Stabilization of Linear Systems Over Gaussian Relay Networks

Mikael Skoglund¹

KTH Royal Institute of Technology, Sweden

¹Joint work with Ali Zaidi, Tobias Oechtering (KTH, Sweden) and Serdar Yüksel (Queen's Univ., Canada)

Closed-loop System

A discrete-time LTI system

 $X_{t+1} = AX_t + U_t + W_t$

- The initial state X_0 has an arbitrary pdf with a given covariance Λ_0 (Tr[Λ_0] $< \infty$, $h(X_0) < \infty$)
- The process noise W_t is zero-mean i.i.d. Gaussian with covariance K_W (Tr $[K_W] < \infty$)
- The system matrix A has eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$, with $1 \leq |\lambda_i| < \infty$; i.e., the open loop system is unstable
- No constraint on the control signal U_t , in the general case

Stabilization over a Gaussian Relay Network

Decoder/Controller policy

$$U_t = \pi_t(R_{[0,t]}), \quad \text{with } R_{[0,t]} \triangleq \{R_0, R_1, \dots, R_t\}$$

• Observer/Encoder policy

$$S_{e,t} = f_t(X_{[0,t]}), \quad E[S_{e,t}^2] \le P_S$$

• Links are modeled as white Gaussian channels.

Objective: Find conditions on the matrix A such that the system can be mean-square stabilized.

Definition: Mean-square Stability

A system is said to be *mean-square stable* if there exists a constant $M < \infty$ such that $E[||X_t||^2] < M$ for all t.

Control over noisy Gaussian channels...

R. Bansal and T. Başar

Simultaneous design of measurement and control strategies for stochastic systems with feedback. *Automatica*,1989.

S. Tatikonda, A. Sahai, and S. Mitter

Stochastic linear control over a communication channel. *IEEE Trans. Automat. Control*, 2004.

N Elia

When Bode meets Shannon: Control-oriented feedback communication schemes. *IEEE Trans. Autom. Control*, 2004.

J. Freudenberg, R. Middleton, and V. Solo Stabilization and disturbance attenuation over a Gaussian communication channel. *IEEE Trans. Automat. Control*, 2010.

S. Yüksel and T. Başar

Control over noisy forward and reverse channels. *IEEE Trans. Automat. Control*, 2011.

G. Lipsa and N. C. Martins

Optimal memoryless control of a delay in Gaussian noise: A simple counterexample. *Automatica*, 2011.

A Necessary Condition for Stabilization

Theorem

If the linear system can be mean-square stabilized over the Gaussian relay network, then

$$\log\left(|A|\right) \le \liminf_{T \to \infty} \frac{1}{T} I\left(S_{e,[0,T-1]} \to R_{[0,T-1]}\right)$$

Proof

From the definition of directed information, and using properties of the system

$$\begin{split} I\left(S_{e,[0,T-1]} \to R_{[0,T-1]}\right) &= \sum_{t=0}^{T-1} I\left(S_{e,[0,t]}; R_t | R_{[0,t-1]}\right) \\ &\geq \{\text{standard tricks}\} \geq \sum_{t=0}^{T-1} I\left(X_t; R_t | R_{[0,t-1]}\right) \\ &= I\left(X_0; R_0\right) + \sum_{t=1}^{T-1} (h(AX_{t-1} + U_{t-1} + W_{t-1} | R_{[0,t-1]}) - h(X_t | R_{[0,t]})) \\ &\geq I\left(X_0; R_0\right) + \sum_{t=1}^{T-1} (\log(|A|) + h(X_{t-1} | R_{[0,t-1]}) - h(X_t | R_{[0,t]})) \\ &= h\left(X_0\right) + (T-1)\log\left(|A|\right) - h\left(X_{T-1} | R_{[0,T-1]}\right) \end{split}$$

Hence, since $h(X_0) < \infty$,

$$\begin{split} \liminf_{T \to \infty} \frac{1}{T} I\left(S_{e,[0,T-1]} \to R_{[0,T-1]} \right) \\ &\geq \liminf_{T \to \infty} \frac{1}{T} \left(h\left(X_0 \right) + (T-1) \log\left(|A| \right) - h\left(X_{T-1} | R_{[0,T-1]} \right) \right) \\ &= \log\left(|A| \right) - \limsup_{T \to \infty} \frac{1}{T} h\left(X_{T-1} | R_{[0,T-1]} \right) \end{split}$$

When the system is stable $h\left(X_{T-1}|R_{[0,T-1]}\right) \leq h(X_{T-1}) < \infty$, thus

$$\liminf_{T \to \infty} \frac{1}{T} I\left(S_{e,[0,T-1]} \to R_{[0,T-1]}\right) \ge \log(|A|)$$

Example: Gaussian two-hop

$$\begin{split} E[S_{e,t}^2] &\leq P_S, \ E[Z_{r,t}^2] = N_r, \ E[S_{r,t}^2] \leq P_R, \ E[Z_t^2] = N \\ I\left(S_{e,[0,T-1]} \to R_{[0,T-1]}\right) \\ &\leq \min\left\{I\left(S_{e,[0,T-1]} \to Y_{[0,T-1]}\right), I\left(S_{r,[0,T-1]} \to R_{[0,T-1]}\right)\right\} \\ &\leq \min\left\{\sum_{t=0}^{T-1} I(S_{e,t};Y_t), \sum_{t=0}^{T-1} I(S_{r,t};R_t)\right\} \\ &\leq \frac{T}{2}\min\left\{\log\left(1 + \frac{P_S}{N_r}\right), \log\left(1 + \frac{P_R}{N}\right)\right\} \end{split}$$

Hence, if the system can be stabilized

$$\log(|A|) \leq \frac{1}{2} \min\left\{ \log\left(1 + \frac{P_S}{N_r}\right), \log\left(1 + \frac{P_R}{N}\right) \right\}$$

Sufficient Conditions, Different Topologies

We have derived a set of sufficient conditions for several different configurations:

Non-orthogonal, half/full-duplex

Orthogonal, half-duplex

Cascade/Multi-hop

Half-duplex Gaussian Relay Channel

For simplicity, we illustrate the technique for a scalar system over a special case of the general non-orthogonal network:

• Scalar system

$$X_{t+1} = \lambda X_t + U_t + W_t$$

 $(E[X_0^2] = \Lambda_0, E[W_t^2] = K_W)$

- First ('odd') phase: ${\mathcal E}$ transmits with power $2\beta P_S$, where $0<\beta\leq 1$
- Second ('even') phase: \mathcal{E} and \mathcal{R} transmit with powers $2(1-\beta)P_S$ and P_r , with $P_r \leq P_R$
- The destination receives

$$R_t = hS_{e,t} + Z_t t = 1, 3, 5, \dots$$

$$R_t = hS_{e,t} + S_{r,t} + Z_t t = 2, 4, 6, \dots$$

Proposition (sufficient condition)

The scalar system can be mean-square stabilized over the half-duplex Guassian relay channel if

$$\log\left(\lambda\right) < \frac{1}{4} \max_{\substack{0 < \beta \leq 1\\ 0 \leq P_r \leq P_R}} \left(\log\left(1 + \frac{2h^2\beta P_S}{N}\right) + \log\left(1 + \frac{\tilde{M}(\beta, P_r)}{\tilde{N}(\beta, P_r)}\right) \right)$$

where
$$\tilde{N}(\beta, P_r) = \frac{P_r N_R}{2\beta P_S + N_R} + N$$
 and

$$\tilde{M}(\beta, P_r) = \left(\sqrt{2h^2(1-\beta)P_S} + \sqrt{\frac{2\beta P_S P_r N}{(2\beta P_S + N_R)(2h^2\beta P_S + N)}}\right)^2$$

Remarks:

- RHS turns out to be the directed information rate, given that the system runs the protocol described in the proof
- The condition does not depend on the process noise $\{W_t\}$

Proof Outline

1 Linear communication and control strategy

- Initialization to obtain a Gaussian state
- Odd and even phase transmission, inspired by Schalkwijk–Kailath coding
- Amplify-and-forward relaying
- Control based on MMSE estimation \Rightarrow Gaussian state
- Both signaling and control are linear operations
- 2 Derivation of the sufficient condition
 - Find a useful recursive representation for the second moment of the state process
 - Construct a majorizing sequence with a convergence criterion that provides a sufficient condition

Proof: Initialization

Initial time step, t = 0:

•
$${\cal E}$$
 transmits $S_{e,0}=\sqrt{{P_S\over\Lambda_0}}X_0$

- \mathcal{R} neither receives nor transmits.
- \mathcal{D} observes $R_0 = hS_{e,0} + Z_0$, and estimates

$$\hat{X}_0 = \frac{1}{h} \sqrt{\frac{\Lambda_0}{P_S}} R_0 = X_0 + \frac{1}{h} \sqrt{\frac{\Lambda_0}{P_S}} Z_0$$

• C takes an action $U_1 = -\lambda \hat{X}_0 \Rightarrow$

$$X_1 = \lambda (X_0 - \hat{X}_0) + W_0 = -\frac{\lambda}{h} \sqrt{\frac{\Lambda_0}{P_S}} Z_0 + W_0$$

 \Rightarrow new state is zero-mean Gaussian

Proof: 'Odd' Transmission Phase

 $t=1,3,5,\ldots$

- \mathcal{E} transmits $S_{e,t} = \sqrt{\frac{2\beta P_S}{\alpha_t}} X_t$ $(\alpha_t = E[X_t^2])$
- *R* receives but does not transmit
- \mathcal{D} observes $R_t = hS_{e,t} + Z_t$, and computes

$$\hat{X}_t = E[X_t | R_1, R_2, ..., R_t] = E[X_t | R_t] = \frac{E[X_t R_t]}{E[R_t^2]} R_t$$

• C takes action $U_t = -\lambda \hat{X}_t \implies X_{t+1} = \lambda (X_t - \hat{X}_t) + W_t$ \Rightarrow new state is zero-mean Gaussian (& uncorrelated with $R_{[0,t]}$)

Proof: 'Even' Transmission Phase

- $t = 2, 4, 6, \dots$
 - \mathcal{E} transmits $S_{e,t} = \sqrt{\frac{2(1-\beta)P_S}{\alpha_t}}X_t$
 - \mathcal{R} transmits $S_{r,t} = \sqrt{\frac{P_r}{(2\beta P_S + N_R)}} \left(S_{e,t-1} + Z_{r,t-1} \right)$
 - \mathcal{D} receives

$$R_t = hS_{e,t} + S_{r,t} + Z_t = \operatorname{const}_1 X_t + \operatorname{const}_2 X_{t-1} + \tilde{Z}_t,$$

computes $\hat{X}_t = E[X_t|R_1, ..., R_t]$ and takes action $U_t = -\lambda \hat{X}_t$ $\Rightarrow X_{t+1} = \lambda(X_t - \hat{X}_t) + W_t$

 \Rightarrow new state is zero-mean Gaussian & uncorrelated with $R_{[0,t]}$

Proof: Second Moment of State Process

With $\alpha_t = E[X_t^2]$ and after some work we get

$$\begin{array}{rcl} \alpha_t & = & \lambda^2 \left(\frac{N}{2h^2 \beta P_S + N} \right) \alpha_{t-1} + K_W, & t = 2, 4, 6, \dots \\ \alpha_t & = & \lambda^2 \left(\lambda^2 k \, \alpha_{t-2} + K_W \right) f(\alpha_{t-2}) + K_W, & t = 3, 5, 7, \dots \end{array}$$

where $f(\alpha_{t-2})$ is of the form

$$f(x) = \frac{a + \frac{b}{x}}{\left(c + \sqrt{d + \frac{b}{x}}\right)^2 + a + \frac{b}{x}}$$

 \Rightarrow sufficient to look at odd time-instances; try to construct a convergent sequence $\{\alpha'_k\}$ which majorizes $\{\alpha_t\}_{t=2k+1}$

• ... possible, and $lpha_k'$ is bounded if

$$\left(\frac{\lambda^4 k \tilde{N}(\beta,P_r)}{(k_2+\sqrt{k_1k})^2+\tilde{N}(\beta,P_r)}\right)<1$$

 \Rightarrow solving RHS for λ provides the stated sufficient condition

Special Case: Two-hop Relay Channel

(corresponds to h = 0 and $\beta = 1$)

Corollary

The scalar system can be mean-square stabilized over the two-hop relay channel if

$$\log{(\lambda)} < \frac{1}{4} \log{\left(1 + \frac{2P_S P_R}{P_R N_R + N\left(2P_S + N_R\right)}\right)}$$

• The corresponding necessary condition is

$$\log\left(\lambda\right) < \frac{1}{4}\min\left\{\log\left(1 + \frac{2P_S}{N_R}\right), \log\left(1 + \frac{P_R}{N}\right)\right\}$$

⇒ Necessary and sufficient coincide if

$$rac{P_S/N_R}{P_R/N}
ightarrow \infty \quad {
m or} \quad
ightarrow 0$$

\Rightarrow Linear policies *can be optimal*, however not in general, e.g.,

A. Zaidi, S. Yüksel, T. Oechtering and M. Skoglund, On optimal policies for control and estimation over Gaussian relay channels, *Automatica* (submitted 2011, revised 2012)

Effect of Process Noise

- The stability condition does not change when the plant is noiseless, $K_W = 0$; however $E[X_t^2]$ is bounded away from zero if $K_W > 0$
- Stabilization at finite cost, $\lim_{T\to\infty}T^{-1}\sum_{t=0}^{T-1}E[U_t^2]<\infty$; also $K_W=0\Rightarrow E[U_t^2]\to 0$

Connection to Achievable Rates...

- As mentioned, the RHS in the criterion is equal to the directed information rate, when running the described protocol
- Consider instead the relay channel in isolation:
 - perfect feedback from ${\mathcal D}$ to ${\mathcal E}$
 - communication of a message in $\{1, 2, \cdots, K_n\}$
 - selected message W, decoded message \hat{W}
 - transmission over n uses of the channel
- Then, R = the RHS is also an achievable rate, that is, there exists a coding scheme s.t.

$$\liminf_{n \to \infty} \frac{1}{n} \log K_n \ge R, \quad \lim_{n \to \infty} \Pr(\hat{W} \neq W) = 0$$

S. Bross and M. Wigger

On the relay channel with receiver-transmitter feedback.

IEEE Trans. Inform. Theory, 2009.

Multi-dimensional Systems...

Approach: Convey one component of the *n*-dimensional X_t at each time t

• For $m = 1, \ldots, n$, let

$$\gamma_m = \frac{\log(|\lambda_m|)}{\sum_{i=1}^n \log(|\lambda_i|)}$$

- Transmit the m-th component for a fraction γ_m of time
- Let ρ be the information rate corresponding to a scalar stabilization scheme (the RHS of the bound), then the *m*-th component can be stabilized if $\log(|\lambda_m|) < \gamma_m \rho$
- \Rightarrow the system will be stabilized if $~\sum_m \log(|\lambda_m|) < \rho$
- A. Zaidi, T. Oechtering, S. Yüksel and M. Skoglund Stabilization of linear systems over Gaussian networks. *IEEE Trans. on Aut. Control*, Submitted June 2012.

Further Extensions...

Gaussian multiple-access, broadcast, and interference channels:

A. Zaidi, T. Oechtering, and M. Skoglund.

Sufficient conditions for closed-Loop control over multiple-access and broadcast channels.

IEEE Int. Conf. on Decision and Control (CDC), 2010

A. Zaidi, T. Oechtering, and M. Skoglund.

Closed-loop stabilization over Gaussian interference channels. *IFAC World Congress*, 2011

Summary

Problem: Mean-square stabilization of a discrete-time system over a Gaussian relay network

- Signal-to-noise ratio requirements for stabilization
- Necessary conditions using information theoretic arguments
- Sufficient conditions based on linear delay-free policies
 - linear can be optimal, but not in general
- Connection to achievable rates