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� Wireless is a broadcast medium:

Interference!

We need a Multiple Access Protocol, an access scheme that
minimizes interference from other users.
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Contention-free MA

� Transmissions guaranteed
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� Ill-suited to frequently changing
networks

Contention-based MA

� Easy to deploy: Ad-hoc solution

� Collisions! Transmissions not
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� Random Access, not prioritized
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Contention-free MA

� Transmissions guaranteed

� Requires scheduling

� Ill-suited to frequently changing
networks

New MA for NCS

� Distributed mechanism

� Randomness in access is minimized

� Transmissions probabilistically
guaranteed.

Contention-based MA

� Easy to deploy: Ad-hoc solution

� Collisions! Transmissions not
guaranteed

� Random Access, not prioritized
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� Channel access depends on current state
� Realization of state-aware MA:

� modifying existing protocols / introducing new protocols

: No

� regulating plant traffic

State-based Scheduler selects packets to send to the medium access
controller (MAC).
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to the MAC

� MAC cannot anticipate the packets, resorts to Random Access (RA)
� RA determined by Contention Resolution Mechanism (CRM)

How do we design a network of event-triggered systems?
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Problem Formulation

� Plant P:
xk+1 =Axk + Buk + wk ,

wk ∼N (0,Rw) , x0 ∼ N (0,R0) .

� State-based Scheduler S:
γk =fk(ωs

k) , ω
s
k ∈ Ωs

k(IS
k) ,

IS
k =
[

xk
0 ,y

k−1
0 ,γk−1

0 ,δk−1
0 ,uk−1

0

]
� Controller C:

uk =gk(ω
c
k) , ωc

k ∈ Ωc
k(IC

k ) ,

IC
k =

[
yk

0 ,δ
k
0 ,u

k−1
0

]

γk, nk, δk ∈ {0, 1}

� Network N and CRMR:

δk = R(γk, nk) , yk =

{
xk δk = 1
ε δk = 0

� Control Cost:

J = E
[

xT
NQ0xN+

N−1∑
s=0

(xT
s Q1xs+uT

s Q2us)

]

How can we jointly design the channel access, δk, along with the
closed-loop, to minimize the control cost?
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Dual Effect Property

Theorem
For the closed-loop system given by {P,S(f ), C(g)}, the control
signal has a dual effect of order r = 2.

� Proof:

� State Estimate:

x̂k|k =

{
xk, δk = 1
E[xk|IC

k , δk = 0], δk = 0

� Error Covariance:

Pk|k =

{
0, δk = 1
E[x̃k|k x̃T

k|k |IC
k , δk = 0], δk = 0

� Consequence: Design of {S,O, C} are coupled!
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Conditions for Certainty Equivalence

Corollary
The optimal controller for the system {P,S(f ), C(g)}, with respect to the
cost J, is certainty equivalent if and only if the scheduling decisions are not
a function of the applied controls.

� Proof: There is no dual effect with γk = f̃ (x0,wk−1
0 , δk−1

0 ).
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Observer Design

� Estimate:

x̂k|τk = Ak−τk xτk +

k−τk∑
s=1

As−1Buk−s+E
[ k−τk∑

s=1

As−1wk−s |̀fk,..,̀fτk+1=0

]
·P(γk=0|δk=0)

� Symmetric Scheduler:

γk =f sym
(∑k−τk−1

s=1 As−1wk−s

)
;

f sym(−r) = f sym(r)

Proposition: Symmetric Scheduler
For the system {P,S(f ), C(g)}, using a symmetric scheduling policy results
in separation between the estimator and the scheduler, as well as an optimal
certainty equivalent controller.
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Dual Predictor Architecture

Theorem
For the system {P,S,O, C}, using the dual predictor architecture results in
a MMSE estimate and certainty equivalence.

� Scheduler S:

γk =

{
1, |xk − x̂c

k|τk−1
|2 > ε,

0, otherwise.

� Observer O:

x̂c
k|k = δ̄kx̂c

k|τk + δkxk

x̂c
k|τk = Ax̂c

k−1|k−1 + Buk−1
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Simulation Results

� 20 scalar plants
� A = 1, Rw = 1 and T = 10
� pα = {1, 0.75, 0.5}
� N = 10, Q0 = Q1 = Q2 = 1
� Best ε = 3.5
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Event-triggered and CRM Abstraction

� Scheduler S:

γk =

{
1, |xk − x̂c

F,k|2 > ε,

0, otherwise.

x̂c
F,k =

{
x̂c

k|τk−1
, dk = k − τk−1 < F

xk−F, otherwise.

� CRM:
p-persistent CSMA
P(αk = 1|γk = 1) = pα
δk = αk(1− αN

k )

What is the probability of a successful transmission, i.e., P(δ(j)

k = 1)?
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Understanding the Problem Setup

� Network-induced Correlation:
The scheduler output γk is correlated to the traffic nk.

� Need for Joint Analysis:

[Cervin and Henningsson, CDC 2008, Rabi and Johansson, ECC 2009]
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Joint CRM & Event-based Markov Model

� Innovations-based transitions to
states (s, d)

� Index d = min(dk−1,F)

� Index s:

� s = −1: Idle
� s = 0: Non-scheduled
� s = 1: Scheduled
� s = 2: Transmission

� pγ,d: scheduler probability,
pα: p-persistence probability

Theorem
In the dual predictor architecture, the delay since the last
transmission, dk−1, is a sufficient statistic for δk−1

0 .

CSMA/CA (802.11 DCF) Analysis [Bianchi, 2000]
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Joint CRM & Event-based Markov Model

� Innovations-based transitions to
states (s, d)

� Index d = min(dk−1,F)

� Index s:

� s = −1: Idle
� s = 0: Non-scheduled
� s = 1: Scheduled
� s = 2: Transmission

� pγ,d: scheduler probability,
pα: p-persistence probability

Key Assumption: Bianchi’s conditional independence
The conditional probability of a busy channel for a node that attempts
to transmit is given by an independent probability p for each node.

CSMA/CA (802.11 DCF) Analysis [Bianchi, 2000]



Steady State Performance Analysis

Theorem

For the closed loop system given by {P,S(f̃ ),R, C}, the probability
of a successful transmission in steady state is given by

P(δ(j)
k = 1) = (1− p(j)) · p(j)

TX , (1)

� Proof:
� Sampling Instants:∑F

d=0 p(j)
(−1,d) = 1

� Traffic Contribution:
p(j)

TX =
∑F

d=1 p(j)
(2,d)

� Interference:
p(j) = 1−

∏M
i 6=j,i=1(1− p(i)

TX)
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Simulation Example

� P: xk+1 = xk + uk + wk, wk ∼ N (0, 1)

� S: |xk − xc,k|2 > ε

xc,k =

{
E[xk|I

C

τk−1
] dk < F

xk−F dk ≥ F

� Parameters: M = 10, ε = 1, pα = 0.2,
R = 5, pγ,d =

[
0.3171 0.5138

]

Parameter Simulation Analysis
P(δk = 1) 0.1840 0.1872

p1 0.5937 0.5944
p2 0.5655 0.5620
p3 0.5367 0.5277
p4 0.5076 0.4917
p5 0.4778 0.4542
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Lyapunov Mean Square Stability

� Let us consider infinite horizon LQG cost; we can now analyze
stability of a closed-loop system in this network.

� Since Certainty Equivalence holds, we can translate the LMSS
property from the state to the estimation error.

� There exists a constant ς , with 0 < ς < ζ, such that the above
condition is equivalent to lim supk→∞ E[Pk|k ] ≤ ς .
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Markov Model

Assumptions:
� Bianchi’s conditional

probability holds
� Network is in steady state

Definition: Network Steady State

The network is said to be in steady state when the states (S, d),
∀S ∈ {I,N,E,R}, d ≥ 0, are recurrent, or p < 1.
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Upper Bound for Estimation Error

Estimation Error Covariance: E[Pk|k ] =
∑∞

d=0 Pd P(dk = d)

Evolution of pdf:

φ
(N,d) =


φ
(I,d−1)

(x̃)

p̄
γ,d

|x̃| ≤ εd ,

0 otherwise ,

φ
(E,d) =


φ
(I,d−1)

(x̃)

p
γ,d

|x̃| > εd ,

0 otherwise ,

Theorem: Upper Bound for Estimation Error in Idle State

φ̂
(I,d) = 1

a φ̂(I,d−1) ∗ φN , φ̂
(I,0) = φN . Then, φ

(I,d) � φ̂(I,d)∀d ≥ 0.
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Conditions for Stability

Theorem: Conditions for LMSS
Sufficient conditions for LMSS are given by
lim supd→∞

p
(I,d+1)

p
(I,d)

< 1
1+a2 .

� LMSS versus Steady State:
LMSS implies network steady state, but network steady state does not
imply LMSS.

� Design of Scheduling Laws:
constant probability, additively increasing and decreasing probability laws.
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Conclusions

� State-based Schedulers:
Channel access adapted to plant state and network traffic.

� Dual Predictor Architecture:
Separation in design of {S,O, C} obtained by limiting the class of
permissible schedulers.

� Steady State Performance Analysis:
Bianchi’s conditional probability needed to decouple multiple loops.

� Stability-based Design of Schedulers:
Conditions for various probability laws obtained.

� Future Work
Selecting scheduler thresholds to guarantee stability and optimize
performance.
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