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Consensus in Multiagent Systems

» Consensus problems are a class of distributed coordination
problems in which agents agree on a variable of interest

» Consensus problems include rendezvous, flocking, sensor
agreement, attitude alignment of satellites, synchronization
of coupled oscillators, formation control (shifted
rendezvous), etc.
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Consensus Algorithm

» Let G = (V,E) be an undirected graph with » nodes
indexed 1 to n and m edges

» Let x; be the state of the i-th node

» Let \; be the neighborhood of node i

Single Integrator Consensus Algorithm

JEN;
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A Simple Rendezvous Algorithm
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Incidence Matrix

» Arbitrarily assign a
direction to each edge

» n X m incidence matrix D:

dy = {+1 i is head of edge j
—1 iis tail of edgej
» \(DDT) > 0iff G is
connected
» )\, is known as the Fiedler
value, or the algebraic
connectivity of G

(4)
21 <2
3
23 4 X2
1
0
0 1 1 -1
-1 -1 0 1
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Consensus with Incidence Matrix

» If x; € RP, x is stacked

vector, we have (@)
i =—(DD" ®I,)x zy 2
=—(D®l)z ©
13 24
where z = (D" @ I,)x @ &
» zis a stacked vector
corresponding to the P = X, etc.T
edges (as vectors) in the »z=1[z] ... 2]
graph
allB cee alnB
A®B=

am1B am,,B



Background
00000e00

Simple Formation Control

> Let z/ be the desired value for each z and let
T
=" (@)
» Run consensus with difference variables, i.e.
i=—-(D®1,)z

wherez =z —#
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Double Integrator Consensus

» For fully actuated double integrators, let

jé,' = —Z(x,-—xj) —kv,-

JEN;

where k > 0, v; = ;.
» This also solves a consensus problem. Let

1
V= i(vTv + x"DD"x).
Then

V ==Ky —vIDD"x +x"DD"v
=Ky <0.

Apply LaSalle’s principle and conclude that lim,_,, x = al.
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Consensus Extensions

>

Weighted graph Laplacians
Directed networks

v

v

Discrete time consensus

v

Switched communication topologies
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Formation Control Problem

Problem Statement

» Team of agents with known desired
formation shape

» Leader agents know desired formation
scale

» Goal: all agents move to the scaled
desired formation with no
communication (just relative position
sensing)
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Formation Control Problem

Problem Statement

» Team of agents with known desired
formation shape

» Leader agents know desired formation
scale

» Goal: all agents move to the scaled
desired formation with no
communication (just relative position
sensing)

Technical Setup
» n agents, each has position x; € R?
» Double integrators, i.e. X; = f;

» Position sensing graph with incidence
matrix D
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Formation Shape
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Problem Setup

» Letzjforj=1,...,m be the relative position along edge j
» We have relation
7= (DT ®1I,)x
where x and z are stacked vectors, and let v = &
» For each edge, there is a corresponding prescribed zJ‘.’
» A desired formation scale A € R is known to leaders

Cooperative Control Problem
Formation converges to the scaled desired formation, i.e.

lim z; = \#¢ for all ;.
1—00 Z'] Z] J
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» A standard formation control approach:

Zd,] ZN) — kv



Problem Setup
oce

» Leader control strategy:

55,' = —Zd,‘j (Z]‘ —Zjd)\) — kV,‘
=1
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» Leader control strategy:

Z dij (37 — 2/ \) — kv,

» Multiple Link Method:

y 1

X; = — Zdij Zj— Z}j (Z;-i)TZjW — kv;
j

estimate of A



Problem Setup
oce

» Leader control strategy:

=) di (5 —2fA) — ko
j=1
» Multiple Link Method:
i} - 1
X = — Zd,‘j Zj — th-i (Z;i)TZjW - kVi
j=1 J

estimate of A
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» Leader control strategy:

5&,’ = —Zd,‘j (Zj —Zjd)\) — kv,‘
=1

» Multiple Link Method:

m
1
- d (. d\T
Xi = —Zdij =g (Zj) ij — kv;
=1 7
estimate of A

» Single Link Method: Agent i monitors an assigned link z;

= 1
X = —E di | 57— &)z —— | —kvi
=1 [E

estimate of A
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» Leader control strategy:

m

i’,’ = — Z dU (:] — Z;[/\) — /\'V,'

J=1
» Multiple Link Method:

1

. d (d\T

xi:—g djj Zj—Zj(Zj)ZjH'”z — kv;
%

estimate of A

» Single Link Method: Agent i monitors an assigned link z;

m 1
%, — - d (d\T - )
Xi=— § :d(, 4% (z) zi 7112 kv,
J=1 <i {

estimate of A
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Multiple Link Method
Xi = — ij:l dl] <J 1 deZd(Zd) Zj> — kv;

> Let

1 d(_d\T
P] H dHZZJ (Z]) 9

the projection matrix onto
Sj = span{z{} C R?

»Let 9=y -p,
the projection onto S~ C R”




Multiple Link Method
0Oe000000

Multiple Link Method
Y= dy (, T ,,,szd(zd) zj> kv;

» Let
P = BlockDiag{Pi,...,Pn}

0 = BlockDiag{Q, ..., On}

d( d\T
Y T )

the projection matrix onto

Sj = span{z{} C R? > SETL, S CR™
> Let 0 =1I,-P, » P projects onto S
the projection onto S+ C R” » O projects onto S+

m
= = Z dijQjzj — kv
=1

¥r = —(Df ®1,)Qz — kvy
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Stability with No Leaders

Lemma

If there are no leaders, the control strategy

i=v=—(D®I,)07— kv

converges to a scaling of the desired formation z% iff

R(D” @ I,) N S = span{z‘}.

Proof:
» Let V= 1(vIv+ 27 Qz) be a Lyapunov function

» Apply Lyapunov theory and LaSalle’s Invariance
Principle Ol

Control strategy ensures every edge z; lies in the direction of z}i )
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Parallel Rigidity

R(D" ® I,) N S = span{z‘}

Parallel rigid if specifying edge directions determines shape up
to scaling.

» B. Servatius & W. Whiteley. (1999).“Constraining plane
configurations in CAD: Combinatorics of lengths and directions”.
SIAM Journal on Discrete Mathematics, 12, pp. 136—153.

» T. Eren et al. (2004). “Operations on Rigid Formations of
Autonomous Agents”. Communications in Information and
Systems, pp. 223—258.

» T. Eren. (2007). “Using Angle of Arrival (Bearing) Information for
Localization in Robot Networks”. Turkish Journal of Electrical
Engineering & Computer Sciences, 15, pp. 169—186.
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Parallel Rigidity

R(DT @ I,) N S = span{z’}

Parallel rigid if specifying edge directions determines shape up
to scaling.

Formation Shape
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Parallel Rigid

=

Formation Shape
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Parallel Rigid

=z

Formation Shape
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Introducing leaders:

» Reduces stable subspace to the desired scaling for parallel
rigid formations

» Can result in desired scaling even if not parallel rigid
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Introducing leaders:

» Reduces stable subspace to the desired scaling for parallel
rigid formations

» Can result in desired scaling even if not parallel rigid

=z

Formation Shape
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Introducing leaders:

» Reduces stable subspace to the desired scaling for parallel
rigid formations

» Can result in desired scaling even if not parallel rigid
But
» Can result in instability
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Stability

Theorem

With at least one leader, the Multiple Link Method achieves the
desired group behavior for sufficiently large k if and only if the
subspace R(1" ® I,) of the auxiliary system

é = _DQ(DT ® Ip)§

is asymptotically stable

where

and
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» Leader control strategy:

m

- Zd,, —ZIN) — kv

» Multiple Link Method: Every link is used for formation
update

(ZJ(-[)T
Z Zf‘i‘/ “7§/|‘2:§/ — kvi
= J
estimate of A

» Single Link Method: Each agent i monitors link z;

z’”: (Zi)} |T2 zi | — kv

"1z

estimate of \



Single Link Method
0Oe000000

Link Monitoring

fi = = Sy dy (55— 2 ||| @)Ta) — ko,

» Starting from the leader
and branching out, assign
to each other agent a
monitoring link
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Link Monitoring

fi= =S dy (- 17 @)7a) b

» Starting from the leader
and branching out, assign
to each other agent a
monitoring link

3 2

» Number edges so that
monitoring link index
matches node index
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Link Monitoring
fi= =S dy (- 17 @)7a) b

» Starting from the leader
and branching out, assign A=

to each other agent a > L dy2? Z 0
monitoring link H H
4 1 a @’
! R
4 1
3 2 N
» Number edges so that z= (DT @1L,)v

monitoring link index
matches node index where z =z — Az?
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System Dynamics

. . |A 0],
v:—kv—(D®Ip)z+[0 O}Z

7= (D" ®L,)v

—kv— (DL +u| Z
;=D ®L))v

u |v
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Stability Analysis

The small gain theorem results in an easy-to-check sufficient
geometric criterion for stability

Small Gain Theorem

Let v, be the £, gain of the (v,z) subsystem and let -, be the
L, gain of the A subsystem. If

My <1

then the interconnected system is stable.

Gains ~v; and v, have a nice geometric interpretation
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Stability Analysis

u V=—kv—(D®I,)Z+u Z
=D"oL)y

Lemma

Let 11, be the smallest positive eigenvalue of DD (i.e., the
Fiedler eigenvalue), and let 1, be the largest eigenvalue. If

k> \/2un_1, then
1
M=

N

Proof sketch
» Use SVD of D to obtain decoupled, second-order systems
» Determine largest gain of decoupled systems
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Stability Analysis

u | [A 0] z
0 0

» A is block diagonal, each block is:

P ’ T
Zd’” T

The L, gain of this subsystem is:

=74
=l
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Stability Analysis

The L, gain of the A subsystem is:

HZJm:1 dijzjt'iH
2= ig?ﬁf W

[0) To calculate the singular values:

» Draw all edges away from (or all
@) towards) a follower node

» Calculate the norm of the vector sum of
these edges

o » Divide by the norm of the assigned link
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Stability via Small Gain

Itk > \/pmn—1 and

1 ™ 4yt
e (NN
V1 i=1,..n—1 Hzi ||

then the formation control strategy is stable.

» Depends on the sensing topology and the formation
geometry

» Easy to check geometrically



Examples

Examples

£
oy

D D



Examples
0@0000000

Circulant
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Formation Shape
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Modified Circulant

9

Formation Shape
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Modified Circulant, 3 Leaders

3

Formation Shape
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Pentagon, Not Parallel Rigid

W

Formation Shape
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Pentagon, Parallel Rigid

Yy

Formation Shape
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Pentagon, Different Leader

W

Formation Shape
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Formation Shape
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Future Work

>

Much larger networks, probabilistic control

v

In the limit, continuum of agents

How to derive full system description from probabilistic
control strategies? (Micro to Macro)
Chemotaxis-inspired control (self-aggregation, source
seeking, “formations” defined by distributions)

v

v
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