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REACTIVE POWER COMPENSATION
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Smart power distribution grid

Smart microgenerators

We consider a portion of the electrical power distribution network
populated by a number of microgeneration devices (solar panels,
...), each of them equipped with sensing and communication
capabilities.

The power electronics of these microgenerators can be exploited
for providing useful ancillary services.

We focus on the problem of optimal reactive power compensation
for the minimization of distribution losses.



Power distribution grid

We assume that voltages and currents are sinusoidal signals, at the
same frequency, and thus described by their amplitude and phase.
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Reactive power

Reactive power flows

Whenever a device in the grid injects (is supplied with) a current
that is out of phase with the voltage, we have injection (delivery)

of reactive power.

Adopting the phasorial notation for voltages
and currents, we define the complex power

- Sy = Py +Jjqy = Uv7v



Reactive power “facts”

» Loads in the microgrid require reactive power

> reactive power can be obtained from the transmission grid or
produced by the microgenerators in the grid

» producing reactive power has no fuel cost

> larger flows of reactive power correspond to quadratically
larger power losses on the cables.

Optimal reactive power compensation problem

Injecting reactive power in the grid as close as possible to the loads
that need it, in order to minimize power distribution losses.



MICROGRID MODEL



Graph model

Nodes of the graph represent loads (in white) that cannot be con-
trolled, and microgenerators (in black) which can be commanded,
can sense the grid, and can communicate.

Nodes are connected by a tree T, representing the electrical con-
nection (power lines) among them.



Graph model

Node O represents the point of connection of the microgrid to the

transmission grid.
Its voltage up corresponds in amplitude to the nominal voltage Uy

of the microgrid: _
upg = UN€J¢0.



Graph model

Nodes v # 0
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Node voltage u, and node current i, satisfy
Uv7v = Sy

for microgenerators and loads (can be extended to exponential / ZIP
model).



Graph model

Voltage drop ur(e) — Uy(e) and the current &, flowing on the edge e
satisfy
Ur(e) = Ug(e) = Zebe

where z¢ is the impedance of the power line e.



Microgrid nonlinear equations

The voltages u, and the currents i, of the microgrid are therefore
implicitely defined by the system of nonlinear equations

Lu=1i
uyiy = s, v#0
up = UNej¢0,

where L is the weighted Laplacian of the graph
L=ATZ7tA

and A is the incidence matrix of the graph.



OPTIMIZATION PROBLEM



Optimization problem

The optimization problem consists in deciding the reactive power
injection at the microgenerators that minimizes power distribution
losses.

Decision variables
qv, v € C
o id Grid state Losses
nonlinear
Problem parameters equations function
sy, veu
py, v € C
Un; ¢o, L

In order to design an algorithm we need an explicit expression for
the grid state as a function of the decision variables.



Explicit grid solution

Approximate solution

We constructed the Taylor expansion of the system state for large
nominal voltage Uy.

. o gv CV(UN)
[Xg]v dV(UN)
v U =U .

This model extends the DC power flow model, by relaxing the
assumption of zero losses (i.e. purely inductive lines).



Approximate problem

The approximate solution of the grid equations allows us to rewrite
the cost function (losses) as a quadratic function of the decision
variables.
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where J is bounded for large Uy, and q satisfies 17 q = 0.

Quadratic cost function

We approximated the original problem as a convex quadratic
optimization problem subject to a linear equality constraint.



DISTRIBUTED ALGORITHM



Motivation for a distributed algorithm

Implementing a centralized solver for the quadratic (linearly
constrained) optimization problem is impossible:

» complete knowledge of the system parameters

L, {ps,,vecl} A{s,vel}

and state

{QV; v E C}

is required

» coordination and communication among all nodes &/ U C is
required
» compensators

> are in large number
» can connect and disconnect
» have limited communication capabilities.



Distributed architecture

Consider the family of subsets of C _ G

{C1,...,Co}

such that U!_; C; = C.

Control

Let each cluster be managed by an
intelligent unit (possibly, one of the -
compensators), which

» knows the relative position of
the compensators

Graph model
(
N
(

> collects data from the
compensators

> processes the collected data

Electric network

» commands the compensators.




lterative algorithm

At (possibly uneven) time step

1) a cluster C; activates;

2) the supervisor of C; determines the optimal update step that
minimizes the global cost function;

3) compensators in C; actuate the system by updating their state
gy, Vv € C;, while other compensators keep their state constant.
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Computation of the optimal step for C;

The optimal update that has to be performed by cluster C; is given
by the (constrained) Newton step:

qut, i_ ah for each h & C;,

qut, i = qp— Z rg:lz VJk for each h € Ci,
keCi

where
» () is function of the Hessian R(X),
» VJ is the gradient.

In general, these are global quantities.

However, according to the approximate model for the power
system state, both Fg,',z and VJi can be obtained from local data.



Computation of the optimal step for C;

Hessian estimation

() is a function of the electric distances (mutual effective
impendances) between the microgenerators belonging to the
cluster C;.

Gradient estimation
Vi, k € C;, can be estimated from voltage measurements
performed by the microgenerators that belong to C;.

To solve the subproblem faced by the supervisor of the cluster C;,
only parameters and measurements from the microgenerators
belonging to C; are needed.



Resulting algorithm

We therefore obtained the following distributed control algorithm.

Offline initialization

Each supervisor computes () according to the electric distance
among compensators in the cluster.

Online iterative algorithm

1. a cluster C; activates;
2. agents not in C; hold their state constant;
3. agents in C;

3.1 measure their voltage and estimate VJ;
3.2 compute the optimal update step —() VJ;
3.3 update their state;



Resulting feedback law
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Remark

Feedback signals over the physical system

Other applications of distributed optimization share this same
feature (radio power control, congestion avoidance protocols in
data networks).

In these applications, the iterative tuning of the decision variables
associated to each agent (radio power, transmission rate) depends
on congestion indices that are function of the entire state of the
system. However, these indices can be detected locally by each
agent by measuring some feedback signals: error rates, delays,
signal-to-noise ratios, etc.



Radio power control
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Distributed radio power control algorithms consist in update laws
for the transmitting power p; in the form

pt = £ (SIR;,j € N;U{i}).



Data network congestion avoidance protocol
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ch))(zr: U.(x;) subject to Ax < C

Congestion on a route r depends on the transmission rates of all
routes which share a link with r, and which are generally unknown.
Typical protocols adjust the rate x, as a function of a feedback
signal (e.g. delay, packet losses).



ORPF algorithm convergence

We characterized the convergence rate R as a function of
» grid topology and parameters
> clustering strategy.

The optimal strategy consists in choosing clusters which resembles
the physical interconnection of the electric network.




Optimal clustering stategy

This result is interesting in the fact that it constrasts with the
phenomena generally observed in gossip consensus algorithms, in
which long-distance communications are beneficial for the rate of
convergence.

1

J=
e

TR(X)q subjectto 17q=0.

This is of course motivating, and suggests further investigation
towards

» plug and play protocols,
» parallel implementation,

» communication over power lines.



Simulations

The algorithm behavior has been simulated on the IEEE 37
standard testbed.
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CONCLUSIONS



Conclusions

Microgrid power flows model
The proposed approximate power flow model
» extends the DC model to generic line impedances
» allows to cast the problem into a well-known framework

» shows how to obtain system-wide information (gradient,
hessian) from local measurements (voltages, electric distance).

Distributed gossip-like algorithm

The proposed strategy is based on
» asynchronous activation of the microgenerators
> interleaved sensing and actuation.

Its convergence is guaranteed, and its rate of convergence has been
analyzed, yielding design rules to maximize performance.
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