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Stochastic Control

A controlled stochastic system is governed by the following state /
measurement equations:

xt+1 = f(xt, ut, wt), (1)

yt = g(xt, vt) (2)

A control policy Π is a sequence of control functions {γ0, γ1, · · · , } each
a causal function of the information vector

It = {yt; y[0,t−1], u[0,t−1]} t ≥ 1,

with control actions ut = γt(It).

Here, (2) defines a channel, a stochastic kernel.
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Stochastic Control with Information Constraints

In stochastic control, typically a partial observation model/channel (parametrized
above by g(·)) is given and one looks for a control policy for optimization or stabilization.

In networked control systems, the observation channel itself and the information
vector It are also design variables.

We can shape the observation / measurement channel, through encoding and
decoding.
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Stochastic Control with Information Constraints

Channel

Plant

Coder Controller

Figure 1: Encoding shapes the conditional probability of the observation
given the state.
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Problem P1: Design of Information Channels for
Stabilization

Given a system controlled over a channel, find the set of channels Q for which
there exists a policy (both control and encoding), such that {xt} is stable.

Stochastic stability notions will be (i) ergodicity/asymptotic mean stationarity and
(ii) existence of finite moments, to be specified later in this talk.
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Problem P2: Design of Information Channels for
Optimization

Given a controlled dynamical system, the goal is to minimize

J(P,Q) = EQ,Π
P

[ T−1
∑

t=0

c(xt, ut)

]

, (3)

over the set of all admissible policies Π and channels in a family, Q ∈ Q, and c :

X × U → R+, a cost function.

Here EQ,Π
P denotes the expectation under Π and channel Q with initial prior P .
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Problem P1: Design of Information Channels for
Stabilization

We will consider a linear Gaussian unstable system model (results are applicable
to higher-order systems)

xt+1 = axt + but + dt, t ≥ 0 (4)

It is assumed that |a| ≥ 1 and b 6= 0.

This system is connected over a channel with a finite capacity to a controller.
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Causal Coding for Control

Channel

Plant

Coder Controller

Figure 2: Control over a noisy channel
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Information Channel

A discrete channel is a stochastic kernel such that for any n ∈ N, an input
sequence q[0,n] leads to an output q′[0,n] with probability P (q′[0,n]|q[0,n]).

The channel is memoryless, if (without feedback)

P (q′[0,n]|q[0,n]) =
n
∏

k=0

P (q′k|qk).
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Causal Coding for Control

The quantizer and the source coder policy is causal such that the channel input at
time t ≥ 0, qt, is generated using the information:

Ist = {x[0,t], q[0,t−1], q
′
[0,t−1]}

The quantizer outputs are transmitted through a channel, after being subjected to
a channel encoder. The receiver has access to noisy versions of the quantizer/coder
outputs for each time, which we denote by q′t ∈ M′.

The control policy at time t, also causal, only uses Ict , for t ≥ 0:

I
c
t = {q

′
[0,t]}

We will call such coding and control policies admissible policies.
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Literature Review: Information Theory for Unstable
Processes

Consider the following Gaussian AR process:

xt = −
m
∑

k=1

akxt−k + wk,

where {wk} is an independent and identical, zero-mean, Gaussian random sequence
with variance E[w2

1] = σ2.

If the roots of:

H(z) = 1 +
m
∑

k=1

akz
−k

are inside the unit circle, the process is (asymptotically) stationary.
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Literature Review: Information Theory for Unstable
Processes

The rate distortion function (distortion being the normalized Euclidean error) is
given parametrically by the following (Kolmogorov’56) :

Dθ =
1

2π

∫ π

−π

min(θ,
1

g(w)
)dw,

R(Dθ) =
1

2π

∫ π

−π

max(1/2(log
1

θg(w)
), 0)dw,

with

g(w) =
1

σ2
|1 +

∑

k=1

ake
−ikw

|
2
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Literature Review: Information Theory for Unstable
Processes

If at least one root is on or outside the unit circle,R(Dθ) above should be replaced
with (Gray (IT’70), Hashimoto-Arimoto (IT’80), Berger (IT’70)):

R(Dθ) =
1

2π

∫ π

−π

max

(

1

2
log(

1

θg(w)
), 0

)

dw +
m
∑

k=1

1

2
max

(

0, log(|ρk|
2
)

)

, (5)

where {ρk} are the roots of the polynomial.

Note that the encoding is non-causal.
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Control Theory Literature and Causality Restrictions

Wong-Brockett (TAC’98), Nair-Evans (SICON’04), Tatikonda-Mitter (TAC’04) obtained
that, in the mean-square sense, an average rate of information transmission needed
for stabilizability is at least

m
∑

k=1

1

2
max

(

0, log(|ρk|
2)

)

Contrasting with the Gray/Hashimito-Arimoto result, this shows that the rate term
is not due to the causality restriction, but due to the uncertainty inherent in the source
(the differential entropy rate).
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Causal Coding for Control: Presence of Unbounded
System Noise with Noiseless Channels

Nair-Evans (SICON’04) considered a class of adaptive quantizer policies for such
unstable linear systems driven by noise:
- with unbounded support set for its probability measure
- time-varying encoders
- controlled over noiseless channels, and obtained necessary and sufficient conditions
for the boundedness of the following expression

lim sup
t→∞

E[|xt|
2] < ∞.

Gurt and Nair (Automatica’09) extended this result to erasure channels with variable
rate coding.
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Causal Coding for Control: Presence of Unbounded
System Noise

With the lower bound attained, Y. (TAC’10) obtained the existence of a limit

lim
t→∞

E[|xt|
2] < ∞,

- noise with unbounded support set for its probability measure
- fixed-rate encoders
- the process is stochastically stable in the sense that the joint process is a positive
Harris recurrent Markov chain and the sample path ergodic theorem is applicable.

This was extended in Y.’09,Y.-Meyn (TAC’12) to erasure channels with similar
ergodicity properties (Minero-Franceschetti-Dey-Nair’09’s) result (variable-rate) shown
to be sufficient in the same sense.
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Causal Coding for Control: Noisy Channels

The particular notion of stochastic stability is critical in characterizing the conditions
on the channel. Sahai-Mitter (IT’06) and Matveev-Savkin (SICON’07) considered
almost sure stability and relation with zero-error capacity.

Sahai-Mitter (IT’06) also considered a characterization for reliability for controlling
unstable processes, named, any-time capacity, defined for the finite moment criteria.

With a departure from the bounded noise assumption, Matveev (MCSS’08), considered
a more general model of multi-dimensional systems driven by an unbounded noise
process considering stability in probability: for large enough p < 1, there exists b s.t.

P (xt ≤ b) ≥ p, t ≥ 0.

Martins-Dahleh (TAC’08), Sahai-Mitter (IT’06) and Matveev-Savkin (SICON’08) considered
stability in probability also for bounded noise settings.
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Causal Coding for Control: Noisy Channels

In today’s talk (problem P1), the problem is to find, for the system

xt+1 = axt + but + wt,

the largest class of channels Q, for which there exists a policy (both control and
encoding), so that {xt} is stochastically stable:

When does an unstable linear system driven by unbounded noise, controlled over
a channel (possibly with memory) is stochastically stabilizable in the following sense:
Find {Q ∈ Q} for which there exist control and coding policies such that

- The ergodic theorem applies, the state process is asymptotically mean stationary.

- The state process has finite average second moment.
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Stochastic Stability Notion: Asymptotic (Mean)
Stationarity

Let X = R
d and Σ = X

∞ denote the sequence space of all one-sided sequences
drawn from X. Thus, if x ∈ Σ then x = {x0, x1, . . . } with xi ∈ X.

Let Xn : Σ → X denote the coordinate function such that Xn(x) = xn.

Let T denote the shift operation on Σ, that isXn(Tx) = xn+1. Tx = {x1, x2, . . . }.

Definition .1. A random process with measure P is N−stationary, (cyclo-stationary
or periodically stationary with period N ) if P (TNB) = P (B) for all B ∈ B(Σ). If
N = 1, stationary.

Definition .2. A random process is N−ergodic if A = TNA implies that P (A) ∈

{0, 1}. If N = 1, it is ergodic.
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Stochastic Stability Notion: Asymptotic (Mean)
Stationarity

Definition .3. A process with a probability measure (Ω,F , P ) is asymptotically mean
stationary (AMS) if there exists a probability measure P̄

lim
n→∞

1

n

n−1
∑

k=0

P (T−kF ) = P̄ (F ),

for all events F . Here P̄ is the stationary mean of P .

This property is equivalent to the applicability of the ergodic theorem.

An N-stationary process is AMS.
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Stochastic Stabilization over a DMC: Necessity and
Sufficiency for AMS

Theorem .1. [Y. (IT’12) + book chapter]

(i) For stability over a DMC channel with any causal encoding and controller policy
under the condition of the AMS property or that lim inft→∞

1
th(xt) ≤ 0, the channel

capacity must satisfy
C ≥ log2(|a|).

(ii) If
C > log2(|a|),

there exist coding and control policies such that the state process is AMS.
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Also Applies for Channels with Memory

Let Class A be the set of channels which satisfy
a) the Markov chain condition:

q
′
t ↔ qt, q[0,t−1], q

′
[0,t−1] ↔ x[0,t],

for all t ≥ 0 and
b) whose capacity with feedback is given by:

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]),

Theorem .1 is applicable except that for sufficiency, further conditions are needed,
such as a channel which restarts itself (e.g. indecomposable Markov channels) and
allows an exponential decay of error for rates less than capacity: see Tatikonda-Mitter
(IT’09), Permuter-Weissman-Goldsmith (IT’09)).
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Necessity: Sketch

The mutual information term satisfies

I(q′t; q[0,t]|q
′
[0,t−1]) = H(q′t|q

′
[0,t−1]) −H(q′t|q[0,t], q

′
[0,t−1])

= H(q′t|q
′
[0,t−1]) −H(q′t|q[0,t], xt, q

′
[0,t−1])

≥ H(q′t|q
′
[0,t−1]) −H(q′t|xt, q

′
[0,t−1])

= I(xt; q
′
t|q

′
[0,t−1]) (6)
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Necessity: Sketch

C ≥ lim sup
T→∞

(1/T )

( T−1
∑

t=1

(xt; q
′
t|q

′
[0,t−1])) + I(x0; q0)

)

≥ lim sup
T→∞

(1/T )

( T−1
∑

t=1

(

h(xt|q
′
[0,t−1]) − h(xt|q

′
[0,t])

)

+ I(x0; q
′
0)

)

= lim sup
T→∞

(1/T )

(( T−1
∑

t=1

log2(|A|)

)

+ h(x0|q
′
0) − h(xT−1|q

′
[0,T−1]) + I(x0; q

′
0)

))

= log2(|A|) − lim inf
T→∞

(

(1/T )h(xT−1|q
′
[0,T−1])

)

Additional steps, also involving an argument in Matveev’08 for the converse.
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Sufficiency

Let n be a given block length. We will consider a class of uniform quantizers,
defined by two parameters, with bin size ∆ > 0, and an even number K(n) ≥ 2:

Q∆
K(n)(x) =

{

(k − 1
2(K(n) + 1))∆, if x ∈ [(k − 1 − 1

2K(n))∆, (k − 1
2K(n))∆)

Z, if x 6∈ [−1
2K(n)∆, 12K(n)∆),

where Z denotes the overflow symbol in the quantizer.

Bin Size 

Overflow bin Overflow bin

Figure 3: Quantizer.
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Sufficiency

Adaptive Zooming Quantizer: An idea known since early 70’s (Goodman-Gersho
(TCOM’74)). Also used in control literature recently extensively.

Zoom-out when the state has escaped the quantizer.

Zoom-in when the state is inside the quantizer’s granular region.

Our contribution here is on its stability analysis. To analyze stability, we consider
the following.
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Stochastic Stability: Markov Chains

Let {xt, t ≥ 0} be a Markov chain with state space (X,B(X)).

Definition .4. For a Markov chain, a probability measure π is invariant on the Borel
space (X,B(X)) if

π(D) =

∫

X

P (x,D)π(dx), D ∈ B(X) .

Existence of a unique invariant probability measure (and thus positive Harris recurrence)
lets the ergodic theorem hold: 1

N

∑N−1
t=0 f(xt) →

∫

π(dx)f(x), for all integrable f
under π a.s..
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Stochastic Stability: Markov Chains under
Random-Time State-Dependent Drift

The following characterizes stabilization when control is applied at random times.
Let τz, z ≥ 0 with τ0 = 0 be such a sequence (of what is known as stopping times).

Theorem .2. [Y. -Meyn (TAC’12)] Suppose that {xt} is a ϕ-irreducible Markov chain
and V : X → (0,∞), δ : X → [1,∞), f : X → [1,∞), a small setC, and a constant
b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz] ≤ V (xτz) − δ(xτz) + b1{xτz∈C}

E
[

τz+1−1
∑

k=τz

f(xk) | Fτz

]

≤ δ(xτz) , z ≥ 0.
(7)

Then {xt} is positive Harris recurrent, and moreover π(f) < ∞, with π being the
invariant distribution.
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Stochastic Stability: Markov Chains

As a corollary:

Corollary .1. [Y. - Meyn (TAC’12)] Suppose that {xt} is aϕ-irreducible Markov chain.
Suppose that there is a function V : X → (0,∞), a small set C, and a constant
b ∈ R, such that the following hold:

E[V (xτz+1
) | Fτz] ≤ V (xτz) − 1 + b1{xτz∈C}

sup
x∈X, z≥0

E[τz+1 − τz | Fτz = x] < ∞.
(8)

Then {xt} is positive Harris recurrent.
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Sufficiency for AMS: Construction of the Stopping
Times

Thus, when the decoder output is the overflow signal, then the quantizer is zoomed-
out.

Zoom-in when state is within the granular region of the quantizer. Define ht :=
xt

∆t2
R′−1

. We will say that the quantizer is perfectly zoomed when |h1| ≤ 1, and

under-zoomed otherwise.

Define a sequence of stopping times (with n a block-length)

τ0 = 0, τz+1 = inf{kn > τz : |hkn| ≤ 1}, z, k ∈ Z+
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Geometric Bound on the Stopping Time Distribution

For large ∆τz , roughly for r > 1 (exact expression is not included here):

P (τz+1 − τz ≥ kn|xτz,∆τz) ≤ Mr
−kn

,

uniformly in xτz .

By the geometric bound, E[τ1] < ∞, uniformly bounded for large ∆ values.
Hence, by the random-time drift criterion, we can show that, there exist ψ > 0, |G| <

∞ such that

E[log(∆
2
τz+1

)|∆τz, hτz] ≤ log(∆
2
τz
) − ψ +G1{|∆τz |≤F} (9)

By making the bin size process countable, the Markov chain becomes irreducible
and the analysis can be completed.

30



Quadratic Stability - More Restrictive Conditions

Given a message set M(n) = {1, 2, . . . ,K(n) + 1}, and a decoding function
γ : M′n → M(n) define:

• Type I-A: Error from a granular symbol to another granular symbol.

P
e
g|g(n) := max

c∈M(n)\Z
P (γ(q

′
[0,n−1]) 6= c, γ(q

′
[0,n−1]) 6= Z|c),

where conditioning on c means that the symbol c is transmitted.
• Type I-B: Error from a granular symbol to Z :

P
e
g|g(n) := max

c∈M(n)\Z
P (γ(q

′
[0,n−1]) = Z|c)

• Type II: Error from Z to a granular symbol:

Pe := P
e
g|Z(n) = P (γ(q

′
[0,n−1]) 6= Z|Z)
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Quadratic Stability

Theorem .3. [Y. (IT’12)] A sufficient condition for quadratic stability over a DMC is
that:

lim
n→∞

(
1

n
log(P e

Z|g(n)) + 2 log(|a| + δ) < 0,

lim
n→∞

(κ
1

n
log(P e

g|Z(n)) + 2 log(|a| + δ) < 0,

lim
n→∞

(κ
1

n
log(P e

g|g(n)) + 2 log(|a| + δ) + 2κ log(α) < 0,

R
′
(n) > n log2(|a|/α)

with arbitrarily small, positive η > 0 and κ < 1

log |a|+δ
|a|

(
|a|+δ
α )

.

A sufficient condition: The exponent under random coding satisfiesE(R) >
2 log2(|a|+δ)

κ

(Sahai-Mitter(IT’06) had κ = 1 with bounded noise).
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Finite Moment Stability: Open Issues

The error exponent with feedback is typically improved with feedback, unlike capacity
of DMCs.

However, a precise solution to the error exponent problem of fixed length block
coding with noiseless feedback is not known.

Some partial results have been reported in the information theory literature: Dobrushin’62
(sphere packing bound is tight for a class of symmetric channels for rates above a
critical number even with feedback), Csiszar-Körner, Haroutunian’77, Dyachkov’75,
Nakibog̃lu et al’09.
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Problem P2: Design of Information Channels for
Optimization

Consider the optimization problem where the controller has access to channel
outputs where Q(dy|x) is the channel.

We consider first the single-stage case

J(P,Q) = inf
Π
E
Q,Π
P

[

c(X0, U0)
]

= inf
γ∈G

∫

X×Y

c(x, γ(y))Q(dy|x)P (dx)

in the channelQ, where G is the collection of all Borel measurable functions mapping
Y into U.
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Problem P2: Design of Information Channels for
Optimization

Let P(X) denote the family of probability measures on X.

Let {µn, n ∈ N} be a sequence in P(RN). Recall that {µn} is said to converge
to µ ∈ P(RN) weakly if

∫

RN
c(x)µn(dx) →

∫

RN
c(x)µ(dx)

for every continuous and bounded c : RN → R.

Definition .5. [Convergence of Channels] (i) A sequence of channels {Qn} converges
to a channel Q weakly at input P if PQn → PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn → PQ in total variation, i.e., if ‖PQn − PQ‖TV → 0.
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Continuity on the Space of Channels

Theorem .4. [Y.-Linder (SICON’12)]
We do not have continuity under weak convergence even for continuous cost functions.

Theorem .5. [Y.-Linder (SICON’12)]
If the cost function is measurable and bounded, the optimal cost J(P,Q) is is continuous
on the set of communication channels Q under under the topology of total variation.

This result will be useful to prove existence of optimal coding policies shortly.
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Comparison of Information Channels

This problem is related to comparison of experiments as studied by D. Blackwell
(’55) and Le Cam (’64). There is a partial order in the space of channels characterized
by simulation of outputs.

X   Y1 Y2

Q Q'

Figure 4: Blackwell’54: Q is more informative than the composite
channel QQ’.

Converse holds under further technical conditions on the set of kernels.
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Application: Quantizers as a class of channels

We can consider the problem of convergence and optimization of quantizers. We
start with the definition of a quantizer.

Definition .6. An M -cell vector quantizer, q, is a (Borel) measurable mapping from
X = R

n to the finite set {1, 2, . . . ,M}, characterized by a measurable partition
{B1, B2, . . . , BM} such that Bi = {x : q(x) = i} for i = 1, . . . ,M . The Bi are
called the cells (or bins) of q.

A quantizerQ with cells {B1, . . . , BM}, however, can also be characterized as a
stochastic kernel Q on B(X × {1, . . . ,M}) defined by

Q(i|x) = 1{x∈Bi}
, i = 1, . . . ,M

so that q(x) =
∑M

i=1Q(i|x).
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Existence of Optimal Quantizers: Convex Codecells

In the analysis, we will restrict the quantizers to have convex codecells.

By György-Linder (IT’03), there exist pairs of complementary closed half spaces
{(Hi,j, Hj,i) : 1 ≤ i, j ≤ M, i 6= j} such that for all i = 1, . . . ,M ,

Bi ⊂
⋂

j 6=i

Hi,j.

Since B̄i :=
⋂

j 6=i

If P admits a density, P (B̄i \ Bi) = 0 for all i = 1, . . . ,M .

One can obtain a (P–a.s) representation of Q by the M(M − 1)/2 hyperplanes
hi,j = Hi,j ∩Hj,i.
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Existence of Optimal Quantization Policies: Convex
Codecells

Let QC(M) denote the set of quantizers with convex codecells. A sequence of
quantizers converges if each of the coefficients defining hyperplanes in the quantizer
converges pointwise.

Theorem .6. [Y.-Linder (SICON’12)] The set QC(M) is compact under total variation
at any input measure P that admits a density.

Theorem .7. [Y.-Linder (SICON’12)] LetP be absolutely continuous and suppose the
goal is to find the best quantizerQwithM cells minimizing J(P,Q) = infγ E

Q,γ
P

∫

c(x, u),
for measurable and bounded c. Then an optimal quantizer exists.
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Multi-Stage Case: Static Channels

A sequence of channels {Qn} converges to a channelQ uniformly in total variation
if

lim
n→∞

sup
x∈X

∥

∥Qn( · |x) −Q( · |x)
∥

∥

TV
= 0.

The above is applicable to additive noise channels, where the additive noise admits
a density.

Theorem .8. Consider the multi-stage cost function with arbitrary T ∈ N. If the
cost function is bounded measurable, the optimization problem is continuous in the
observation channel in the sense that if {Qn} is a sequence of channels converging
to Q uniformly in total variation, then

lim
n→∞

J(P,Qn) = J(P,Q).
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Multi-Stage Case: Dynamic Channels

Consider

xt+1 = f(xt, ut, wt),

Suppose that the goal is the minimization,

inf
Πcomp

inf
γ
EΠcomp,γ
ν0

[
T−1
∑

t=0

c(xt, ut)], (10)

over all quantization policiesΠcomp, and control policies γ with initial probability measure
ν0.

42



Channel

Plant

Coder Controller

Figure 5: First consider a noiseless setting.
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A Structural Result on Optimal Quantization Policies

Let P(X) denote the set of probability measures on (X) under weak convergence
and πt(·) = P (xt ∈ ·|q[0,t−1], u0,t−1).

The following is a minor extension of Walrand-Varaiya (IT’82), Teneketzis(IT’06)
and Y. (IT’12).

Theorem .9. Under the objective given in (10), any causal composite quantization
policy can be replaced, without any loss in performance, by one which only uses the
conditional probability measure πt(·) = P (xt ∈ ·|q[0,t−1]), the state xt, and the time
information t, at time t.

This can be expressed as a quantization policy which only uses {πt, t} to generate
a quantizer, where the quantizer uses xt to generate the quantization output qt.

Let ΠW denote this class of optimal policies.
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MDP Formulation

Under ΠW :
∫

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dx|xt−1, ut−1)
∫ ∫

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dx|xt−1, ut−1)
.

Here, P (qt−1|πt−1, xt−1) is determined by the quantizer policy.

The sequence of conditional measures and quantizers {(πt, Qt)} form a controlled
Markov process in P(Rn) × Q, with cost to be optimized:

inf
γ
Jπ0(Π

comp, γ, T ) = EΠcomp

π0

[

1

T

T−1
∑

t=0

c(πt, Qt)

]

,

where

c(πt, Qt) =

M
∑

i=1

inf
u∈U

∫

Q−1
t (i)

πt(dx)c0(x, u).
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Existence

Assumptions:

(i) The evolution of the Markov source {xt} is given by

xt+1 = f(xt) + wt, t ≥ 0 (11)

where {wt} is i.i.d. Gaussian.

(ii) Action space U is compact and c0 : Rn × U → R+ is bounded and continuous.

(the compactness and boundedness conditions can be relaxed for quadratic cost
functions).
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Existence

Let ΠC
W be the set of coding policies in ΠW with quantizers having convex codecells.

Theorem .10. [Y.-Linder (CDC’12)] For any T ≥ 1, there exists a policy in ΠC
W such

that
inf

Πcomp∈ΠC
W

inf
γ
Jπ0(Π

comp
, γ, T ) (12)

is achieved. Letting JTT (·) = 0 and

JT0 (π0) := min
Πcomp∈ΠC

W
,γ

Jπ0(Π
comp, γ, T ),

the dynamic programming recursion holds.

TJ
T
t (πt) = min

Q∈Qc

(

c(πt, Qt) + TE[J
T
t+1(πt+1)|πt, Qt]

)
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Proof Sketch: Existence

Lemma .1. For all t ≥ 0, πt(dx) admits a probability density function and the
sequence of density functions is uniformly continuous and is equi-continuous (due
to the convolution with the Gaussian noise).

Lemma .2. (a) Let {µn} be a sequence of density functions on R
n which are uniformly

equicontinuous and uniformly bounded and assume µn → µ weakly. Then µn → µ

in total variation.
(b) Let {Qn} be a sequence in Qc such thatQn → Q weakly at P for someQ ∈ Qc.
If P admits a density, then Qn → Q in total variation at P .

Hence, the existence theorem can be recalled since weak convergence implies
total variation convergence under the setup.
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Extensions

For controlled Markov sources, in the context of LQG systems, existence of optimal
policies can be established. The predictive encoding structure suggested in Tatikonda-
Sahai-Mitter (TAC’04) and Nair-Fagnani-Zampieri-Evans (Proc. IEEE’07) can be shown
to be optimal together with an existence result.

The above results are also applicable to settings where the system is controlled
over a noisy channel with noiseless feedback, almost identically.

If there is no feedback or there is noisy feedback, the analysis is very involved,
and if there are no further restrictions; generally intractable as the horizon increases.
Teneketzis (IT’06) and Mahajan-Teneketzis (JSAC’08), Mahajan-Teneketzis (SICON’09)
investigated such settings.
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Concluding Remarks and Two Directions

For stabilization, there is a total order on the set of channels: For asymptotic
mean stationarity and ergodicity, Shannon capacity is the border for the converse and
achievability for a large class of channels with memory and feedback.

For finite moments, the criteria we obtained are more stringent. Our bounds may
not be tight for finite moments (we do not have a converse theorem); problems on
fixed-length error exponents and unequal error exponents.

For optimization problems, there is a partial order: Blackwell ordering. Structural
results and existence results can be obtained under conditions on the source process.

Possible direction: Empirical/Training and Approximation based design methods
for optimal quantization to exploit the structural and existence results.

Possible direction: Topological issues on mismatch in the beliefs/priors in optimal
teams. In the talk, we considered topologies and continuity on channels.
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