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Random Variables in 

Communications
In communications, unknown quantities/signals are usually modelled as 

random variables (rv’s) & random processes, for good reasons: 

� Physical laws governing electronic/photonic circuit noise give rise 
to well-defined distributions & random models – e.g. Gaussian 
thermal electronic noise, binary symmetric channels, Rayleigh 
fading, etc.
thermal electronic noise, binary symmetric channels, Rayleigh 
fading, etc.

� Telecomm. systems usually designed to be used many times, & 
each individual phone call/email/download may not be critically 
important...
� System designer need only seek good performance in an 
average or expected sense - e.g. bit error rate, signal-to-noise 
ratio, outage probability.
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Nonrandom Variables in Control

In contrast, unknowns in control are often treated 

as nonstochastic variables or signals 

� Dominant disturbances are not necessarily 

electronic/photonic circuit noise, & may not 

follow well-defined probability distributions.

� Safety- & mission-criticality 

� Performance guarantees needed every 

time plant is used, not just on average. 



Networked Control

Networked control: combines both 
communications and control theories!

�How may nonstochastic analogues 

of key probabilistic concepts like 
independence, Markovness and 
information be usefully defined?  



Another Motivation: 

Channel Capacity 
The    of a channel is defined as 

    the highest block-code bit-rate that permits an 

    arbitrarily small probability of decoding error.

ordinary capacity C
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Information Capacity

Shannon's    essentially

gives an information-theoretic characterization of 

for    :

Channel Coding Theorem

C

stationary memoryless stochastic channels
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Zero-Error Capacity 

0

In 1956, Shannon also introduced the stricter notion of

-   , the highest block-coded bit-rate 

 that permits a probability of decoding error =  0 exactly.
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C0 as an 

“Information” Capacity?

Fact: C0 does not depend on the nonzero 

transition probabilities of the channel,

and can be defined without any probability 

theory, in terms of the input-output graph that 

describes permitted channel transitions.

� Q: Can we express C0 as the maximum rate of 

some nonstochastic information functional?
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Outline

� (Motivation)

� Uncertain Variables

� Taxicab Partitions & Maximin Information� Taxicab Partitions & Maximin Information

� C0 via Maximin Information

� Uniform LTI State Estimation over 
Erroneous Channels

� Conclusion

� Extension & Future Work
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The Uncertain Variable 

Framework
� Similar to probability theory, let an uncertain variable (uv) be a mapping X

from some sample space Ω to a space X.

� E.g., each ω є Ω may represent a particular combination of disturbances & 

inputs entering a system, & X may represent an output/state variable 

� For any particular ω, the value x=X(ω) is realised.
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Unlike prob. theory, assume no σ-algebra or measure 

on Ω. 



RangesRanges

As in prob theory the -argument will often be omitted

: ( ) : .

: ( ) ( ) :

X

X Y

    Marginal range

Joint range

As in prob. theory, the argument will often be omitted.

X X

X Y X Y, : ( ), ( ) : .

| : ( ) : ( ) , .

X Y

X

Joint range

Conditional range

X Y X Y

X y X Y y

& .

In the absence of statistical structure, the joint range completely characterises

  the relationship between uv's  X Y

, | { },As
y Y

X Y X y y

the joint range can be determine

y

d from the conditional & marginal ranges,

similar to the relationship between joint, conditional & marginal probability 

1212

distributions.



Unrelatedness
,  called  if 

                               , ,

X Y unrelated

X Y X Y

or equivalently if or equivalently if 

                            | ,  .X y X y Y

Parallels the definition of mutual independence for rv's.

Called  if ,related X , without equality.Y X Y
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Nonstochastic Entropy

The uncertainty associated with a uv  is captured by 

     H [ ] : log [0 ]

a priori X

Hartley entropy X X0 2     H [ ] : log [0, ].Hartley entropy X X

0Continuous-valued uv's yield  H [ ] .

 For uv's with Lebesgue measurable range in  n

X

 For uv's with Lebesgue-measurable range in ,n

 the 0-th order Re nyi differential entropy

0 2h [ ] : log [ , ]     

              is more useful

                       X X
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Nonstochastic Information –Nonstochastic Information –

Previous Definitions
H. Shingin & Y. Ohta, NecSys09: 
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Comments onComments on

Previous Definitions

Each gives different treatments of continuous & 

di t l d i bldiscrete-valued variables.

Klir’s information has natural properties, but is 

purely axiomatic. No demonstrated relevance to 

problems in communications or control. 

Shingin & Ohta’s information: inherently 

asymmetric, but shown to be useful for studyingy , y g

control over errorless digital channels.
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Taxicab Connectivity

A pair of points ( , ), ( ', ') ,  is called 

denoted ( ) ( ' ')  if  a finite sequence ( )  in 
n

x y x y X Y taxicab connected,

x y x y x y X Y
1

1 1

denoted ( , ) ( , ), if  a finite sequence ( , )  in ,

i) beginning from ( , ) ( , ),

ii) ending in ( ) ( ' ')

i i i
x y x y x y X Y

x y x y

x y x yii) ending in ( , ) ( , ),

iii) and w

n nx y x y

ith each point in the sequence differing in at  one coordinate

    from its predecessor

most

    from its predecessor.

Every point in this sequence must yield the  valuesame zEvery point in this sequence must yield the  -value

as its predecessor, since it has either the same - o

same z

x r -coordinate.

 By induction  ( ) & ( ' ') yield the same -value

y

x y x y z
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Taxicab ConnectednessTaxicab Connectedness

ExamplesExamples
([[X,Y]] = shaded area)

y y y

x x x

( , ) ( ', '),

l  di t d i  l 

x y x y

( , ) ( ', '),

but disconnected in usual sense.

x y x y
also disconnected in usual sense

( , ) ( ', '), 

but connected in usual sense.

x y x y
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Taxicab Partition andTaxicab Partition and

Nonstochastic Information

 There is a unique partition  of ,  in which  X YThm : T

a) every pair of points in the same partition set is taxicab connected, but

b)  pair of points in different partition sets is taxicab connected. nob)  pair of points in different partition sets is taxicab connected. 

Can

no

 be established that  defines the most refined sharedTCan be established that  defines the most refined shared

data  that can be unambiguously determined from  or  alone.Z X Y

T

*

2Define   I [ ; ] : logX Ymaximin information T
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Interpretation as 

a Common/Shared Variable

� Suppose X & Y are separately observed by two agents. 
� Let the agents have functions f & g respectively s.t. 

f(X)=g(Y)=:Z
� The agents can unambiguously agree on the value of � The agents can unambiguously agree on the value of 
the common variable Z. 

� The more distinct values Z can take, the more refined is 
this shared knowledge.

� The values of Z induce a partition of the joint range [[X,Y]].
� Taxicab partition = the [[X,Y]]-partition induced by the most 

refined common variable Z.



Examples
([[X,Y]] = shaded area)

yy
y

z=1

z=0
z=0

x
x

z=1 z=0

z=0

| | 2 max.#  distinct values

that can always be agreed on 

f  t  b ti  f  &  X Y

T
| | 1 max.#  distinct values

that can always be agreed on 

T
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Some Key PropertiesSome Key Properties

of I*

* *                             I [ ] I [ ]X Y Y X

Symmetry : 

                             I [ ; ] I [ ; ].X Y Y X

* *                             I [ ; ] I [ ; , ].X Y X Y W

More Data Can't Hurt :

"Data Processing" :

           If  is a Markov uncertainty chain, theW X Y

* *

n

                              I [ ; ] I [ ; ]W Y W X
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Uncertain Signals & StationaryUncertain Signals & Stationary

Memoryless Channelsy

An    is a mapping from  to the spaceuncertain signal XDef : 

0          of discrete-time signals : .xX X

A  consists

         of a set-valued 

stationary memoryless uncertain channel

transition funct

Def : 

: , and the family of all ion Y
T X 2 , y

         uncertain input-output signal pairs ( , ) s.t.X Y

        ( ) | (0 : ), (0 : 1) ( ) | ( ) ( ) ,Y k x k y k Y k x k x kT Y

  ( )  x y X Y k

30

0  ( , ) , , .x y X Y k



Channel Coding Theorem 

for Zero-Error Communication

0:  The zero-error capacity  of a stationary memoryless 

           uncertain channel coincides with the highest average rate of 

          maximin information possible across it, i.e.

CThm
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Remarks

� The idea of a common (random) variable Z comes from 
cryptography [Wolf & Wullschleger, ITW2004]

- There, Z is formally defined by the connected components of 
the discrete bipartite graph describing (x,y) pairs having joint 
prob.> 0. 
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prob.> 0. 

- Taxicab connectedness generalises this to continuous-valued 
and mixed pairs of variables, not representable by discrete 
graphs.

� C0 was shown by Wolf & Wullschleger to coincide with the 
maximum Shannon entropy rate over all common rv’s Z. 
However, this is still a probabilistic characterisation.

- Maximin information coincides with the Hartley entropy of the 
maximal common rv Z.



State Estimation of 

Disturbance-Free LTI Systems
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Assumptions
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Criterion without Disturbances
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LTI State Estimation

With Plant Disturbances
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Criterion with Disturbances 
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Remarks

� In a stochastic setting (i.e. random channel and X(0)) with no 
plant noise, it is known that almost-sure asymptotic 
convergence is possible iff ordinary capacity C > H (Matveev
& Savkin 2007). 

The criterion here is stricter because a law of large numbers 
cannot be used to average out decoding errors.

� If bounded, nonstochastic disturbances are present, they 
showed that a.s. uniformly bounded errors are possible iff

C0 > H. Proof used no info theory

14



Conclusion

� Formulated a  framework for modelling unknown variables without 
assuming the existence of distributions

� Defined nonprobabilistic analogues of independence & Markovness

� Proposed maximin information as a nonstochastic index of the most 
refined knowledge that can be agreed on from separate refined knowledge that can be agreed on from separate 
observations of two variables

� Showed that zero-error capacity coincides with the highest maximin
info rate possible across the channel

� Used maximin info theory to derive tight conditions for uniform state 
estimation of LTI plants
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Future Work

� Channels with input or memory constraints

� Network maximin information theory

� Systems with feedback – preliminary � Systems with feedback – preliminary 
results to appear in CDC 2012
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Extension

- Zero Error Feedback Capacity

:ninformatiomaximin 

of in termsexpressedbecan channeluncertain memoryless

stationary a ofcapacity feedback error -zero loperationaThe

:)12in appear  to(GN,Theorem

directed 

CDC
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Thank You!
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