Sparse Regression Codes

Sekhar Tatikonda (Yale University)

in collaboration with Ramji Venkataramanan (University of Cambridge) Antony Joseph (UC-Berkeley) Tuhin Sarkar (IIT-Bombay)

Information and Control in Networks October 18, 2012

Summary

- Lossy coding fundamental component of networked control
- Efficient codes for lossy Gaussian source coding
- Based on sparse regression

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

Gaussian Data Compression

$$\mathbf{S} = S_1, \ldots, S_n$$

 $\hat{\mathbf{S}} = \hat{S}_1, \dots, \hat{S}_n$

<ロ> (四) (四) (三) (三) (三) (三)

2/18

- **S** i.i.d Gaussian source $\mathcal{N}(0, \sigma^2)$
- MSE distortion: $\frac{1}{n} \|\mathbf{S} \hat{\mathbf{S}}\|^2 \le D$

• Possible iff
$$R > R^*(D) = \frac{1}{2} \log \frac{\sigma^2}{D}$$

Achieving $R^*(D)$

- Shannon random coding
 - $\{\mathbf{\hat{S}}(1), \dots, \mathbf{\hat{S}}(2^{nR})\}$ each $\sim i.i.d \ \mathcal{N}(0, \sigma^2 D)$
- Exponential storage & encoding complexity
- Lattice codes compact representation
 - Conway-Sloane, Eyboglu-Forney, Zamir-Shamai-Erez, ...
- GOAL: Compact representiation + Fast encoding & decoding

Related Work

- Sparse regression codes for source coding
 - [Kontoyiannis, Rad, Gitzenis ITW '10]
- Comp. feasible constructions for finite alphabet sources:
 - Gupta, Verdu, Weissman [ISIT '08]
 - Jalali, Weissman [ISIT '10]
 - Kontoyiannias, Gioran [ITW'10]
 - LDGM codes: [Wainwright, Maneva, Martinian '10]
 - Polar codes: [Korada, Urbanke '10]

In this talk ...

- Ensemble of codes based on sparse linear regression
 - For point-to-point & multi-terminal problems
- Provably achieve rates close to info-theoretic limits
 with fast encoding + decoding
- Based on construction of Barron & Joseph for AWGN channel
 Achieve capacity with fast decoding [ISIT '10, Arxiv '12]

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

Sparse Regression Codes (SPARC)

A: $n \times ML$ design matrix or 'dictionary' with i.i.d $\mathcal{N}(0,1)$ entries

Codewords of the form $\mathbf{A}\beta$ - β : sparse $ML \times 1$ binary vector, $c^2 = \frac{\text{codeword variance}}{L}$

SPARC Construction

Choosing M and L

- For rate R codebook, need $M^L = 2^{nR}$
- Shannon codebook: L = 1, $M = 2^{nR}$
- We choose $M = L^b \Rightarrow L \sim \Theta(n/\log n)$
- Size of $\mathbf{A} \sim n \times (\frac{n}{\log n})^{b+1}$: polynomial in n

6/18

Minimum Distance Encoding

- Encoder: Find $\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{S} \mathbf{A}\beta\|$
- *Decoder*: Reconstruct $\hat{\mathbf{S}} = \mathbf{A}\hat{\beta}$

$$P_n = P\left(\frac{1}{n}\|\mathbf{S} - \mathbf{\hat{S}}\|^2 > D\right)$$

• Error Exponent: $T = -\limsup_{n \to \infty} \frac{1}{n} \log P_n \Rightarrow \frac{P_n}{n} \lesssim e^{-nT}$

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

Correlated Codewords

- Each codeword sum of *L* columns
- Codewords $\hat{S}(i)$, $\hat{S}(j)$ dependent if they have common columns

codewords dependent with $\hat{\mathbf{S}}(i) = M^L - 1 - (M-1)^L$

Error Analysis for SPARC

$$P(\mathcal{E}) \leq \underbrace{P(|\mathbf{S}|^2 \geq a^2)}_{\text{KL divergence}} + \underbrace{P(\mathcal{E} \mid |\mathbf{S}|^2 < a^2)}_?.$$

Define
$$U_i(\mathbf{S}) = \left\{ egin{array}{cc} 1 & ext{if } |\mathbf{\hat{S}}(i) - \mathbf{S}|^2 < D \\ 0 & ext{otherwise} \end{array}
ight.$$

$$P(\mathcal{E}(\mathbf{S}) \mid |\mathbf{S}|^2 < a^2) = P\left(\sum_{i=1}^{2^{nR}} U_i(\mathbf{S}) = 0 \mid |\mathbf{S}|^2 < a^2
ight)$$

 $\{U_i(\mathbf{S})\}$ are dependent

<ロ> (日) (日) (日) (日) (日)

Dependency Graph

For random variables $\{U_i\}_{i \in \mathcal{I}}$, any graph with vertex set \mathcal{I} s.t: If A and B are two disjoint subsets of \mathcal{I} such that there are no edges with one vertex in A and the other in B, then the families $\{U_i\}_{i \in A}$ and $\{U_i\}_{i \in B}$ are independent.

For our problem

$$U_i(\mathbf{S}) = \left\{ egin{array}{ccc} 1 & ext{if } |\mathbf{\hat{S}}(i) - \mathbf{S}|^2 < D \ 0 & ext{otherwise} \end{array}
ight., \quad i = 1, \dots, 2^{nR}$$

For the family $\{U_i(\mathbf{S})\}$, $\{i \sim j : i \neq j \text{ and } \hat{\mathbf{S}}(i), \hat{\mathbf{S}}(j) \text{ share at least one common term}\}$ is a dependency graph.

Suen's correlation inequality

Let $\{U_i\}_{i \in \mathcal{I}}$, be Bernoulli rvs with dependency graph Γ . Then

$$P\left(\sum_{i\in\mathcal{I}}U_i=0\right)\leq \exp\left(-\min\left\{\frac{\lambda}{2},\frac{\lambda^2}{8\Delta},\frac{\lambda}{6\delta}\right\}\right)$$

where

$$\lambda = \sum_{i \in \mathcal{I}} \mathbb{E} U_i,$$

$$\Delta = rac{1}{2} \sum_{i \in \mathcal{I}} \sum_{j \sim i} \mathbb{E}(U_i U_j),$$

$$\delta = \max_{i \in \mathcal{I}} \sum_{k \sim i} \mathbb{E} U_k.$$

Optimal Error Exponent for Gaussian Source

[lhara, Kubo '00] $2^{nR} \text{ codewords i.i.d } \mathcal{N}(0, a^{2} - D)$ $P_{n} < \underbrace{P(|\mathbf{S}|^{2} \ge a^{2})}_{\sim \exp(-n\mathcal{D}(a^{2}||\sigma^{2}))} + P(|\mathbf{S}|^{2} < a^{2}) \cdot \underbrace{P(\text{ error } | |\mathbf{S}|^{2} < a^{2})}_{\downarrow \text{ double-exponentially}}$

Main Result

Theorem

SPARCs with minimum distance encoding achieve the rate-distortion function with the optimal error exponent when

$$b > \frac{3.5R}{R - (1 - 2^{-2R})}$$

This is possible whenever $\frac{D}{\sigma^2} < 0.203$

Codebook representation *polynomial* in *n*: $n \times (\frac{n}{\log n})^{b+1}$ elements

Performance: Min-distance Encoding

10/18

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

SPARC Construction

n rows, ML columns

Choosing *M* and *L*:

- For rate R codebook, need $M^L = 2^{nR}$
- Choose *M* polynomial of $n \Rightarrow L \sim n/\log n$
- Storage Complexity \leftrightarrow Size of **A**: polynomial in *n*

A Simple Encoding Algorithm

Step 1: Choose column in Sec.1 that minimizes $\|\mathbf{X} - c_1 \mathbf{A}_j\|^2$

- Max among inner products $\langle \mathbf{X}, \mathbf{A}_i \rangle$

- 'Residue'
$${f R}_1 = {f X} - c_1 \hat{f A}_1$$

A Simple Encoding Algorithm

Step 2: Choose column in Sec.2 that minimizes $\|\mathbf{R}_1 - c_2 \mathbf{A}_i\|^2$

- Max among inner products $\langle \mathbf{R}_1, \mathbf{A}_j \rangle$

- Residue
$$\mathbf{R}_2 = \mathbf{R}_1 - c_2 \hat{\mathbf{A}}_2$$

A Simple Encoding Algorithm

Step L: Choose column in Sec. L that minimizes $\|\mathbf{R}_{L-1} - c_L \mathbf{A}_i\|^2$

- Max among inner products $\langle \mathbf{R}_{L-1}, \mathbf{A}_j \rangle$
- Final residue $\mathbf{R}_L = \mathbf{R}_{L-1} c_L \hat{\mathbf{A}}_L$

Performance

Theorem (RV, Sarkar, Tatikonda '12)

The proposed encoding algorithm approaches the rate-distortion function with exponentially small probability of error. In particular,

$$P\left(\ \textit{Distortion} \ > \sigma^2 e^{-2R} + \Delta
ight) \leq e^{-L\Delta}$$

for

$$\Delta \geq \frac{1}{\log M}.$$

Computation Complexity

ML inner products and comparisons \Rightarrow *polynomial* in *n*

Storage Complexity

Design matrix **A**: $n \times ML \Rightarrow polynomial$ in n

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

Point-to-point Communication

SPARCs

- Provably good with low-complexity decoding
 - [Barron-Joseph, ISIT '10,'11, Arxiv '12]

SPARC Construction

n rows, ML columns

- $\beta \leftrightarrow$ message, Codeword $\mathbf{A}\beta$
- For rate R codebook, need $M^L = 2^{nR}$
 - choose *M* polynomial of $n \Rightarrow L \sim n/\log n$
- Adaptive successive decoding achieves R < Capacity

うへで 14 / 20

$\mathsf{Side-info}\ \mathbf{Y} = \mathbf{X} + \mathbf{Z}$

 $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \sigma^2), \quad \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, N)$

イロト 不得下 イヨト イヨト 二日

16/20

Encoder

$$U = X + V, \quad V \sim \mathcal{N}(0, Q)$$

Quantize X to U

- Find **U** that minimizes $\|\mathbf{X} - a\mathbf{U}\|^2$, $a = \frac{\sigma^2}{\sigma^2 + \Omega}$

Encoder

$$U = X + V, \quad V \sim \mathcal{N}(0, Q)$$

Quantize X to U

- Find **U** that minimizes $\|\mathbf{X} - a\mathbf{U}\|^2$, $a = \frac{\sigma^2}{\sigma^2 + \Omega}$

16/20

Decoder

$$Y = X + Z \quad \longleftrightarrow \quad Y = aU + Z'$$

• Find **U** within bin that minimizes $\|\mathbf{Y} - a\mathbf{U}\|^2$

- Reconstruct
$$\mathbf{X} = E[\mathbf{X} | \mathbf{UY}]$$

Binning with SPARCs

• Quantize **X** to $a\mathbf{U}$ using $n \times ML$ SPARC (rate R_1)

Binning with SPARCs

Quantize X to aU using n × ML SPARC (rate R₁)
 (M/M')^L = 2^{nR}

Binning with SPARCs

- Quantize **X** to $a\mathbf{U}$ using $n \times ML$ SPARC (rate R_1)
- $(M/M')^L = 2^{nR}$
- Bin: defined by 1 subsection from each section
 - Encoder only sends indices of non-zero subsections
- Decodes **Y** to **U** within smaller $n \times M'L$ SPARC

Encoder

- $n \times ML$ SPARC of rate R_1
- Divide each section into M' subsections

- Defines
$$(M/M')^L = 2^{nR}$$
 bins

18 / 20

Encoder

- $n \times ML$ SPARC of rate R_1
- Divide each section into M' subsections
 - Defines $(M/M')^L = 2^{nR}$ bins

Encoder

• Within message bin 'quantize' S to U

$$U = X + \alpha S, \quad U \sim \mathcal{N}(0, P + \alpha^2 \sigma_s^2)$$

18 / 20

 $Z = X + S + N \quad \leftrightarrow \quad Z = (1 + \kappa)U + N'$

Decode U from Z the big (rate R₁) codebook

Main Result

Theorem

SPARCs attain the optimal information-theoretic limits for the Gaussian Wyner-Ziv and Gelfand-Pinsker problems with exponentially decaying probability of error.

19 / 20

Other multi-terminal networks

Multiple-access

Broadcast

<ロ> <同> <同> < 回> < 回>

4 / 20

э

Outline

- Background
- Sparse Regression Codes
- Optimal Encoding
- Practical Encoding
- Multi-terminal Extensions
- Conclusions

Summary

Sparse Regression Codes

- Rate-optimal codes for compression and communication
- Low-complexity coding algorithms
- Nice structure that enables
 - Binning (Wyner-Ziv, Gelfand-Pinsker)
 - Superposition (Multiple-access, Broadcast)

Future Directions

- Interference channels, Multiple descriptions, ...
- Improved coding algorithms ℓ_1 minimization etc.?
- General design matrices
- Finite-field analogs ?

(a)