

Elements of a Nonstochastic Information Theory

Girish Nair Dept. Electrical & Electronic Engineering University of Melbourne

LCCC Workshop on Information and Control in Networks Lund, Sweden 17 October 2012

Random Variables in Communications

In communications, unknown quantities/signals are usually modelled as *random variables (rv's)* & *random processes*, for good reasons:

- Physical laws governing electronic/photonic circuit noise give rise to well-defined distributions & random models – e.g. Gaussian thermal electronic noise, binary symmetric channels, Rayleigh fading, etc.
- Telecomm. systems usually designed to be used many times, & each individual phone call/email/download may not be critically important...

→ System designer need only seek good performance in an average or *expected* sense - e.g. bit error rate, signal-to-noise ratio, outage probability.

Nonrandom Variables in Control

In contrast, unknowns in control are often treated as *non*stochastic variables or signals

- Dominant disturbances are not necessarily electronic/photonic circuit noise, & may not follow well-defined probability distributions.
- Safety- & mission-criticality

➔ Performance guarantees needed every time plant is used, not just on average.

Networked Control

Networked control: combines both communications and control theories!

→ How may nonstochastic analogues of key probabilistic concepts like independence, Markovness and information be usefully defined?

Another Motivation: Channel Capacity

The *ordinary capacity C* of a channel is defined as the highest block-code bit-rate that permits an arbitrarily small probability of decoding error.

I.e.
$$C := \lim_{\varepsilon \to 0} \sup_{t \ge 0} \sup \frac{\log_2 |\mathbf{F}_t|}{t+1} \stackrel{\text{(subadditivity)}}{=} \lim_{\varepsilon \to 0} \lim_{t \to \infty} \sup \frac{\log_2 |\mathbf{F}_t|}{t+1}$$
,

where F_t := a finite set of input words of length t + 1, & the inner supremums are over all F_t s.t. $\forall x(0:t) \in F_t$, the corresponding random channel output word Y(0:t)can be mapped to an estimate $\hat{X}(0:t)$ with $\Pr[\hat{X}(0:t) \neq x(0:t)] \leq \varepsilon$. 5

Information Capacity

Shannon's *Channel Coding Theorem* essentially gives an information-theoretic characterization of *C* for *stationary memoryless stochastic channels*:

$$C = \sup_{t \ge 0} \sup \frac{I[X(0:t);Y(0:t)]}{t+1} = \lim_{t \to \infty} \sup \frac{I[X(0:t);Y(0:t)]}{t+1}$$

(= supl[X(0);Y(0)]),

where $I[\cdot;\cdot]$:=Shannon's *mutual information* functional, and the inner supremums are over all random input sequences X(0:t).

Zero-Error Capacity

In 1956, Shannon also introduced the stricter notion of *zero* - *error capacity* C_0 , the highest block-coded bit-rate that permits a probability of decoding error = 0 exactly.

I.e.
$$C_0 := \sup_{t \ge 0} \sup \frac{\log_2 |\mathbf{F}_t|}{t+1} = \lim_{t \to \infty} \sup \frac{\log_2 |\mathbf{F}_t|}{t+1}$$

where F_t = a finite set of input words of length t + 1, & the inner supremums are over all F_t s.t. $\forall x(0:t) \in F_t$, the corresponding channel output word Y(0:t)can be mapped to an estimate $\hat{X}(0:t)$ with $\Pr[\hat{X}(0:t) \neq x(0:t)] = 0$.

Clearly, C_0 is (usually strictly) smaller than C.

CO as an "Information" Capacity?

Fact: C0 does not depend on the nonzero transition probabilities of the channel, and can be defined without any probability theory, in terms of the input-output graph that describes permitted channel transitions.

→ Q: Can we express C0 as the maximum rate of some nonstochastic information functional?

Outline

- (Motivation)
- Uncertain Variables
- Taxicab Partitions & Maximin Information
- C0 via Maximin Information
- Uniform LTI State Estimation over Erroneous Channels
- Conclusion
- Extension & Future Work

The Uncertain Variable Framework

- Similar to probability theory, let an *uncertain variable (uv)* be a mapping X from some sample space Ω to a space X.
- E.g., each $\omega \in \Omega$ may represent a particular combination of disturbances & inputs entering a system, & X may represent an output/state variable
- For any particular ω , the value $x = X(\omega)$ is realised.

Unlike prob. theory, assume *no* σ -algebra or measure on Ω .

Ranges

As in prob. theory, the ω -argument will often be omitted. *Marginal range* $\llbracket X \rrbracket \coloneqq \{X(\omega) \colon \omega \in \Omega\} \subseteq X$. *Joint range* $\llbracket X, Y \rrbracket \coloneqq \{(X(\omega), Y(\omega)) \colon \omega \in \Omega\} \subseteq X \times Y$. *Conditional range* $\llbracket X \mid y \rrbracket \coloneqq \{X(\omega) \colon Y(\omega) = y, \omega \in \Omega\} \subseteq X$.

In the absence of statistical structure, the joint range completely characterises the relationship between uv's X & Y.

As
$$\llbracket X, Y \rrbracket = \bigcup_{y \in \llbracket Y \rrbracket} \llbracket X \mid y \rrbracket \times \{y\},$$

the joint range can be determined from the conditional & marginal ranges, similar to the relationship between joint, conditional & marginal probability distributions.

Unrelatedness

X,Y called *unrelated* if $[X,Y] = [X] \times [Y],$

or equivalently if

$$\llbracket X \mid Y \rrbracket = \llbracket X \rrbracket, \quad \forall y \in \llbracket Y \rrbracket.$$

Parallels the definition of mutual independence for rv's.

Called *related* if $[X,Y] \subset [X] \times [Y]$, without equality.

Nonstochastic Entropy

The *a priori* uncertainty associated with a uv X is captured by Hartley entropy $H_0[X] := \log_2 | [X] | \in [0,\infty].$

Continuous-valued uv's yield $H_0[X] = \infty$.

⇒ For uv's with Lebesgue-measurable range in \mathbb{R}^n , the 0-*th* order Re'nyi differential entropy $h_0[X] := \log_2 \mu[X] \in [-\infty, \infty]$ is more useful.

Nonstochastic Information – **Previous Definitions**

H. Shingin & Y. Ohta, NecSys09:

$$I_{0}[X;Y] := \begin{cases} \inf_{y \in \llbracket Y \rrbracket} \log_{2} \left(\frac{\|\llbracket X \rrbracket}{\|\llbracket X | y \rrbracket} \right), & X \text{ discrete-valued} \\ \inf_{y \in \llbracket Y \rrbracket} \log_{2} \left(\frac{\mu \llbracket X \rrbracket}{\mu \llbracket X | y \rrbracket} \right), & X \text{ continuous-valued} \end{cases}$$

(expressed in the uv framework here)

G. Klir, 2006:

 $T[X;Y]:=\begin{cases} H_0[X] + H_0[Y] - H_0[X,Y], & X,Y \text{ finite-valued} \\ \text{Something complex,} & (X,Y) \text{ cont.-valued w. convex range } \subset \mathbb{R}^n. \end{cases}$

Comments on Previous Definitions

- Each gives different treatments of continuous & discrete-valued variables.
- Klir's information has natural properties, but is purely axiomatic. No demonstrated relevance to problems in communications or control.
- Shingin & Ohta's information: inherently asymmetric, but shown to be useful for studying control over errorless digital channels.

Taxicab Connectivity

A pair of points (x, y), $(x', y') \in \llbracket X, Y \rrbracket$ is called *taxicab connected*, denoted $(x, y) \leftrightarrow (x', y')$, if \exists a finite sequence $((x_i, y_i))_{i=1}^n$ in $\llbracket X, Y \rrbracket$ i) beginning from $(x_1, y_1) = (x, y)$, ii) ending in $(x_n, y_n) = (x', y')$,

iii) and with each point in the sequence differing in at *most* one coordinate from its predecessor.

Every point in this sequence must yield the *same z*-value as its predecessor, since it has either the same *x*- or *y*-coordinate.

 \Rightarrow By induction, (x,y) & (x',y') yield the same z-value.

Taxicab Connectedness Examples

but connected in usual sense.

Taxicab Partition and Nonstochastic Information

Thm : There is a unique partition *T* of [[*X*,*Y*]] in which
a) every pair of points in the same partition set is taxicab connected, but
b) *no* pair of points in different partition sets is taxicab connected.

Can be established that \mathcal{T} defines the most refined shared data Z that can be unambiguously determined from X or Y alone.

 \Rightarrow Define *maximin information* $I^{*}[X;Y] := \log_2 |\mathcal{T}|$

Interpretation as a Common/Shared Variable

- Suppose X & Y are separately observed by two agents.
- Let the agents have functions f & g respectively s.t.
 f(X)=g(Y)=:Z

 \Leftrightarrow The agents can *unambiguously* agree on the value of the *common* variable *Z*.

- The more distinct values Z can take, the more refined is this shared knowledge.
- The values of *Z* induce a partition of the joint range [[*X*, *Y*]].
- Taxicab partition = the [[X, Y]]-partition induced by the most refined common variable Z.

Examples

([[*X*, *Y*]] = shaded area)

 $|\mathcal{T}| = 2 = \max.\#$ distinct values that can always be agreed on from separate observations of *X* & *Y*.

 $|\mathcal{T}| = 1 = \max.\#$ distinct values that can always be agreed on from separate observations of *X* & *Y*.

Some Key Properties of I*

Symmetry :

 $I^{*}[X;Y] = I^{*}[Y;X].$

More Data Can't Hurt : $I^{*}[X;Y] \leq I^{*}[X;Y,W].$

"Data Processing" :

If $W \leftrightarrow X \leftrightarrow Y$ is a Markov uncertainty chain, then $I^*[W;Y] \leq I^*[W;X].$

Uncertain Signals & Stationary Memoryless Channels

Def : An *uncertain signal* X is a mapping from Ω to the space

 X^{∞} of discrete-time signals $x : \mathbb{Z}_{\geq 0} \to X$.

Def : A stationary memoryless uncertain channel consists of a set-valued *transition function* $T : X \rightarrow 2^{Y}$, and the family of all uncertain input-output signal pairs (*X*,*Y*) s.t.

$$\llbracket \mathbf{Y}(k) \mid \mathbf{x}(0:k), \mathbf{y}(0:k-1) \rrbracket = \llbracket \mathbf{Y}(k) \mid \mathbf{x}(k) \rrbracket = \mathbf{T}(\mathbf{x}(k)) \subseteq \mathbf{Y},$$

$$\forall (\mathbf{x}, \mathbf{y}) \in \llbracket \mathbf{X}, \mathbf{Y} \rrbracket, \ k \in \mathbb{Z}_{\geq 0}$$

Channel Coding Theorem for Zero-Error Communication

Thm: The zero-error capacity C_0 of a stationary memoryless uncertain channel coincides with the highest average rate of maximin information possible across it, i.e.

$$C_{0} = \sup_{t \ge 0, X \sqsubseteq X \sqsubseteq \mathbf{x}^{\infty}} \frac{I^{*} \left[X(0:t); Y(0:t) \right]}{t+1} = \lim_{t \to \infty} \sup_{X(0:t) \sqsubseteq X(0:t) \sqsubseteq \mathbf{x}^{t+1}} \frac{I^{*} \left[X(0:t); Y(0:t) \right]}{t+1}.$$

Note : C_0 is defined *operationally*, as the largest rate over all block codes that permit unambiguous recovery of the input sequence. This result gives an *intrinsic* characterization.

Remarks

- The idea of a common (random) variable Z comes from cryptography [Wolf & Wullschleger, ITW2004]
- There, Z is formally defined by the connected components of the discrete bipartite graph describing (x,y) pairs having joint prob.> 0.
- Taxicab connectedness generalises this to continuous-valued and mixed pairs of variables, not representable by discrete graphs.
- C0 was shown by Wolf & Wullschleger to coincide with the maximum Shannon entropy rate over all common rv's Z. However, this is still a probabilistic characterisation.
- Maximin information coincides with the *Hartley* entropy of the maximal common rv *Z*.

State Estimation of Disturbance-Free LTI Systems

 $X(t+1) = AX(t), \quad Y(t) = GX(t), \quad X(0) \text{ a uv.}$

Coder : $Y(0:t) \mapsto S(t) \in \mathbf{S}$. No channel feedback.

Erroneous Channel : $S \rightarrow 2^Q$

Estimator: $Q(0:t) \mapsto \hat{X}(t+1)$

Given parameters ρ , l > 0, the objectives are

I) ρ - exponential uniformly bounded estimation errors :

For any uv X(0) s.t. $||X(0)|| \le l$, $\sup_{t \ge 0, \omega \in \Omega} \rho^{-t} ||X(t) - \hat{X}(t)|| < \infty$.

II) ρ - exponential uniform convergence :

For any uv X(0) s.t. $||X(0)|| \le l$, $\lim_{t\to\infty} \sup_{\omega\in\Omega} \rho^{-t} ||X(t) - \hat{X}(t)|| = 0.$

Assumptions

DF1: (G, A_{ρ}) is observable, where $A_{\rho} \coloneqq A$ restricted to invariant subspace governed by | eigenvalue |'s $\geq \rho$.

DF2: The channel does not depend on the initial plant state, i.e. the output sequence Q(0:t) is conditionally unrelated to X(0), given channel input sequence S(0:t), $X(0) \leftrightarrow S(0:t) \leftrightarrow Q(0:t)$

DF3: A has one or more | eigenvalue |'s > ρ

Criterion without Disturbances

If ρ - exponential uniformly bounded estimation errors are achieved for some l > 0, then

$$C_0 \ge \sum_{|\lambda_i| \ge \rho} \log_2 \left| \frac{\lambda_i}{\rho} \right| =: H_{\rho}$$
 (*)

Conversely, if (*) holds strictly, then for any l > 0, a coder - estimator that achieves ρ - exponential uniform convergence can be constructed.

Proof of second part : constructive.

Proof of first part: maximin information theory

LTI State Estimation With Plant Disturbances

 $X(t+1) = AX(t) + V(t), \quad Y(t) = GX(t) + W(t),$

Assumptions :

D0: (G, A) is detectable.

- **D1**: A has one or more | eigenvalue |'s > 1.
- **D2**: Realisations of *V* & *W* are uniformly bounded in ℓ_{∞} .
- **D3**: The null signals v, w = 0 are valid disturbance realisations.

D4: X(0), V & W are mutually unrelated.

D5: The channel does not depend on the plant states and disturbances, i.e. the channel output Q(0:t) is conditionally unrelated with (X(0), V(0:t-1), W(0:t)), given the channel input S(0:t), $(X(0), V(0:t-1), W(0:t)) \leftrightarrow S(0:t) \leftrightarrow Q(0:t)$

Criterion with Disturbances

If uniformly bounded estimation errors are achieved for some l > 0, then

$$C_0 \ge \sum_{|\lambda_i| \ge 1} \log_2 |\lambda_i| \coloneqq H.$$
 (**)

Conversely, if (**) holds strictly, then for any l > 0, a coder - estimator that achieves uniformly bounded estimation errors can be constructed.

Remarks

In a stochastic setting (i.e. random channel and X(0)) with no plant noise, it is known that almost-sure asymptotic convergence is possible iff ordinary capacity C > H (Matveev & Savkin 2007).

The criterion here is stricter because a law of large numbers cannot be used to average out decoding errors.

If bounded, nonstochastic disturbances are present, they showed that a.s. uniformly bounded errors are possible iff C0 > H. Proof used no info theory

Conclusion

- Formulated a framework for modelling unknown variables without assuming the existence of distributions
- Defined nonprobabilistic analogues of independence & Markovness
- Proposed maximin information as a nonstochastic index of the most refined knowledge that can be agreed on from separate observations of two variables
- Showed that zero-error capacity coincides with the highest maximin info rate possible across the channel
- Used maximin info theory to derive tight conditions for uniform state estimation of LTI plants

Future Work

- Channels with input or memory constraints
- Network maximin information theory
- Systems with feedback preliminary results to appear in CDC 2012

Extension

- Zero Error Feedback Capacity

Theorem (GN, to appear in *CDC*12):

The operational zero - error feedback capacity of a stationary memoryless uncertain channel can be expressed in terms of *directed* maximin information :

$$C_{0F} = \lim_{t \to \infty} \sup_{X(0:t), Y(0:t)} \frac{1}{t+1} \sum_{k=0}^{t} I^* [X(k); Y(k) | Y(0:k-1)] =: I^* [X \to Y],$$

where

$$I^*[X;Y|Z] \coloneqq \min_{z \in [[Z]]} \log_2 \left| \mathcal{T}[X;Y|z] \right|$$

is conditional maximin information.

Thank You!

References

- GN, "A nonstochastic information theory for communication and state estimation", <u>http://arxiv.org/abs/1112.3471</u>. (Provisionally accepted by IEEE Trans Auto. Contr; short version in Proc. 9th IEEE Int. Conf. Control & Automation, Santiago, Chile, Dec. 2011.)
- --, "A nonstochastic information theory for feedback", to appear in *Proc. IEEE CDC*, Dec. 2012.
- G. Klir, Uncertainty and Information Foundations of Generalized Information Theory, Wiley, 2006, ch. 2.
- H. Shingin and Y. Ohta, "Disturbance rejection with information constraints: Performance limitations of a scalar system for bounded and Gaussian disturbances," *Automatica*, 2012.
- S. Wolf and J. Wullschleger, "Zero-error information and applications in cryptography", *Info. Theory Workshop*, San Antonio, USA ,2004.
- C.E. Shannon, "The zero-error capacity of a noisy channel", *IRE Trans. Info. Theory*, vol. 2, 1956.
- S. Tatikonda and S. Mitter, "Control under communication constraints," *IEEE TAC.*, 2004.
- A.S. Matveev and A.V. Savkin, ``Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels," *Int. Jour. Contr.*, 2007.
- , ``An analogue of Shannon information theory for detection and stabilization via noisy discrete communication channels", *SIAM J. Contr. Optim.*, 2007.
- J. Massey, ``Causality, feedback and directed information," in *Int. Symp. Inf. Theory App.*, 1990.