

Elements of a Nonstochastic Information Theory

Girish Nair Dept. Electrical & Electronic EngineeringUniversity of Melbourne

LCCC Workshop on Information and Control in NetworksLund, Sweden17 October 2012

Random Variables in Communications

In communications, unknown quantities/signals are usually modelled as random variables (rv's) & random processes, for good reasons:

- $\mathcal{L}_{\mathcal{A}}$ Physical laws governing electronic/photonic circuit noise give rise to well-defined distributions & random models – e.g. Gaussian thermal electronic noise, binary symmetric channels, Rayleigh fading, etc.
- Telecomm. systems usually designed to be used many times, & each individual phone call/email/download may not be critically important...

→ System designer need only seek good performance in an
average or *expected* sense - e.g. bit error rate, signal-to-noise
ratio, outage probability.

Nonrandom Variables in Control

In contrast, unknowns in control are often treated as nonstochastic variables or signals

- $\mathcal{L}^{\text{max}}_{\text{max}}$ Dominant disturbances are not necessarily electronic/photonic circuit noise, & may not follow well-defined probability distributions.
- Safety- & mission-criticality

→ Performance guarantees needed *every*
time plant is used not just on average t*ime* plant is used, not just on average.

Networked Control

Networked control: combines both communications and control theories!

→ How may *nonstochastic* analogues of key probabilistic concepts like independence, Markovness and information be usefully defined?

Another Motivation: Channel Capacity

The ordinary capacity C of a channel is defined as the highest block-code bit-rate that permits anarbitrarily small probability of decoding error.

$$
\text{I.e. } C \coloneqq \lim_{\varepsilon \to 0} \sup_{t \geq 0} \sup \frac{\log_2 |F_t|}{t+1} \stackrel{\text{(subadditivity)}}{=} \lim_{\varepsilon \to 0} \lim_{t \to \infty} \sup \frac{\log_2 |F_t|}{t+1},
$$

5can be mapped to an estimate $\hat{X}(0:t)$ with $\Pr\left[\hat{X}(0:t) \neq x(0:t)\right] \leq \varepsilon$. where $\textbf{\emph{F}}_{t}$:= a finite set of input words of length t + 1, & the inner supremums are over all $\boldsymbol{F_{\!t}}$ s.t. $\,\,\forall x (0 \,:\! t) \!\in\! \boldsymbol{F_{\!t}} ,$ the corresponding random channel output word $Y(0 : t)$

Information Capacity

Shannon's C*hannel Coding Theorem* essentially gives an information-theoretic characterization of Cfor stationary memoryless stochastic channels:

$$
C = \sup_{t \geq 0} \sup \frac{I[X(0:t); Y(0:t)]}{t+1} = \lim_{t \to \infty} \sup \frac{I[X(0:t); Y(0:t)]}{t+1}
$$

$$
= \sup \{X(0:t); Y(0)\},
$$

where I[_';·]:=Shannon's *mutual information* functional, and the inner supremums are over all random input sequences $X(0 : t)$. ⋅⋅·]:=Shannon's *mutual information*

Zero-Error Capacity

 In 1956, Shannon also introduced the stricter notion of-enor capacity c_o *zero* - *error capacity C*₀, the highest block-coded bit-rate that permits a probability of decoding error = 0 exactly.

I.e.
$$
C_0 := \sup_{t \ge 0} \sup \frac{\log_2 |F_t|}{t+1} = \lim_{t \to \infty} \sup \frac{\log_2 |F_t|}{t+1},
$$

where $\textbf{\emph{F}}_{\textit{t}}$ = a finite set of input words of length t + 1, & the inner supremums are over all $\boldsymbol{F_{\!t}}$ s.t. $\forall x (0:t) \!\in \boldsymbol{F_{\!t}} ,$ the corresponding channel output word $Y(0 : t)$ can be mapped to an estimate $\hat{X}(0:t)$ with $\Pr[\hat{X}(0:t) \neq x(0:t)] = 0.$ $[X(0:1) \neq X(0:1)]$ =

Clearly, $\mathsf{C}_{{}_{0}}$ is (usually strictly) smaller than $C.$

C0U as an "Information" Capacity?

Fact: C0 does not depend on the nonzero transition probabilities of the channel,and can be defined without any probability theory, in terms of the input-output graph that describes permitted channel transitions.

→ Q: Can we express *C0* as the maximum rate of some *nonstochastic* information functional? some *nonstochastic* information functional?

Outline

- (Motivation)
- Uncertain Variables
- Taxicab Partitions & Maximin Information
- **Service Service** ■ C0 via Maximin Information
- ■ Uniform LTI State Estimation over Erroneous Channels
- $\mathcal{L}(\mathcal{L})$ ■ Conclusion
- Extension & Future Work

The Uncertain Variable Framework

- П Similar to probability theory, let an *uncertain variable (uv)* be a mapping X from some sample space Ω to a space **X**.
- E.g., each $ω ∈ Ω$ may represent a particular combination of disturbances & inputs entering a system, & X may represent an output/state variable
- П **For any particular** ω **, the value** $x=X(\omega)$ **is realised.**

Unlike prob. theory, assume *no* σ-algebra or measure on Ω.

Ranges

As in prob. theory, the ω -argument will often be omitted. $\llbracket X \rrbracket := \{ X(\omega) : \omega \in \Omega \} \subseteq \mathbf{X}.$ $\llbracket X, Y \rrbracket \coloneqq \big\{ \big(X(\omega), Y(\omega) \big) \colon \omega \in \mathbf{\Omega} \big\} \subseteq \mathbf{X} \times \mathbb{R}$ $\begin{aligned} \mathcal{A} & \downarrow \mathcal{A} \end{aligned}$ $\mathcal{A} \left[X \mid y \right] := \left\{ \left[X(\omega), I(\omega) \right) : \omega \in \mathbf{\Omega} \right\} \subseteq \mathbf{X} \times \mathbf{Y}.$
 $\mathcal{A} \left[X \mid y \right] := \left\{ X(\omega) : Y(\omega) = y, \omega \in \mathbf{\Omega} \right\} \subseteq \mathbf{X}.$ \boldsymbol{M} arginal range $\lfloor X \rfloor \coloneqq \{X(\omega): \omega \in \boldsymbol{\Omega}\} \subseteq \boldsymbol{X}$ *Soint range* $\left[\!\left[X,Y\right]\!\right] := \{(X(\omega),Y(\omega)) : \omega \in \Omega\} \subseteq X \times Y.$ Conditional range $\llbracket X | y \rrbracket \coloneqq \{ X(\omega) : Y(\omega) = y, \omega \in \Omega \} \subseteq \mathbf{X}$

the relationship between uv's X $\&$ Y . In the absence of statistical structure, the joint range completely characterises

$$
\llbracket X, Y \rrbracket = \bigcup_{y \in \llbracket Y \rrbracket} \llbracket X \mid y \rrbracket \times \{y\},
$$

the joint range can be determined from the conditional & marginal ranges,similar to the relationship between joint, conditional & marginal probability distributions.

Unrelatedness

 $\llbracket X, Y \rrbracket = \llbracket X \rrbracket \times \llbracket Y \rrbracket,$ X, Y called unrelated if

or equivalently if

$$
\llbracket X | y \rrbracket = \llbracket X \rrbracket, \forall y \in \llbracket Y \rrbracket.
$$

Parallels the definition of mutual independence for rv's.

Called *related* if $\llbracket X,Y \rrbracket \subset \llbracket X \rrbracket \times \llbracket Y \rrbracket$, without equality.

Nonstochastic Entropy

 H artley entropy $H_0[X]$:= $\log_2 \left(\left[\!\! \left[\begin{matrix} X \end{matrix} \right] \!\! \right] \right) \in [0,\infty].$ The *a priori* uncertainty associated with a uv X is captured by

Continuous-valued uv's yield $\ \mathsf{H}_{_{0}}[X]\!=\!\infty$.

For uv's with Lebesgue-measurable range in \mathbb{R}^n \implies For uv's with Lebesque-measurable range in \mathbb{R}^n We are man Loboogue modernable range in Let, the 0-th order Re'nyi differential entropy $h_0[X] := \log_2 \mu \llbracket X \rrbracket \in [-\infty, \infty]$ is more useful.

Nonstochastic Information
Drevieus Definitiers Previous Definitions

H. Shingin & Y. Ohta, NecSys09:

$$
I_0[X;Y] := \begin{cases} \inf_{y \in [[Y]]} \log_2 \left(\frac{[[X]]}{[[X \mid y]]} \right), & X \text{ discrete-valued} \\ \inf_{y \in [[Y]]} \log_2 \left(\frac{\mu [[X]]}{\mu [[X \mid y]]} \right), & X \text{ continuous-valued} \end{cases}
$$

(expressed in the uv framework here)

G. Klir, 2006:

T $H[X;Y] := \begin{cases} H_0[[X]] + H_0[[Y]] - H_0[[X,Y]], & X, Y \text{ finite-valued} \\ \text{Comoting complex} & (Y, Y) \text{ cont, valued, we can use } \end{cases}$ = \int $\left(\begin{array}{c} H_0 \hspace{-.1cm} \| \boldsymbol{X} \| + H_0 \hspace{-.1cm} \| \hspace{-.1cm} \boldsymbol{Y} \| -1 \end{array} \right)$ T[

 $[X;Y] := \left\{\n\begin{matrix} \n\text{H}_0 \llbracket X \rrbracket + \text{H}_0 \llbracket Y \rrbracket - \text{H}_0 \llbracket X,Y \rrbracket,\n\end{matrix}\n\right\}$. Something complex (X,Y) cont-valued w. convex range $\sub{\mathbb{R}^n}^n$ \mathbb{R}^n Something complex, $\qquad \quad (X,Y)$ cont.-valued w. convex range $\subset \mathbb{R}^n$

Comments on Previous Definitions

- Each gives different treatments of continuous & di ^t scre te-val ^d ⁱ bl lue d variables.
- Klir's information has natural properties, but is purely axiomatic. No demonstrated relevance to problems in communications or control.
- Shingin & Ohta's information: inherently asymmetric, but shown to be useful for studying
cantral over arrarlage digital shownals control over errorless digital channels.

Taxicab Connectivity

A pair of points (x, y) , $(x', y') \in [[X, Y]]$ is called *taxicab connected,* denoted $(x,y)\!\leftrightarrow\! (x',y'),$ if \exists a finite sequence $\big((x_{_I},y_{_I}) \big)_{_{I=1}}^{_{\!{n}}}$ in $\llbracket X,Y \rrbracket$ $f(x,y) \leftrightarrow (x',y'),$ if \exists a finite sequence $((x_{i},y_{i}))_{i=1}^{n}$ in $\left\|$ $X,Y\right\|$ $1 \cdot \cdot \cdot \cdot$ i) beginning from $(x_1, y_1) = (x, y)$, $f(x,y) \longleftrightarrow (x',y'), \text{ if } \exists \text{ a finite sequence } \big((x_{_i},y_{_i}) \big)_{_{i=1}}^{n} \text{ in } \llbracket X,$ ii) ending in $(x_n, y_n) = (x', y'),$

iii) and with each point in the sequence differing in at *most* one coordinate from its predecessor.

Every point in this sequence must yield the *same* z-value as its predecessor, since it has either the same *x*- or *y*-coordinate.

 \Rightarrow By induction, (x, y) & (x', y') yield the same z-value.

Taxicab Connectedness **Examples**

 $([[X, Y]] =$ shaded area)

but disconnected in usual sense.

but connected in usual sense.

Taxicab Partition and Nonstochastic Information

Thm : There is a unique partition \mathcal{T} of $\llbracket X, Y \rrbracket$ in which a) every pair of points in the same partition set is taxicab connected, butb) *no* pair of points in different partition sets is taxicab connected.

Can be established that $\mathcal T$ defines the most refined shared data Z that can be unambiguously determined from X or Y alone.

* \Rightarrow Define *maximin information* $\mathsf{I}^{\cdot}[X;Y]$:= log $_{2}|\mathcal{T}|$

Interpretation as a Common/Shared Variable

- Suppose $X \& Y$ are separately observed by two agents.
- Let the agents have functions $f \& g$ respectively s.t. f(X)=g(Y)=:Z

⇔ The agents can *unambiguously* agree on the value of the *common* variable Z.

- The more distinct values Z can take, the more refined is this shared knowledge. this shared knowledge.
- The values of Z induce a partition of the joint range $[[X, Y]]$.
- **Taxicab partition = the** $[[X, Y]]$ **-partition induced by the** *most* ϵ refined common variable Z.

Examples

 $([[X, Y]] =$ shaded area)

 $|\mathcal{T}| = 2 = \text{max}. \#$ distinct values that can always be agreed on from separate observations of $X \& Y$. $\mathcal{T}|=2$ = max.# distinct values $|\mathcal{T}|=1$ = max.# distinct values

that can always be agreed on from separate observations of X & Y.

Some Key Properties of I*

Symmetry :

 $\mathsf{I}^{\mathsf{T}}[X;Y] = \mathsf{I}^{\mathsf{T}}[Y;X].$

 $\mathsf{I}^{\star}[X;Y] \leq \mathsf{I}^{\star}[X;Y,W].$ *More Data Can't Hurt :*

"Data Processin^g" :

If $W \leftrightarrow X \leftrightarrow Y$ is a Markov uncertainty chain, then * [۱۸/ \cdot V 1 $<$ 1 * 1 $\left[\left[W;Y\right]\leq\left[\left[W;X\right]\right]$

Uncertain Signals & Stationary Memoryless Channels

 \boldsymbol{Def} *:* An *uncertain signal X* is a mapping from $\boldsymbol{\Omega}$ to the space

 \boldsymbol{X}^{∞} of discrete-time signals $x : \mathbb{Z}_{\geq 0} \to \boldsymbol{X}$. $_{\geq 0} \rightarrow$

Def : A stationary memoryless uncertain channel consists of a set-valued *transition function* $T : X \rightarrow 2^Y$, and the family of all uncertain input-output signal pairs (X,Y) s.t.

$$
\llbracket Y(k) \mid x(0:k), y(0:k-1) \rrbracket = \llbracket Y(k) \mid x(k) \rrbracket = \mathbf{T}(x(k)) \subseteq Y,
$$

$$
\forall (x,y) \in \llbracket X,Y \rrbracket, \ k \in \mathbb{Z}_{\geq 0}.
$$

Channel Coding Theorem for Zero-Error Communication

Thm : The zero-error capacity \mathcal{C}_0 of a stationary memoryless uncertain channel coincides with the highest average rate of maximin information possible across it, i.e.

$$
C_0 = \sup_{t \geq 0, x \in X \cap \mathbb{Z}} \frac{\int_{t}^{t} [X(0:t); Y(0:t)]}{t+1} = \lim_{t \to \infty} \sup_{X(0:t) \in X^{(t+1)}} \frac{\int_{t}^{t} [X(0:t); Y(0:t)]}{t+1}.
$$

Note : $C_{\scriptstyle{0}}$ is defined operationally, as the largest rate over all block codes that permit unambiguous recovery of the input sequence.This result gives an *intrinsic* characterization.

Remarks

- The idea of a *common (random) variable Z* comes from $\overline{\text{crun}}$ or $\overline{\text{crun}}$ or $\overline{\text{cmun}}$ cryptography [Wolf & Wullschleger, ITW2004]
- There, Z is formally defined by the *connected components* of the disease binary is the disease of the the discrete bipartite graph describing (x, y) pairs having joint prob. > 0 .
- Taxicab connectedness generalises this to continuous-valued and mixed pairs of variables, not representable by discrete graphs.
- CO was shown by Wolf & Wullschleger to coincide with the maximum Shappen entrany rate aver all common ry's 7 maximum Shannon entropy rate over all common rv's Z.
Unusuary this is atill a mushabilistic above stariostics. However, this is still a probabilistic characterisation.
- Maximin information coincides with the *Hartley* entropy of the maximal common rv *Z*.

State Estimation of Disturbance-Free LTI Systems

 $X(t+1) = AX(t), Y(t) = GX(t), X(0)$ a uv.

 $Coder: Y(0:t) \mapsto S(t) \in S$. No channel feedback.

 $\textbf{Error} \textbf{course}$ $\textbf{Channel}: \textbf{S} \rightarrow 2^{\textbf{Q}}$

 $\hat{X}(t+1)$ **Estimator :** $Q(0:t) \mapsto X(t+$

Given parameters $\rho, l > 0$, the objectives are

 $\boldsymbol{\mathrm{I}}$) ρ - exponential uniformly bounded estimation errors :

 $(t)\|<\infty.$ ˆFor any uv $X(0)$ s.t. $\parallel X(0) \parallel \leq l$, $\sup_{t \geq 0, \omega \in \Omega} \rho^{-t} \parallel X(t) - X$ ≤ $\,<$ ∞≥0.α∈Ω *XX*l, sup ρ^{-t} $\|X\|$ *t Xt t t* ρ ω ϵ Ω

$\,bf II) \,$ ρ - $\,$ exponential uniform convergence $\,$ $\,$

 $(t) = 0.$ ˆFor any uv $X(0)$ s.t. $\| X(0) \| \le l$, $\lim_{t \to \infty} \sup_{\omega \in \Omega} \rho^{-t} \| X(t) - X(t) \|$ −=→∞ ∞ $\alpha \in \Omega$ *XX*l, $\limsup \rho^{-1}$ *t Xt t t* ρ ω

Assumptions

governed by | eigenvalue $|$'s $\geq \rho$. **DF1**: (G, A_ρ) is observable, where $A_\rho := A$ restricted to invariant subspace

:The channel does not depend on the initial ^plant state, **DF2** $X(0) \leftrightarrow S(0:t) \leftrightarrow Q(0:t)$ given channel input sequence $S(0:t)$, i.e. the output sequence $Q(0:t)$ is conditionally unrelated to $X(0),$

DF3: A has one or more leigenvalue \vert 's > ρ

Criterion without Disturbances

for some $l > 0$, then If ρ - ρ - exponential uniformly bounded estimation errors are achieved

$$
C_0 \ge \sum_{|\lambda_i| \ge \rho} \log_2 \left| \frac{\lambda_i}{\rho} \right| =: H_{\rho} \tag{*}
$$

 $\bigg)$

Conversely, if $(*)$ holds strictly, then for any $l > 0$, a coder that achieves ρ - ρ - exponential uniform convergence can be constructed. $l > 0$, a coder - estimator

Proof of second part : constructive.

 $\big($ Proof of first part : maximin information theory $\big)$

LTI State EstimationWith Plant Disturbances

 $X(t+1) = AX(t) + V(t),$ $Y(t) = GX(t) + W(t),$

$\bf Assumptions$:

 $D0$: (G, A) is detectable.

- **D1**: A has one or more l eigenvalue l's >1 .
- **D2 :** Realisations of V & W are uniformly bounded in ℓ_{∞} .
- **D3**: The null signals $v, w = 0$ are valid disturbance realisations.

 $\mathbf{D4:} X(0), V \& W$ are mutually unrelated.

D5 : The channel does not depend on the plant states and disturbances, i.e.

 $(X(0), V(0:t-1), W(0:t))$, given the channel input $S(0:t)$, $(X(0), V(0:t-1), W(0:t)) \leftrightarrow S(0:t) \leftrightarrow Q(0:t)$ the channel output $Q(0:t)$ is conditionally unrelated with

Criterion with Disturbances

If uniformly bounded estimation errors are achieved for some $l > 0$, then

$$
C_0 \ge \sum_{|\lambda_i| \ge 1} \log_2 |\lambda_i| =: H. \tag{**}
$$

that achieves uniformly bounded estimation errors can be constructed. Conversely, if $(**)$ holds strictly, then for any $l > 0$, a coder $l > 0$, a coder - estimator

Remarks

In a stochastic setting (i.e. random channel and $X(0)$) with no
plant poise, it is known that elmost sure equipatorie. plant noise, it is known that almost-sure asymptotic convergence is possible iff ordinary capacity C > H (Matveev & Savkin 2007).

The criterion here is stricter because a law of large numbers cannot be used to average out decoding errors.

If bounded, nonstochastic disturbances are present, they
aboved that a a uniformly bounded arrare are passible iff showed that a.s. uniformly bounded errors are possible iff $CO > H$. Proof used no info theory

Conclusion

- **Formulated a framework for modelling unknown variables without** assuming the existence of distributions
- Defined nonprobabilistic analogues of independence & Markovness
- r. Proposed maximin information as a nonstochastic index of the most refined knowledge that can be agreed on from separate observations of two variables
- Showed that zero-error capacity coincides with the highest maximin info rate possible across the channel
- Used maximin info theory to derive tight conditions for uniform state estimation of LTI plants

Future Work

- $\mathcal{L}(\mathcal{L})$ ■ Channels with input or memory constraints
- Network maximin information theory
- $\mathcal{L}(\mathcal{L})$ ■ Systems with feedback – preliminary results to appear in CDC 2012

Extension

Zero Error Feedback Capacity

Theorem (GN, to appear in *CDC*12):

di*rected* maximin information : memorylessuncertain channel can be expresse^d in terms of The operational zero-error feedback capacity of a stationary

$$
C_{0F} = \lim_{t \to \infty} \sup_{X(0:t), Y(0:t)} \frac{1}{t+1} \sum_{k=0}^{t} I^*[X(k); Y(k) | Y(0:k-1)] =: I^*[X \to Y],
$$

where

$$
I^*[X; Y | Z] := \min_{z \in [[Z]]} \log_2 |Z[X; Y | z]|
$$

where

$$
I^*[X;Y|Z] := \min_{z \in [[Z]]} \log_2 |Z[X;Y|z]|
$$

is *conditional* maximin information.

Thank You!

References

- $\mathcal{L}_{\mathcal{A}}$ GN, "A nonstochastic information theory for communication and state estimation", http://arxiv.org/abs/1112.3471. (Provisionally accepted by IEEE Trans Auto. Contr; short version in Proc. 9th IEEE Int. Conf. Control & Automation, Santiago, Chile, Dec. 2011.)
- --, " A nonstochastic information theory for feedback", to appear in Proc. IEEE CDC, Dec. 2012.
- $\mathcal{L}(\mathcal{A})$. The set of $\mathcal{L}(\mathcal{A})$ G. Klir, Uncertainty and Information Foundations of Generalized Information Theory, Wiley, 2006, ch. 2.
- $\mathcal{L}_{\mathcal{A}}$ H. Shingin and Y. Ohta, "Disturbance rejection with information constraints: Performance limitations of a scalar system for bounded and Gaussian disturbances,'' Automatica, 2012.
- $\mathcal{L}_{\rm{max}}$ S. Wolf and J. Wullschleger, "Zero-error information and applications in cryptography", Info. Theory Workshop, San Antonio, USA ,2004.
- $\mathcal{L}_{\mathcal{A}}$ C.E. Shannon, "The zero-error capacity of a noisy channel", IRE Trans. Info. Theory, vol. 2, 1956.
- $\overline{}$ S. Tatikonda and S. Mitter, "Control under communication constraints," IEEE TAC., 2004.
- $\mathcal{L}_{\mathcal{A}}$ A.S. Matveev and A.V. Savkin, ``Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels,'' Int. Jour. Contr., 2007.
- $\mathcal{L}_{\mathcal{A}}$ - , ``An analogue of Shannon information theory for detection and stabilization via noisy discrete communication channels", SIAM J. Contr. Optim., 2007.
- $\mathcal{L}_{\rm{max}}$ J. Massey, ``Causality, feedback and directed information,'' in Int. Symp. Inf. Theory App., 1990.