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Key Features of Decentralized Systems

Decisions are made by multiple decision-makers that have
different information.

Information of one decision-maker may depend on decisions
made by other decision-makers.
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Comparison with Centralized Stochastic Control

In centralized stochastic control all decisions are made by a
centralized decision maker who has access to all the
information and has perfect recall.

Key assumption of centralized stochastic control is violated in
decentralized systems.

Techniques from centralized stochastic control cannot be
directly applied to decentralized stochastic control.
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Approaches to Decentralized Stochastic Control

Person by person approach

The designer’s approach

Combination of person by person and designer’s approach.

Methods exploiting the system’s information structure.
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Person-by-person Approach

Fix the control strategies of all decision-makers except one
(say decision-maker i).

Optimize with with respect to the control strategy of decision
maker i .

Qualitative properties of globally optimal control strategies:

Decentralized detection
Real-time communication
Decentralized control

Iterative process for determining person-by-person-optimal
strategies (not globally optimal).
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The Designer’s Approach

System designer knows the system model and the statistics of
the primitive random variable and chooses control strategies
for all decision-makers.

Centralized planning problem whose solution results in
globally optimal control strategies.

Globally optimal strategies determined by a dynamic program
where each step is a functional optimization problem.

Computationally formidable problem.
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Methods Exploiting System’s Info Structure

Partially nested information structure

Stochastically nested information structure

Information sharing structures

Delayed sharing
Periodic sharing
Control sharing
Broadcast information sharing
Common and private observations.
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The Common Information Approach
Partial History Sharing Info Structure

Partial history sharing information structure introduced in
[NMT]

Key features

Controllers sequentially share part of their past data
(observations and control actions) with one another by means
of a shared memory.
All controllers have perfect recall of the commonly shared data
(common information).
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The Common Information Approach

Model subsumes a large class of decentralized control models
where information is shared among controllers.

A general solution methodology was presented in [NMT].

Solution methodology based on the common information
approach developed in Nayyar [Ph.D. thesis]

Common information approach applicable to all sequential
decision-making problems.
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The Common Information Approach

Key idea

Reformulate original decentralized stochastic control problem
into an equivalent centralized stochastic control problem from
the point of view of a fictitious coordinator who has access
only to common information and selects prescriptions that map
each controller’s private information into actions.

Solve the coordinator’s problem using ideas from Markov
decision theory

Translate the results back to the original problem.
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The Common Information Approach

Features

Structural results (qualitative properties) for globally optimal
strategies.

A dynamic program for determining globally optimal strategies
for all controllers.

Structural results obtain by the common information approach
can not be obtained by the person-by-person approach

Dynamic program obtained by the common information
approach is simpler than that obtained by the designer’s
approach.
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The Common Information Approach

Features

Provides a unified view of stochastic control

If no controller has private information (all information is
common) it reduces to a POMDP

If there is no common information among all controllers it
reduces to the designer’s approach.

(Nayyar, Ph.D. Thesis)
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The Common Information Approach

Illustrate the approach.

Present solution to 40-year old conjecture on delayed sharing
information structures (Witsenhausen 1971).
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The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



The Common Information Approach

Book chapter contains

Point-to-point real-time communication with feedback.

Networked control systems.

Paging and registration in cellular networks.

Multiaccess broadcast systems.

Static team example*

Dynamic team example*

*(illustrate how to simplify search of globally optimal
strategies)

17



Optimal Control Strategies in Delayed Sharing Information
Structures
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Dynamic System
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)
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)
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Y j
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}

i.i.d. noise process
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{

W j
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, j = 0, 1, 2 mutually independent.

Note: All r.v.’s take values in finite spaces.
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The Model

DMs’ Information

DMs share their observations and actions with one another
with k-step delay.

DM j ’s information at t, j = 1, 2

I jt :=
(

Y1:t−k ,U1:t−k ,Y
j
t−k+1:t ,U

j
t−k+1:t−1

)
Yt :=

(
Y 1
t ,Y

2
t

)
Ut :=

(
U1
t ,U

2
t

)
Y1:t−k := (Y1,Y2, . . . ,Yt−k)

U1:t−k := (U1,U2, . . . ,Ut−k)

I jt :=
(

Ct ,P
j
t

)
Ct := (Y1:t−k ,U1:t−k) (Common Info)

P j
t :=

(
Y j
t−k+1:t ,U

j
t−k+1:t−1

)
(Private Info)
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The Model

DMs’ Strategies

U j
t = g j

t

(
Y1:t−k ,U1:t−k ,Y

j
t−k+1:t ,U

j
t−k+1:t−1

)

g j
t ⇒ DM j ’s control/decision strategy at t

g j :=
(

g j
1, g

j
2, . . . , g

j
T

)
⇒ DM j ’s control/decision strategy
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The Model

Instantaneous Cost

lt (Xt ,Ut) = lt
(
Xt ,U

1
t ,U

2
t

)
, t = 1, 2, . . . ,T

Objective

Determine a control/decision strategy

g1:2 :=
(
g1, g2

)
g i :=

(
g i
1, g

i
2, . . . , g

i
T

)
, i = 1, 2

to minimize expected total cost

J
(
g1:2

)
= E

{
T∑
t=1

lt
(
Xt ,U

1
t ,U

2
t

)}
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History of the Problem

Structure of an optimal control strategy conjectured by
Witsenhausen in 1971

U j
t = g j

t

(
P j
t ,Pr (Xt−k+1|Ct)

)
(∗)

Varaiya-Walrand, 1978

(∗) is correct when k = 1

(∗) is incorrect when k > 1 (counterexample)

Structure of an optimal control strategy has remained
unknown when k > 1 until 2011 [NMT, IEEE TAC, July
2011].
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The Common Information Approach - Key Steps

Step 1 - Show equivalence between the original system and
coordinated system

Identify common information among all controllers at each
time t

Identify the private information of each controller at each t
If common information is non-empty, construct a coordinated
system in which at each t the coordinator has access to the
common information at t.
Based on the common information the controller selects
prescriptions (according to a coordination strategy) for each
controller.
Prescription maps the controller’s private information to
control action
System dynamics, instantaneous cost function, performance
metric same as in original system
Objective: Select a coordination strategy to minimize the
expected total loss.
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The Common Information Approach - Key Steps

Step 1 - Construct a coordinated system

Step 2: Equivalence of Problems 1 and 2

System

Y 2
t

DM1

A2
t

Communication with
delay of

n time-steps

DM2

Y 1
t

A1
t

Problem 1

Xt

System

Y 2
t

DM1

A2
t

DM2

Y 1
t

A1
t

Y 1
t−n, A1

t−n Y 2
t−n, A2

t−n
γ1

t γ2
t

A1
t = γ1

t (P 1
t ) A2

t = γ2
t (P 2

t )

Coordinator

Problem 2

Xt

⇐

Going from Problem 2 to Problem 1

Lemma 1

Consider any choice of coordinator’s policy ψ = (ψ1
1 , ψ2

1 . . . , ψ1
T , ψ2

T ) in Problem 2. Define g1,
g2 as

gk
t (·, Ct) := ψk

t (Ct)

for k = 1, 2, t = 1, 2 . . . , T . Then,

J 1(g1, g2) = J 2(ψ)
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1

The coordinator selects prescriptions γ1t , γ
2
t

γ1t : Space of DM1’s private info → Space of DM1’s actions

γ2t : Space of DM1’s private info → Space of DM2’s actions

U1
t = γ1t

(
P1
t

)
, U2

t = γ2t
(
P2
t

)
Γ1
t = ψ1

t (Ct), Γ2
t = ψ1

t (Ct){
ψ1
t , ψ

2
t , t = 0, 1, 2, . . . ,T − 1

}
coordination law
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The Common Information Approach - Key Steps

Step 1 - Construct a Coordinated System

Plant dynamics, instantaneous cost function the same as in
the original system

Objective: Determine a coordination law

ψ := (ψ0, ψ1, . . . , ψT−1) , ψt :=
(
ψ1
t , ψ

2
t

)
so as to minimize the expected total loss

J (ψ) = Eψ
{

T∑
t=1

lt
(
Xt , γ

1
t , γ

2
t

)}
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The Common Information Approach - Key Steps

Step 2 - Formulate coordinated system as POMDP

Coordinator’s decision problem is a centralized stochastic
control problem when common information increases with
time.

Formulate the centralized stochastic control problem as a
POMDP. Identify:

(unobserved) state
observations
control actions
instantaneous cost
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The Common Information Approach - Key Steps

Step 2 - Formulate coordinated system as a POMDP

State Process St , t = 1, 2, · · · ,T
St =

(
Xt ,P

1
t ,P

2
t

)
P i
t =

(
Y i
t−k+1:t ,U

i
t−k+1:t−1

)
, i = 1, 2

Observation Process Ot , t = 1, 2, · · · ,T
Ot =

(
Y 1
t−k ,U

1
t−k ,Y

2
t−k ,U

2
t−k

)
Action Process

At =
(
Γ1
t , Γ

2
t

)
We can verify that

Pr (St+1,Ot+1 |S1:t ,A1:t ) = Pr (St+1,Ot+1 |St ,At )

lt (Xt ,Ut) = l̃t (St ,At)

Decision problem at coordinator is POMDP.
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The Common Information Approach - Key Steps

Step 3 - Solve the resultant POMDP

Use Markov decision theory to identify:

1 the structure of optimal coordination strategies in the
coordinated system.

2 a dynamic program to obtain an optimal coordinated strategy
with such structure.
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The Common Information Approach - Key Steps

Step 3 - Solve the resultant POMDP

Let

Θt(s) = Pr
(
St

∣∣Ct , Γ
1
1:t−1, Γ

2
1:t−1

)

The realization θt of Θt updates according to

θt+1 = ηt
(
θt , y

1
t−k+1, y

2
t−k+1, u

1
t−k+1, u

2
t−k+1, l

1
t , l

2
t

)
(non-linear filtering equation)

There exists an optimal coordination strategy of the form

Γ1
2 = ψ1

t (Θt) , Γ2
t = ψ2

t (Θt)
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The Common Information Approach - Key Steps

Step 3 - Solve the resultant POMDP

An optimal coordination strategy is determined by the
following DP. Define:

Vt (θ) = min
γ1t ,γ

2
t

E
{

lT
(
XT , γ

1
T , γ

2
T

) ∣∣ΘT = θ, Γ1
T = γ1T , Γ

1
T = γ2T

}
(1)

and for t = 1, 2, · · · ,T − 1

Vt(θ) = min
γ1t ,γ

2
t

E
{

lt
(
Xt , γ

1
t , γ

2
t

)
+Vt+1

(
ηt
(
θ,Y 1

t−K+1,Y
2
t−K+1,U

1
t−K+1,U

2
t−K+1, γ

1
t , γ

2
t

))∣∣Θt = θ, Γ1
t = γ1t , Γ

2
t = γ2t

}
(2)

For each t and for each θ ∈ Θt , the optimal prescription is the
minimizer of Vt (θ).
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The Common Information Approach - Key Steps

Step 4 - Show equivalence between original system and
coordinated system

For any coordination strategy in the coordinated system, there
exists a control strategy in the original system that results in
the same expected total cost and vice versa.
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Step 4

Step 2: Equivalence of Problems 1 and 2
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Going from Problem 2 to Problem 1

Lemma 1

Consider any choice of coordinator’s policy ψ = (ψ1
1 , ψ2

1 . . . , ψ1
T , ψ2

T ) in Problem 2. Define g1,
g2 as

gk
t (·, Ct) := ψk

t (Ct)

for k = 1, 2, t = 1, 2 . . . , T . Then,

J 1(g1, g2) = J 2(ψ)
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Lemma 1

Consider any choice of coordinator’s policy
ψ =

(
ψ1
1, ψ

2
1, . . . , ψ

1
T , ψ

2
T

)
in the coordinated system. Define

g1, g2 as
gk
t (·,Ct) := ψk

t (Ct)

for k = 1, 2, t = 1, 2, . . . ,T . Then,

J
(
g1, g2

)
= J (ψ)
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Figure: Going from original system to coordinated system.

Lemma 2

Consider any choice of decision makers’ policies g1, g2 in original
system. Define ψ as

ψk
t (Ct) := gk

t (·,Ct)

for k = 1, 2, t = 1, 2, . . . ,T . Then,

J (ψ) = J
(
g1, g2

)
34



The Common Information Approach - Key Steps

Step 5 - Translate the solution of the coordinated system to the
original system

Use the equivalence of the fourth step to translate the
structural results and the dynamic program obtained in the
third step for the coordinated system to structural results and
dynamic program for the original system.
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The Common Information Approach - Key Steps

Step 5 - Translate the solution of the coordinated system to the
original system

For the k-th step delayed sharing information structure, there
exist optimal control/decision strategies of the form

U j
t = g j

(
P j
t ,Pr

(
Xt ,P

1
t ,P

2
t |Ct

))
, j = 1, 2

If ψ∗
1:T =

(
ψ∗1
1:T , ψ

∗2
1:T

)
is an optimal coordination strategy

(i.e. the solution of DP (1)-(2)), then an optimal control
strategy g∗

1:T :=
(
g∗1
1:T , g

∗2
1:T

)
is

g∗j
t (·, θt) = ψ∗j

t (θt), j = 1, 2, t = 1, 2, . . . ,T .

θt = Pr
(
Xt ,P

1
t ,P

2
t |ct

)
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Discussion

Centralized stochastic control

Controller’s belief fundamental for predicting future costs

If control strategy for the future is fixed as a function of future
beliefs, current belief is a sufficient statistic for future cost
under any current action.

Optimal action is only a function of current belief on state.
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Discussion

Decentralized stochastic control

Two difficulties

(1) Any prediction of future costs must involve a belief on system
state and some means of predicting other DMs actions (as cost
depend on state and other DMs actions).

(2) Different DMs have different information ⇒ beliefs formed by
each controller and their prediction of future costs can not be
consistent.
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Discussion

Common Information

Beliefs based on common info are consistent among all DMs
and can serve as a consistent sufficient statistic.

Based on (realization of) common info DMs can know how
each DM will map its private info to control action.

Common info beliefs and prescriptions must play a
fundamental role in a general theory of decentralized
stochastic control ⇒ fictitious coordinator.
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Common Information

POMDP equivalent to original problem

Equivalence ⇒

(i) Qualitative properties of globally optimal strategies

(ii) Sequential decomposition (DP) of the original problem.
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Discussion

Common Information

Fictitious coordinator invented for conceptual clarity

Each DM in the original system can solve coordinator’s
problem

Presence of coordinator allows to look at problem from the
point of view of a “higher level authority”

Higher level authority simultaneously determines DMs’
prescriptions.
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Value function of POMDP piecewise linear and concave
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Discussion

Common Information in other areas

Consensus (Washburn-Teneketzis 1984)

Trading (Milgrom-Stokey 1978)
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