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Figure: An automated irrigation network via distributed distant downstream feedback control.
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Figure: Downstream errors.
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Figure: Upstream errors.
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Figure: An automated irrigation network via distributed distant downstream feedback and
feedforward control. zi(s) = Ci(s)ei(s) + fiviy1, Gi(s) = %, e = Ui — Y.
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Figure: An automated irrigation network equipped with a supervisory controller.
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Distributed Optimization Method
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Distributed optimization method (problem formulation)

min  {J(u1,...,un), u CU;}
u=(uy,...,un)
U; CR™,  argming J(uy,

.y Up) € RNm:,

—_—

[m]

=

Figure: Two-level architecture for exchanging information between distributed decision makers
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Distributed Optimization Method

Distributed optimization method (steps?)

Ny = {51,5}, N> ={S53, 5}

> Initialization: The information exchange between neighborhoods at outer iterate t
makes it possible for subsystem S; to initialize its local decision variables as
h? = u,.t, where u? € U; are chosen arbitrarily at time t = 0.

> Inner Iterate: Then, subsystem S; performs p inner iterates as follows:
For inner iterate p € {0,1,...,p — 1}, it first updates its decision variable via

1 *
BT = bt 4+ (1 — m)hP,

where
m+m=1 m+m=1

and
hik = argm"”hlelxﬁ J(hl) hgy hg) hg): h; = argminthZ/QJ(hf’ ha, hg7 h2)7

h} = argming e, J(hY, B3, b3, ), ki = argming,cpy J(h, 3, hE, hs).

1[ACC2010] B. T. Stewart, J. B. Rawlings, and S. J. Wright. =}
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Distributed optimization method (steps)

p+1
hi

> Inner Iterate (continued): Then, subsystem S; trades its updated decision variable
with all other subsystems within its neighborhood.

» Quter lterate: After p inner iterates there is an outer iterate update as follows
where

uttt = AP 4 (1 - N,

Al =X2, A3=Az, A1 +A3=1.
Then, there is an outer iterate communication, in which the updated decision
variables ul.“rl
subsystems.

are shared between all neighborhoods and subsequently between all
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Feasibility, convergence and optimality results 2

Feasibility: Given any collection of disjoint neighborhoods, above strictly convex finite
horizon cost functional J, convex control constraint sets U; and a feasible initialization
(i.e., u? €U;), the inner and outer iterates are feasible (i.e., hf“, uf“ eu;).

Convergence: Given any collection of disjoint neighborhoods and a feasible
initialization, the strictly convex finite horizon cost functional J(uf, ..., ut) is
non-increasing at each outer iterate t and converges as t — co.

Optimality: Given any collection of disjoint neighborhoods, a feasible initialization,
strictly convex and quadratic cost J, and closed convex control constraint sets Uf;, the
cost J(uj, ..., u}) converges to the optimal cost J(uy, ..., u}), and the iterates

(uf, ..., ut) converge to the unique optimal solution (uj,..., u¥), as t — co.

2[AUCCQOIQ]A. Farhadi, M. Cantoni, and P. M. Dower. =}
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Interaction strength decomposition method

et N

Figure: Left: Communication graph. Right: Interaction strength graph summarizing the effects of
decision variables on subsystems.

No hopping is allowed for intra-neighborhood communication = Following the
communication graph, the size of each neighborhood must be at most 2:
Optionl: {52, 53}, {54, 55}, {567 51}

Option2: {S1, 5}, {S3,S54}, {Ss, S6}

Following interaction strength graph, option 2 is selected.
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Interaction strength decomposition method
Dynamic system:
S; -
where

X,'[k + 1] = A,'X,‘[k] + B,-u,-[k] + V,'[k], i=1,2,...,n k€ {0, 1,2,..,N— 1},

n

vilk] = Y Myxi[k] + Njuj[k].
J=1j#i

Transfer function from U(z) = (Uj(z) . . . U,’,(z))' to state

X(z) = (X{(2) X;(2)) is given by

G(2) = V1 (2)W(2),

via={ "

and W(z)=[Wj;(z)] with

where V(z)=[Vjj(z)] with

when i = j
—(zlp; — A))"1Mj;, otherwise

v [ (@ —A)TIB;,  wheni=j
VVU(Z)_{ (zln; — A}) 71N, otherwise.

[m]

=

N
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Interaction strength decomposition method
E1  En Ein
E21 E2 E2n
G(2)z=1=| ,Ej € RiXmi
Enl En2 . En
Interaction Strength (IS):
0»
max Ei'
IS,‘j = Zmax ()

ifi=j
T min(E;)

if O'm,',,(E,') ;ﬁ 0 and I;ﬁJ
T max Eij)

D if in(E7) = 0 and i # j
Normalized interaction strength:

I .
ISN; = round(lsi), IS mi

min

= min __IS;;.
{i.j:1S;;>0}
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Interaction strength decomposition method

Example: Consider a system with six interacting scalar subsystems. The aggregated
system is described as follows:

x[k 4+ 1] = Ax[k] + Bu[k],

x[k] = (alkl xelkl xs[k] xa[k] xs[k] xo[K])’
ulk] = (unn[k]  wolk] wuslk] uslk] ws[k] welk]),

1.7049  —0.0049 —0.9082 —-0.2732 0.5496 —0.2756
0.2328 1.4672 —-0.0213 —-0.4127 —-0.4861 0.5709
0.1213  -0.1213  0.7311 0.0955 0.5566  —0.4652
—0.3836  0.3836 0.1393 1.2061 0.132 0.198 ’
—0.1148 0.11.48 —0.6754 0.007 23762  —0.4357
—0.5148  0.5148 0.0246 —0.143 0.4762 1.5143

B = diag(1.7,—-1,1.5,-1.2,1.9, 0.86).

A=
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Interaction strength decomposition method

Interaction strength matrix:

Subsystems S S S3 Sa Ss Se

51 0 36 | 226 3 245 | 82

S, 37 0 21 29 49 27

S3 20 12 0 22 | 182 | 70

Sa 93 | 55 | 63 0 | 148 | 39

Ss 53 | 31 | 151 | 13 0 67

Se 106 | 62 | 73 1 |18 | 0

Strength weights (SW(ij) = ISNj; + ISNj;, i # j)
(1,2)=73 | (1,3) =246 | (1,4) =096 | (1,5) =298
(1,6) =188 | (2,3) =33 (2,4) =84 (2,5) =80
(2,6) =89 (3,4)=85 | (3,5)=333 | (3,6) =143
(4,5) =161 | (4,6) =40 | (5,6) =252 | (5,6) = 252
Ny ={S3,S5}, N2 ={S1,S6}, N3 = {S2, Sa}.
[m] [ = =
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Interaction strength decomposition method

Strength weights (SW (ijk)=ISNj 4+ ISNj + ISNj; + ISNjc + ISNy; + ISNy;, i # j # k)

(1,2,3) =352 | (1,2,4) =253 | (1,2,5) = 451

(1,2,6) =350 | (1,3,4) =427 | (1,3,5) = 877

(1,3,6) =577 | (1,4,5) =555 | (1,4,6) =324

(1,5,6) =738 | (2,3,4) =202 | (2,3,5) = 446

(2,3,6) = 265 | (2,4,5) =325 | (2,4,6) =213

(2,5,6) =421 | (3,4,5) =579 | (3,4,6) = 268
(4,5,6

(3,5,6) = 728 | (4,5,6) = 453 | (4,5,6) = 453

Ny = {51, 53, S5}, No = {52,54,56}.

u]
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Performance Loss: For a given number of outer iterate updates t and p, the
Performance Loss PL:(p) (measured in percent) is defined as

J(ut, .. ut) =7
PL:(p) = 100( (u, ) U7)
where J is the optimal cost.

s

Total Number of Iterations: For a given p,

Tt =pxt
is referred as the total number of iterations up to outer iterate t.

be the smallest integer such that

Total Number of Iterations for Convergence: For a given performance loss PL, let tp,
Then,

PL:(p) < PL for all t > tp;.
Tpr =P x tpL

is referred as the total number of iterations for convergence.

[m]

=
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Dynamic system:

S;:
where

X,'[k —+ 1] = A,'X,'[k] + B,'U,'[k] + V,'[k]7 i = ].727 ...,6, k € {O, 1 2, 3,4},

6
%[0 =0, vik= > Mx[k].

pRw
min {J(x[O], up, oo, Ug), xi[K] € X; = [12,12], ui[k] € G = [—6, 6], Vi, k},
u

J(X[O], ui, ..., U(,)i Z

[Ixi[K] = 7117 + [ ui (K11
i=1 k=0
x{j = l,xg = 2,xg = 3,xf :4,xg = 5,Xg =6,
J=9370.89
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p Tp. | PL:(p) at t = Tp /p | Computation time (sec.)
1 453 0.99 77.63
10 | 820 0.95 142.34
20 | 1400 0.93 244.93
50 | 3250 0.98 564.91
Table: Two-neighborhoods case.
p TpL PL:(p) at t = Tp;/p | Computation time (sec.)
1 424 0.99 74.23
10 | 2200 0.99 390.14
20 | 4320 0.98 755.36
50 | 10750 0.99 1885.2
Table: Three-neighborhoods case.
P ThL PL:(p) at t = Tp /p | Computation time (sec.)
1 1020 0.99 179.21
10 | 10200 0.99 1834.3
20 | 20400 0.99 3569.9
50 | 51000 0.99 9027.9

Table: Six-neighborhoods case.
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Distributed Optimization Method
[llustrative example
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Figure: Computation time versus the total number of iterations for convergence Tp; for different
decompositions and PL = 1 percent. Red: The two-neighborhoods case. Blue: The
three-neighborhoods case. Black: The six-neighborhoods case.

Computation time equals v Tp;, where v = 0.175.
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[llustrative example
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Figure: Trade-offs between PL.(p) and T; for different decompositions and p = 10 (top figure)
and p = 20 (bottom figure). Red: The two-neighborhoods case. Blue: The three-neighborhoods
case. Black: The six-neighborhoods case.
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[llustrative example
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Figure: Trade-offs between the total number of iterations for convergence Tp, and p for different
decompositions and PL = 1 percent (top figure) and PL = 10 percent (bottom figure).Red: The
two-neighborhoods case. Blue: The three-neighborhoods case. Black: The six-neighborhoods case.
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Example:

Inner iterate communication overhead: 1 second

Outer iterate communication overhead: 10 seconds

For the system decomposed into 3 neighborhoods with p = 10:

Total communication overhead equals (220 x 10 + 2200 x 1 =)4400 seconds
Total computation time for producing the optimal inputs equals

(390.14 + 4400 =)4790.14 seconds.

Without decomposition and inner iterates:

Total communication overhead equals (950 x 10 =)9500 seconds

Total computation time for producing the optimal inputs equals
(174.126 + 9500 =)9674.126 seconds.
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Vi

Subsystem |
l——
i ._l

vi+]

zi(s) = Ci(s)ei(s), Ci(s)

d,
Figure: An automated irrigation network via distributed distant downstream feedback control.
— KTjs+K;
= S(TiFstTy)"

€ = uj — Yi-

Automated irrigation network model:
S;:

xi[k + 1] = Aixi[k] + Bjuj[k] + Fid;[k] + vi[K],

vilk] = Mixi1[K],
yilk] = Cixi[K],
zi[k] =

D;x;i[k],
i=1,2,...nke{0,1,2,..,N—1}.

N
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Scheduler

<« Disributed Distributed
apervisory apervisry
control+ control+
Decision Decision
maker i-1 maker i
7 yi -1
i -1 subsystem Z |—-| Subsystem
Via -1 v, L
diy

Figure: An automated irrigation network with distributed supervisory controller.

Cost functional:
min {J(X[OLd:yd» Uy, ooy UI‘I)) L; < yl[k]7 Ui[k] < H;,0< Z,‘[k] <z, Vi, k}7
u=(uy,...,un)
n N-1

JXOL, d g, uns oy un)= DD |lyilk] =y 113 + llzilK]I[B + [wilK] — wilk — 1]]1%.
i=1 k=0
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Centralized technique (active set method)
Number of decision variables: ngy
Number of inequality constraints: nc

Ceen(ng) ~ O(ng), (for a given nc)3
Ceen(nc) ~ O("?—)y

(for a given ng)*

Ceen(ng, nc) ~ O(ng X ng) 5
For automated irrigation networks: ngy = nN, nc = 6nN

Ccen(n) ~ O(nz

x n2) ~ O(nf)

3[ECC2009] M. S. K. Lau, S. P. Yue, K. V. Ling and J. M. Maciejowski.
4[TCST2010] Y. Wang and S. Boyd.
5[ECC2009],[TCST2010].

N
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Computational Complexity Analysis

Distributed technique

For synchronized communication:

Tpe(n)
Cais(n) = Y Ci(n),
j=1
Tpi(n): Total number of iterations for convergence

Cj(n): Maximum computation time of the decision maker with the dominating
computational complexity

Assumption: Distributed decision makers also use active set method for their smaller
QPs.

Number of decision variables of each decision maker: N

Number of inequality constraints of the dominating decision maker:

N(4n+ 1), ifn< o
N(4 {%J +2), otherwise

u]
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For a given n, the dominating decision maker remains constant for all iterations,
ji>1

whereby the dominating computational complexity C;(n) also remains constant for all
Ci(n) =C(n), Vj>1

For j =1, it takes some time that variables to be placed into the cache memory

Ca(n) > C(n) = C(n), V) > 1.

Tpi(n)

Cais(n) = Y Cj(n) =Ca(n) + (TpL(n) — 1)C(n)
j=1

N
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Number of inequality constraints of the dominating decision maker

N(n+1), ifn< ¥
N(4 {%J +2), otherwise

=

(n) ~ O(n), ifn< %
a, otherwise

Cl(n) = TPL(n) :lgn

. N
Cdis(n) = C1(n) + (TpL(n) — 1)C(n) ~ { ((99((,:12)),7 :jc:eli\lige
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Simulation results
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Figure: Left: C(n). Right: Tp.(n).
__ J 0.00983n+0.118 ~ O(n),if n <12 _ o
C(n) =~ { 0.269, otherwise . Tp(n) =1.5n, Ci(n)=~C =1.36.
=] 5 = = £ DA
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Simulation results 20
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Figure: Cgis(n) versus n.
Cais(n) = C1(n) + (Tpr(n) — 1)C(n) 1)

0.00983n + 0.118 ~ O(n),if n <12
C(n) ~ { 0.269, othe(rvaise . TpL(n) = 1.5n, Cl(n) ~ Cl = 1.36.

Caie(n) ~ 0.0147n 4-0.167n 4 1.242 ~ O(n?) if n < 12 @)
dis{N) ~ 0.403n + 1.091 ~ O(n), otherwise '

[m] [ =
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Simulation result
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Figure: Left: Ccen(n). Right: Ccen(n): solid line, Cgis(n): dashed line.

Caen = ()% ~ O(n°). (3)
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LFuture Work

Finding an analytical expression for Tp; (and therefore Cgis = ZJ.T:PlL Cj)

TPL = F(Am,hﬂ—m,lv PL7 bv q, I)

Finding an analytical expression for communication overhead: Com

Com = G(p, q,1).

Balancing interactions between control,computation,communication, and scalability to
have the best possible performance: good quality control inputs with minimum overall
computation time

mi

n {Cdis + Com,  subject to constraints on A\p j, Tpm,/, PL}
Am,1sTm,1,PLP,q, 1

PL: Quality of control
Am,i, Tm,: Convergence rate, quality of distributed computation
p: Communication pattern

q,l: Scalability architecture
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