New Analysis Framework for

Networked Control Systems

1. Introduce a reasonable notion of local stability for
networked control systems.

2. Derive a key theorem for stability analysis.

3. Prepare a new class of nonlinearity that is suitable for
expressing quantization errors.



Small #P Signal #PStability

H > Z

u >
IUEIRZES-GEIWAZS I JIa Local Boundedness

A map H is said to be small £ signal £P stable with level Y and input
bound € if

lulio,r1ller < € = ||H (u)l10,7]ller < e

holds for given constants €, v > 0.



Comparison with existing stabilities

Sa € K, 8 € Ry such tha

1H (w)]o,r1]ler < e(l|w]fo,rler) + B

Finite gain £P stability v, 3 € R_|_ such that

1 H (u) 10,71 ller < vllulio,r]ller + B

Small £Psignal €7 stability is...

€ weaker than £P stability or finite gain ¢Pstability
€ cquivalent when H is a linear map



Comparison with existing stabilities

Local £P stability (Bourles 1996) SISl R_|_ such that

lulio,r1ller < € = [[H(u)l[0,7]ller < vl[ul[o,7]ller

Small signal £¥ stability (Vidyasagar & Vanelli, 1982)

de, v € R such that
u € L N{u | ||ul|lge < c} =
| H (u)][0,71]ler < Ylluljo,ller
Small £Psignal £P stability is...

€ Defined with local upper bounds on input-output signals (not
defined with gain).



Comparison with existing stabilities

Local ¢P stability VS Small £P signal ¢P stability

1 '

YE

€ €

“Local finite gain stability” “Local boundedness”



Classical F-
— v\eca\\\'

Small Gain Theorem In NOT Applicable!!

0 communication channel.

Achievable input-output property (Martins):

ey Suppose Ja € K s.t. ||z]|ler < a(]|e1|er)-
>
e P |:c ||| er 4
| En
[R bit i ~ Unbounded
’\i 47— _Growth RateJ
K - > |lealler
P : Unstable LTl Need for introducing a practical
A : ¢P-gainbounded | Local Stability Analysis Framework.




Comparison with existing stabilities

{ &(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))
3B € KL, v € K, d € Ry such that
Y (T) loo < B(l|2(0)]|oos T) + Y(||uljo, 7]l =) + d

Small £Psignal £P stability is...
€ Local stability notion.



Small £P Signal £PStability

The feedback system is said to be small £Psignal #Pstable if there
exist €, ¥ > 0 such that

< € =>
- <1 1[o,7] £r <l 1o, 7] £r




(Discrete time) Small Level Theorem

Small Level Theorem Assume the following conditions hold.

(i) Hq : strictly causal & 3 €1, 71 > 0 such that

le1ller < €1 = ||z1]|ler < Y1€1.
(i) Ho : 3 €2, v2 > 0 such that

lezller < €2 = ||22]|er < Y2€2.

(iii) Y1€1 < €2 $
(iv) v2€2 < €1 Mz <1

Then the feedback system is small £P signal #P stable.




(Discrete time) Small Level Theorem

Small Level Theorem (Continued) In particular,

n

< e =

[O,T] £opr
(Ilz1lj0,7 ller < 81 and ||z2]fo,r ller < 82)
V(r1,72) € Ley, VT € Zy

€ := min {€2 — y1€1, €1 — Y262},

61 c— 7Y1€1, 52 c— 7Y2€2.



Small Gain Theorem vs Small Level Theorem

Small Gain Theorem Small Level Theorem

A 71 (4 /
Y1€1 {
M e ih=" | N




Level Bounded Nonlinearity

/\ |

T 61>M Z1

RS N oTo0[aTe [l MaTe a1 s1=E1a1AAM Suitable for approximating quantization errors

€. €
SBL := {A | |lez]jo,r]ller < € = ||A(e2)][0,r]]ler < ;}

Assume there exist €1, Y1 < 7Y satisfying

(i) llerller < €1 = ||z1ller < v1€1 Vey € €P
.\ € €
(i) — < e < —
Y 71
Then, the feedback system is small pP signal ¢Pstable VA € SB%”




A New Local Analysis Framework

UEIRZES-GEIWASS E MWl Local Boundedness

lulio,r1ller < € = || H (u)li0,7]ller < e

7Y ¢ Attenuation level € ! Input bound

Small Theorem

If both subsystems have sufficiently small level, then the feedback
system is small ¢P signal £P stable.

SIelN[alo[So MU NsI=Iae=1[ala"A Suitable for approximating quantization errors

€, €
SBR' := {A | |lez]jo,1ller < € = [|A(€2)][0,7]ler < ;}

‘ Quantitative Local Analysis Framework based on Local Boundedness. ‘




Application Example 1

Uncertain Plant

24 A K
T;l Nominal Plant (Unstable LTI): P
Uncertainty A : ¢P gain bouded

— P BY := {A|
1
| T A T p < o T p,v
w [R bit | A(e2)]|0,r]ller < 7||€2|[0, |ler, V7]

! s
R

s(t) ={1,2,.-.,2%}

P : unstable LTI
A : ¢P-gain bounded Causal maps




Application Example 1

Small Level Condition i

<92 A §
e1 T;I ”61”27" < €1 = “zl”ep < Ye€;

_; P _¢y holds for positive constants €1, <7,
E the feedback system is small ¢P signal ¢P
Y
o (B . .n stable VA € BQ.
(R it |
i S
K - Sufficient condition on data rate IR for
the existence of (En, K) s.t. the small
P : unstable LTI level condition hold.
A : ¢P-gain bounded (Necessary and sufficient condition

for scalar nominal plant)




Application Example 1

ot 41) = az(t) + u(t) + ex(t

z1(t) = cx(t)
y(t) = =(1)

Assume EI(EII, K) s.t. small level condition holds for some
€1 > 0,4 € (0,4), then R satisfies

la| < 2%,
Conversely, if R satisfies

la| < 2%,

c|

1 —

<
al/2R =7

c|

<
al /2R 7

Forany e; > 0, there exist (En, K) s.t. nominal part satisfies the

small level condition.



Application Example 1

s Nominal Plant
= 2 0 0 | 1
< 0.7} 1 oxt+ D=1 =2 V3[x(t) + |0|u(t) + |0]e1(1), x(0) =0
g 06 0 V3 0 0 0
S Y st am=[1 12 By3|x0.
g 0a (1) = x(1).
= 03 (Transfer Matrix)
e
& 0.2 |
e ™ (ma)(e=3) () (e-3).
> %10 15 20 25 30 35 40 45 350P@)= | (- De+ )@= Dt
< YT G-z -2)(z+3) z z

R V3 V3

Data rate at the channel

Trade-off between data rate and uncertainty ‘




New Class of Nonlinearities

md beeeeeeens .— R N V o — {0, ::d, IO ::md}

2d beenes :—r

d « Rounding input to the nearest output.

: S |
il B d € Ry : stepsize
— M := 2m <+ 1 :quantization levels

— —md.

£°°gain bounded nonlinearity £°° level bounded nonlinearity

Aq(u) - u

Pa(u) - u




Application Example 2

w Z>
> P VY Event-triggered sensor
S |
|
l
|
|

v" Continuously observes Y.
S v’ Sends information to the controller
only when Yy satisfies some condition.

K |~

P, K : LTl systems

Involves sampling rather than quantization.



Application Example 2

JEIEIRN NN EINIEIN® (R track(t), s(t)) Fixed-range triggered type

A (i) If =D < y(t) < D, then

S(t) ‘= y(t)a
Rirack(t) := [s(t) — d, s(t) + d].

s(t) := D + d,
Rirack(t) := [D, 00).
(iii) If y(t) < —D, then
I L R s(t) := —D — d,
Rirack(t) := (—o0, —D].




Application Example 2

Nonlinearity

= P __\1'37 —> A
S Z2 z1
U |
:3 20 €— G <<:e
K <__: Linear system

Derive a condition on sensor parameters for local stability



Application Example 2

Sheorem I

d D

z<]-<:> z_2<_
D—|—2d72 Y2 q

Then, the event-triggered system is small £°° signal £ °° stable.
In particular,

D + d(2 _ 72z)
|lwlio,]llce < €:= =

Y2e
12]10,71 ]l 2 < v5.d + Y2ellw|io, ]| 2o




Application Example 2

Numerical Example

60 = |} g 2+ o] o), 5| wo,

\ y(t) = z(t) = [O 1] x(t).

(. ~10 0 16] _
Controller 1 Ko Tr(t) = [ 1 0} xr(t) + [Oly(t),

Plant
P : <

. u(t) = [18.71 —0.375] z(t) — 33y(¢),
el WAl le]iale]laW Any positive d and D are OK.

Norm bounds
D=d=1 = ||w|[0,.,]||¢oo S 2.7294 = ||Z|[0,T]||£oo S 3
D=1,d=0.1m= ||w|[0,,,.]||¢oo < 1.9002 = ||z|[0,.,.]||£oo < 1.2



Application Example 2
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Application Example 2

Numerical Example

60 = |} g 2+ o] o), 5| wo,

\ y(t) = rz(t) = [O 1] x(t).

. —10 O 14] _
Controller 2 [ T (t) = B 0} i (t) + {0} y(t),

. u(t) = (14 —0.2] z(t) — 555(¢),

D
Stability Condition 3.9864 < )

D = ]_, d—=— 0.1 = ||w|[0,7]||£°° < 3.5347 = ||Z|[0,7-]||£oo < 1.2

Plant
P : <




Application Example 2

-1 4

| | | | |
1000 2000 3000 4000 5%0 6000 7000 8000 9000 10000



Conclusions

Research Interests: Analysis and Synthesis of Nonlinear Systems.

® Local analysis framework for
networled control systems

® Extension to continuous-time
hybrid systems

Linear Systems

Extensions

Nonlinear Systems

Possible future work:

1. Lyapunov approach: relation with internal
stabilities. Focusing on a bounded band?

2. Analysis of stabilizable range for a locally
stabilizing controller.




