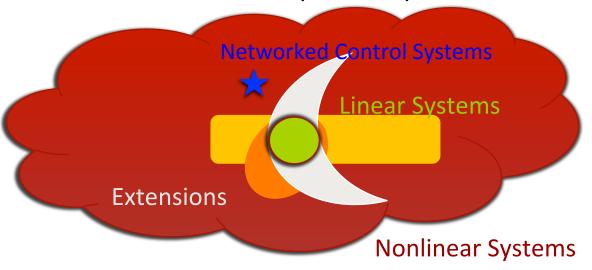
A New Framework for Stability Analysis of Networked Control Systems

Oct 16, 2012, Lund, Yumiko Ishido.

Research Interests: Analysis and Synthesis of Nonlinear Systems.

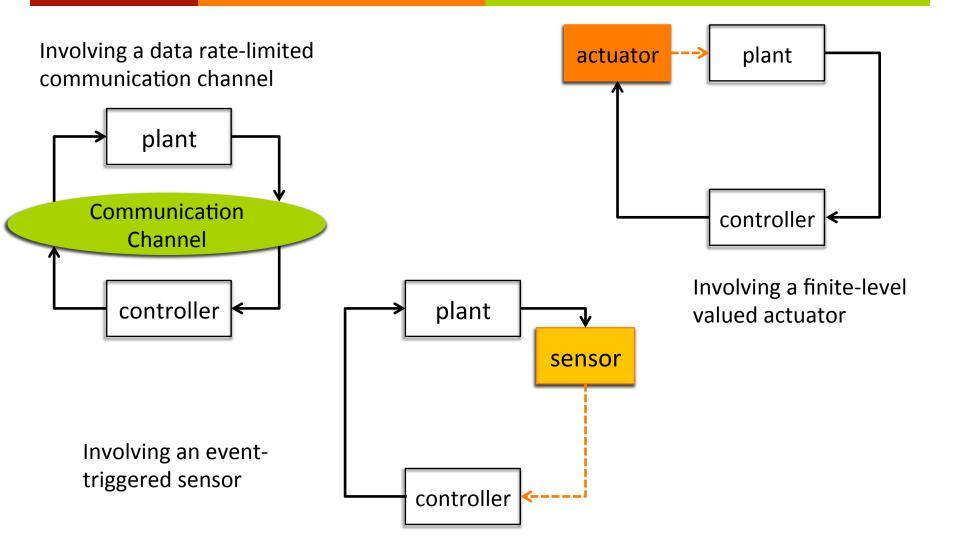


- Good tools for Linear Systems.
- Extensions for some classes of Nonlinear Systems.

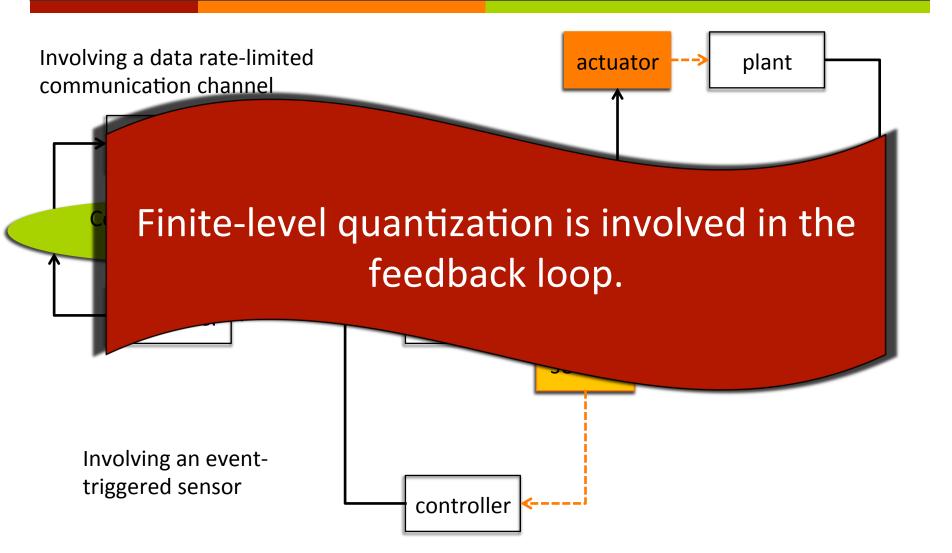
(Robust control based on small gain theorem, IQC approach, gain scheduling, etc...)

Goal: Develop a Mathematical Framework for Analysis and Synthesis of Networked Control Systems.

Networked Control Systems

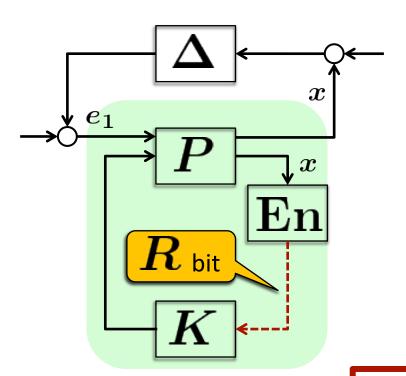


Networked Control Systems



Classical Framework does not work?

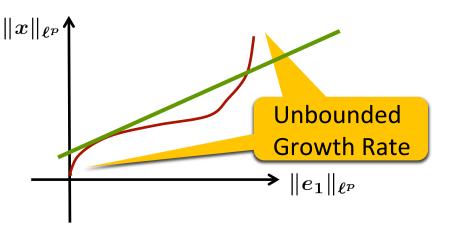
Ex1: Stabilization of an uncertain plant over a rate-limited communication channel.



Small Gain Theorem Is NOT Applicable!!

Achievable input-output property (Martins):

Suppose $\exists \alpha \in \mathcal{K}$ s.t. $\|x\|_{\ell^p} \leq \alpha(\|e_1\|_{\ell^p})$.



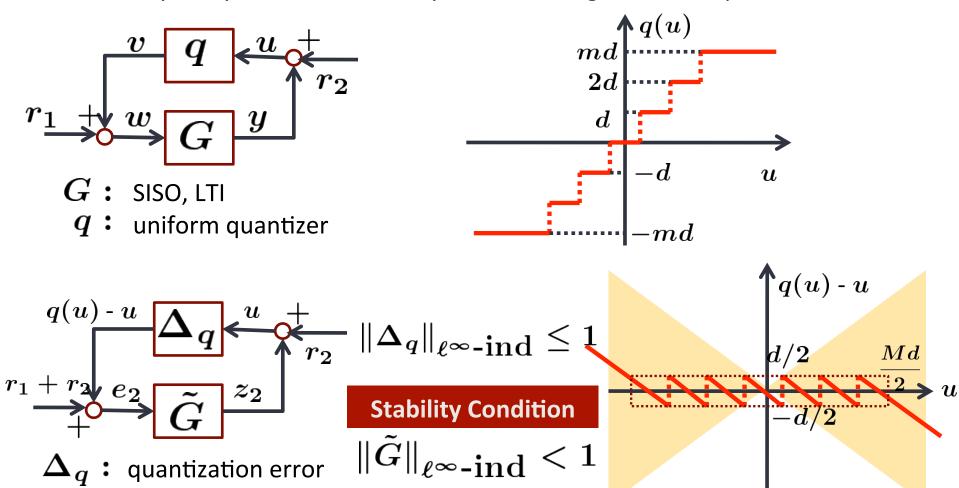
 $P: \,$ Unstable LTI

 $\Delta:\ell^p$ -gain bounded

Need for introducing a practical Local Stability Analysis Framework.

Classical Framework does not work?

Ex2: Stability analysis of a feedback system involving a uniform quantizer.



A New Analysis Framework for Networked Control Systems

- 1. Introduce a reasonable notion of local stability for networked control systems.
- 2. Derive a key theorem for stability analysis.
- 3. Prepare a new class of nonlinearity that is suitable for expressing quantization errors.

Small ℓ^p Signal ℓ^p Stability

Small ℓ^p signal ℓ^p stability Local Boundedness

A mapH is said to be small ℓ^p signal ℓ^p stable with level γ and input bound ϵ if

$$\|u|_{[0, au]}\|_{\ell^p} \leq \epsilon \Rightarrow \|H(u)|_{[0, au]}\|_{\ell^p} \leq \gamma\epsilon$$

holds for given constants $\epsilon, \ \gamma > 0$.

$$\ell^p$$
 stability $\exists lpha \in \mathcal{K}, eta \in \mathrm{R}_+$ such that $\|H(u)|_{[0, au]}\|_{\ell^p} \leq lpha (\|u|_{[0, au]}\|_{\ell^p}) + eta$

Finite gain ℓ^p stability $\exists \gamma, eta \in \mathrm{R}_+$ such that

$$\|H(u)|_{[0, au]}\|_{\ell^p} \le \gamma \|u|_{[0, au]}\|_{\ell^p} + eta$$

Small ℓ^p signal ℓ^p stability is...

- lack weaker than ℓ^p stability or finite gain ℓ^p stability
- lacktriangle equivalent when $oldsymbol{H}$ is a linear map

Local ℓ^p stability (Bourles 1996) $\exists \epsilon, \gamma \in \mathrm{R}_+$ such that

$$\|u|_{[0, au]}\|_{\ell^p} \leq \epsilon \Rightarrow \|H(u)|_{[0, au]}\|_{\ell^p} \leq \gamma \|u|_{[0, au]}\|_{\ell^p}$$

Small signal ℓ^p stability (Vidyasagar & Vanelli, 1982)

$$\exists c,\gamma\in\mathrm{R}_+$$
 such that $u\in\ell_e^p\cap\{u\mid \|u\|_{\ell^\infty}\leq c\}\Rightarrow \|H(u)|_{[0, au]}\|_{\ell^p}\leq \gamma\|u|_{[0, au]}\|_{\ell^p}$

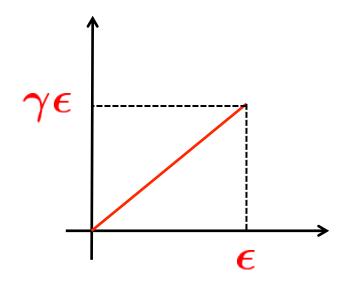
Small ℓ^p signal ℓ^p stability is...

◆ Defined with local upper bounds on input-output signals (not defined with gain).

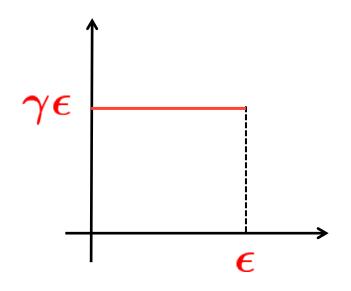
Local ℓ^p stability

VS

Small ℓ^p signal ℓ^p stability



"Local finite gain stability"



"Local boundedness"

Classical F.

Recall!

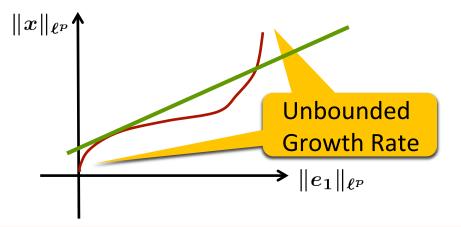
vork?

ced communication channel.

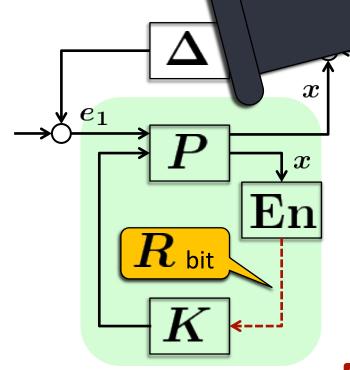
Small Gain Theorem In NOT Applicable!!

Achievable input-output property (Martins):

Suppose $\exists \alpha \in \mathcal{K}$ s.t. $\|x\|_{\ell^p} \leq \alpha(\|e_1\|_{\ell^p})$.



Ex1: Stabilization



 $P: \,$ Unstable LTI

 $\Delta:\ell^p$ -gain bounded

Need for introducing a practical Local Stability Analysis Framework.

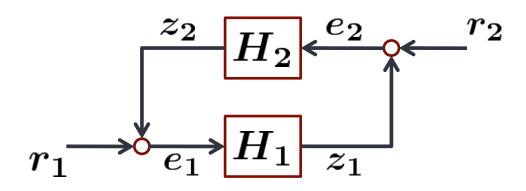
Input-to-output practical stability (Jiang et.al 1994)

$$egin{aligned} \dot{x}(t) &= f(x(t), u(t)) \ y(t) &= h(x(t), u(t)) \end{aligned} \ \exists eta \in \mathcal{KL}, \; \gamma \in \mathcal{K}, \; d \in \mathrm{R}_+ \; ext{such that} \ \|y(au)\|_\infty \leq eta(\|x(0)\|_\infty, au) + \gamma(\|u|_{[0, au]}\|_{\mathcal{L}^\infty}) + d \end{aligned}$$

Small ℓ^p signal ℓ^p stability is...

Local stability notion.

Small ℓ^p Signal ℓ^p Stability



The feedback system is said to be small ℓ^p signal ℓ^p stable if there exist $\epsilon,~\gamma>0$ such that

$$\left\| \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} \right|_{[0, au]} \right\|_{
ho_p} \leq \epsilon \Rightarrow \left\| \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right|_{[0, au]} \right\|_{
ho_p} \leq \gamma \epsilon.$$

(Discrete time) Small Level Theorem

Small Level Theorem

Assume the following conditions hold.

(i)
$$H_1$$
 : strictly causal & $\exists \ \epsilon_1, \ \gamma_1>0 \$ such that $\|e_1\|_{\ell^p} \le \epsilon_1 \Rightarrow \|z_1\|_{\ell^p} \le \gamma_1\epsilon_1.$

(ii)
$$H_2:\exists\;\epsilon_2,\,\gamma_2>0\;$$
 such that $\|e_2\|_{\ell^p}\leq\epsilon_2\Rightarrow\|z_2\|_{\ell^p}\leq\gamma_2\epsilon_2.$

(iii)
$$\gamma_1 \epsilon_1 < \epsilon_2$$
 $\gamma_1 \gamma_2 < 1$ (iv) $\gamma_2 \epsilon_2 < \epsilon_1$

Then the feedback system is small ℓ^p signal ℓ^p stable.

(Discrete time) Small Level Theorem

Small Level Theorem

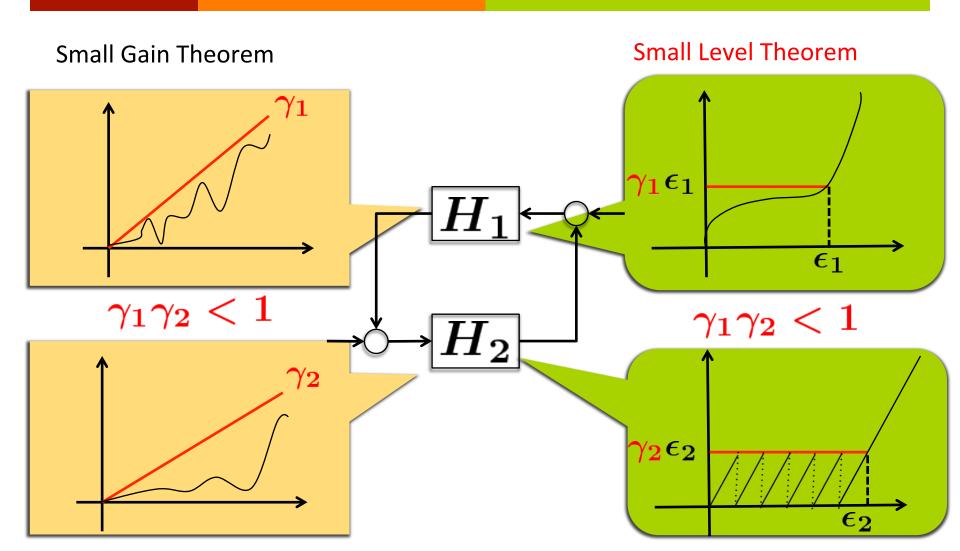
(Continued) In particular,

$$egin{aligned} \left\|egin{aligned} [r_1] \ [r_2]
ight\|_{\ell^p} & \leq \epsilon \Rightarrow \ & \left(\|z_1|_{[0, au]} \|_{\ell^p} \leq \delta_1 ext{ and } \|z_2|_{[0, au]} \|_{\ell^p} \leq \delta_2
ight) \ & orall (r_1,r_2) \in \ell_e, \; orall au \in \mathbb{Z}_+ \end{aligned}$$

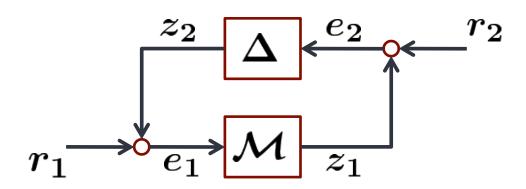
$$\epsilon := \min \left\{ \epsilon_2 - \gamma_1 \epsilon_1, \epsilon_1 - \gamma_2 \epsilon_2 \right\},$$

$$\delta_1 := \gamma_1 \epsilon_1, \quad \delta_2 := \gamma_2 \epsilon_2.$$

Small Gain Theorem vs Small Level Theorem



Level Bounded Nonlinearity



Level bounded nonlinearity Suitable for approximating quantization errors

$$\mathrm{SB}_{\Delta}^{\epsilon,\gamma} := \{\Delta \mid \|e_2|_{[0, au]}\|_{\ell^p} \leq \epsilon \Rightarrow \|\Delta(e_2)|_{[0, au]}\|_{\ell^p} \leq rac{\epsilon}{\gamma}\}$$

Theorem Assume there exist $\epsilon_1, \gamma_1 < \gamma$ satisfying

(i)
$$\|e_1\|_{\ell^p} \leq \epsilon_1 \Rightarrow \|z_1\|_{\ell^p} \leq \gamma_1 \epsilon_1 \quad \forall e_1 \in \ell^p$$

(ii)
$$\frac{\epsilon}{\gamma} < \epsilon_1 < \frac{\epsilon}{\gamma_1}$$

Then, the feedback system is small ℓ^p signal ℓ^p stable $orall \Delta \in \mathrm{SB}^{\epsilon,\gamma}_{\Lambda}$

A New Local Analysis Framework

Small ℓ^p signal ℓ^p stability

Local Boundedness

$$\|u|_{[0, au]}\|_{\ell^p} \leq \epsilon \Rightarrow \|H(u)|_{[0, au]}\|_{\ell^p} \leq \gamma\epsilon$$

 γ : Attenuation level ϵ : Input bound

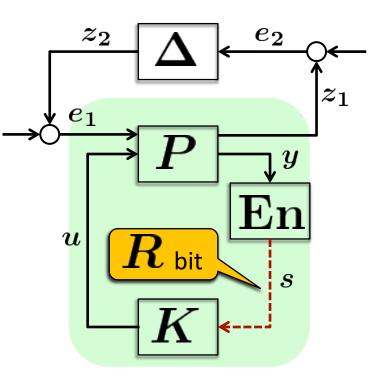
Small Level Theorem

If both subsystems have sufficiently **small level**, then the feedback system is small ℓ^p signal ℓ^p stable.

Level Bounded Uncertainty Suitable for approximating quantization errors

$$\mathrm{SB}_{\Delta}^{\epsilon,\gamma} := \{\Delta \mid \|e_2|_{[0, au]}\|_{\ell^p} \leq \epsilon \Rightarrow \|\Delta(e_2)|_{[0, au]}\|_{\ell^p} \leq rac{\epsilon}{\gamma}\}$$

Quantitative Local Analysis Framework based on Local Boundedness.



 $P: \,$ Unstable LTI

 $\Delta:\ell^p$ -gain bounded

Uncertain Plant

Nominal Plant (Unstable LTI): PUncertainty $\Delta: \ell^p$ gain bouded

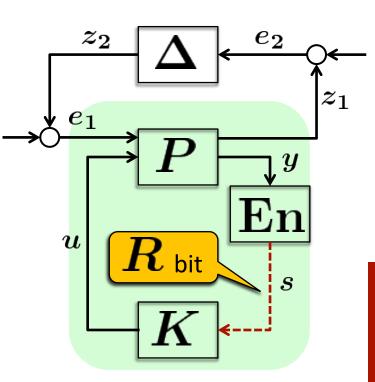
$$egin{align} B^{\gamma}_{\Delta} := \{\Delta | \ \|\Delta(e_2)|_{[0, au]}\|_{\ell^p} & \leq rac{1}{\gamma} \|e_2|_{[0, au]}\|_{\ell^p}, orall au \} \end{aligned}$$

Channel

$$s(t)=\{1,2,\cdots,2^R\}$$

 $\operatorname{En} \& K$

Causal maps



 $P: \,$ Unstable LTI

 $\Delta:\ell^p$ -gain bounded

Small Level Condition

lf

$$\|e_1\|_{\ell^p} \le \epsilon_1 \Rightarrow \|z_1\|_{\ell^p} \le \hat{\gamma}\epsilon_1$$

holds for positive constants $\,\epsilon_1,\hat{\gamma}<\gamma$, the feedback system is small ℓ^p signal ℓ^p stable $\,orall\Delta\in B^\gamma_\Delta.$

Sufficient condition on data rate R for the existence of (En,K) s.t. the small level condition hold.

(Necessary and sufficient condition for scalar nominal plant)

Scalar Nominal Plant

$$x(t+1) = ax(t) + u(t) + e_1(t)$$

 $z_1(t) = cx(t)$
 $y(t) = x(t)$

Theorem

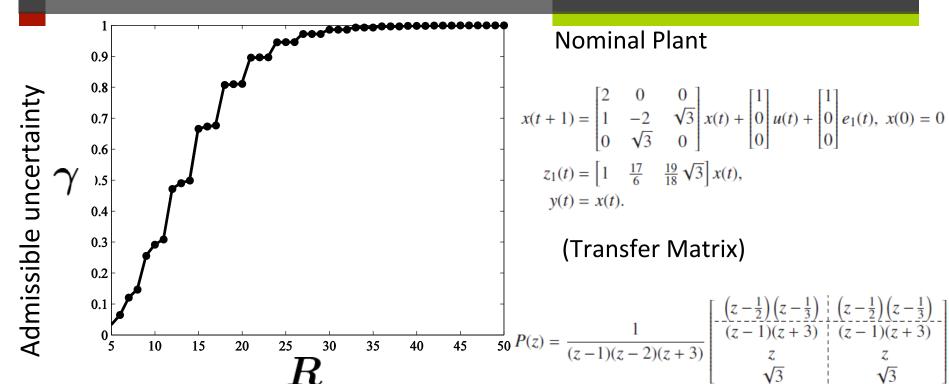
Assume $\exists (\mathrm{En},K)$ s.t. small level condition holds for some $\epsilon_1>0,\hat{\gamma}\in(0,\gamma)$, then R satisfies

$$|a|<2^R,\;rac{|c|}{1-|a|/2^R}\leq \gamma$$

Conversely, if $oldsymbol{R}$ satisfies

$$|a| < 2^R, \; rac{|c|}{1 - |a|/2^R} < \gamma$$

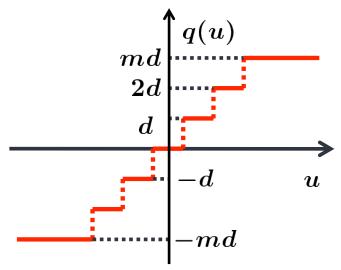
For any $\epsilon_1>0$, there exist $({
m En},K)$ s.t. nominal part satisfies the small level condition.



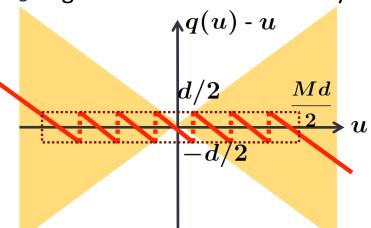
Data rate at the channel

Trade-off between data rate and uncertainty

New Class of Nonlinearities



 ℓ^{∞} gain bounded nonlinearity



 $oldsymbol{q}$: Uniform quantizer

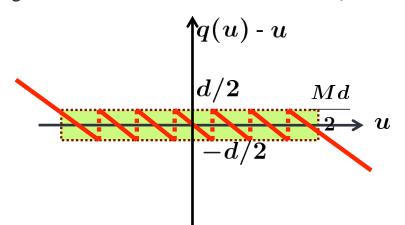
$$\mathbb{R} o V := \{0, \pm d, \cdots, \pm md\}$$

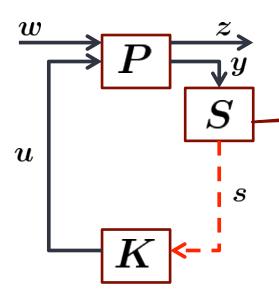
Rounding input to the nearest output.

$$d \in \mathbb{R}_+$$
: step size

$$M:=2m+1$$
 : quantization levels

 ℓ^{∞} level bounded nonlinearity





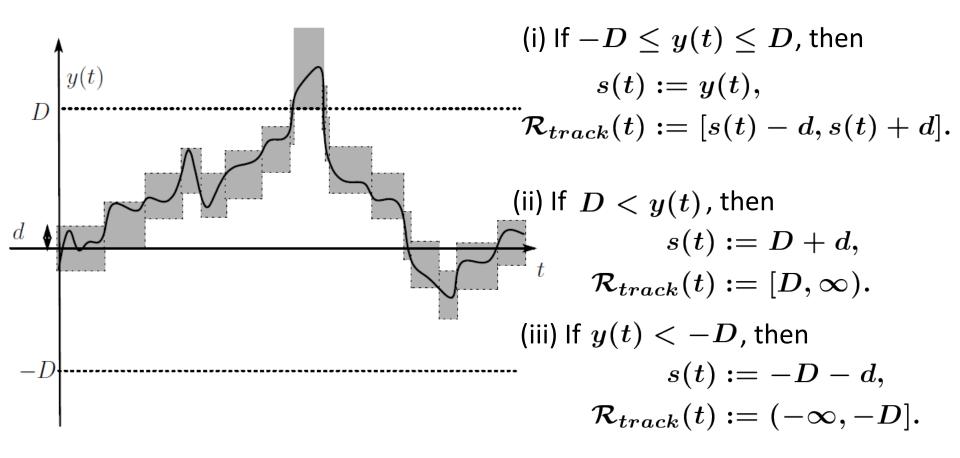
P,K: LTI systems

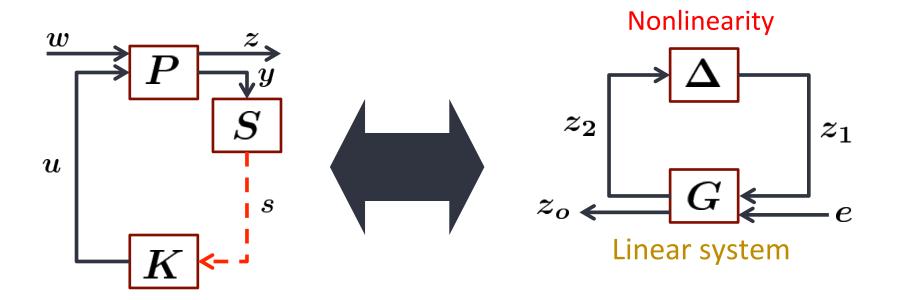
Event-triggered sensor

- \checkmark Continuously observes y.
- ✓ Sends information to the controller only when y satisfies some condition.

Involves sampling rather than quantization.

Scalar Nominal Plant $|(\mathcal{R}_{track}(t), s(t))|$ Fixed-range triggered type





Derive a condition on sensor parameters for local stability

Theorem

If

$$rac{d}{D+2d}\gamma_{2z} < 1 \Leftrightarrow \gamma_{2z} - 2 < rac{D}{d}$$

Then, the event-triggered system is small \mathcal{L}^{∞} signal \mathcal{L}^{∞} stable. In particular,

$$\begin{split} \|w|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} & \leq \epsilon := \frac{D + d(2 - \gamma_{2z})}{\gamma_{2e}} \Rightarrow \\ \|z|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} & \leq \gamma'_{2z}d + \gamma_{2e}\|w|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \end{split}$$

Numerical Example

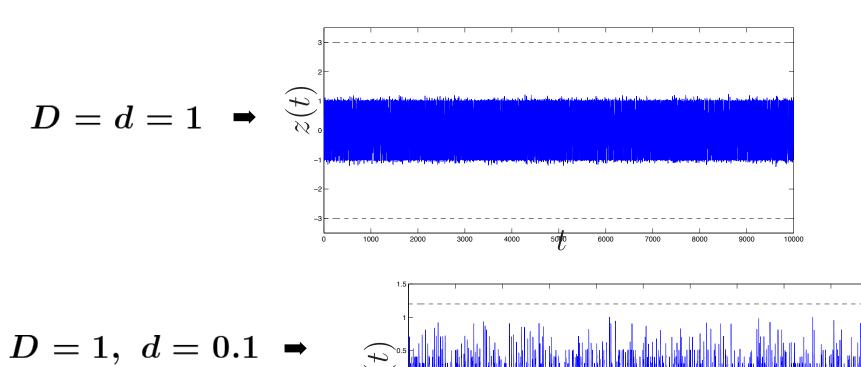
Plant
$$P: \left\{egin{array}{l} \dot{x}(t) = egin{bmatrix} 0 & 0 \ 1 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 \ 0 \end{bmatrix} u(t), egin{bmatrix} 1 \ 0 \end{bmatrix} w(t), \ y(t) = z(t) = egin{bmatrix} 0 & 1 \end{bmatrix} x(t). \end{array}
ight.$$

$$y(t) = z(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t).$$
 Controller 1
$$K_1: \left\{ \begin{array}{l} \dot{x}_K(t) = \begin{bmatrix} -10 & 0 \\ 1 & 0 \end{bmatrix} x_K(t) + \begin{bmatrix} 16 \\ 0 \end{bmatrix} \tilde{y}(t), \\ u(t) = \begin{bmatrix} 18.71 & -0.375 \end{bmatrix} x(t) - 33\tilde{y}(t), \end{array} \right.$$

Stability Condition Any positive d and D are OK.

Norm bounds

$$\begin{split} D &= d = 1 \quad \Rightarrow \quad \|w|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 2.7294 \Rightarrow \|z|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 3 \\ D &= 1, \quad d = 0.1 \Rightarrow \quad \|w|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 1.9002 \Rightarrow \|z|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 1.2 \end{split}$$



Numerical Example

$$_{m{P}}:\left\{egin{array}{cc} \dot{x}(t)=egin{bmatrix} 0 & 0 \ 1 & 0 \end{bmatrix}x(t)+egin{bmatrix} 1 \ 0 \end{bmatrix}u(t),egin{bmatrix} 1 \ 0 \end{bmatrix}w(t),
ight.$$

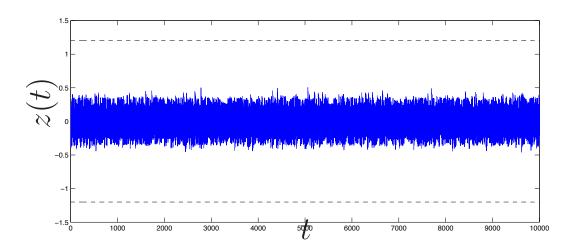
$$y(t) = z(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t).$$

Plant
$$P: \left\{ \begin{array}{l} \dot{x}(t) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \begin{bmatrix} 1 \\ 0 \end{bmatrix} w(t), \\ y(t) = z(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t). \\ K_2: \left\{ \begin{array}{l} \dot{x}_K(t) = \begin{bmatrix} -10 & 0 \\ 1 & 0 \end{bmatrix} x_K(t) + \begin{bmatrix} 14 \\ 0 \end{bmatrix} \tilde{y}(t), \\ u(t) = \begin{bmatrix} 14 & -0.2 \end{bmatrix} x(t) - 55\tilde{y}(t), \end{array} \right.$$
 Stability Condition
$$3.9864 < \frac{D}{d}$$

$$3.9864 < rac{D}{d}$$

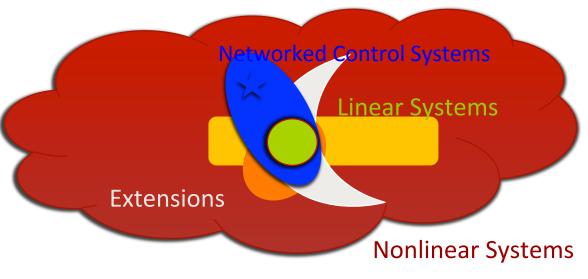
Norm bounds

$$D=1,\ d=0.1 \Rightarrow \|w|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 3.5347 \Rightarrow \|z|_{[0,\tau]}\|_{\mathcal{L}^{\infty}} \leq 1.2$$



Conclusions

Research Interests: Analysis and Synthesis of Nonlinear Systems.



- Local analysis framework for networled control systems
- Extension to continuous-time hybrid systems

Possible future work:

- 1. Lyapunov approach: relation with internal stabilities. Focusing on a bounded band?
- 2. Analysis of stabilizable range for a locally stabilizing controller.

