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Doubly-coprime factorization of G (Nett, Jacobson and Ballas ’84)
G = NM−1 = M̃−1Ñ [

Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

Youla parametrization of stabilizing controllers

K = −
(
X̃ + MQ

)(
Ỹ − NQ

)−1

=
(
Y −QÑ

)−1(X + QM̃
)

Model matching formulation min
Q stable

‖T1 + T2QT3‖
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(
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(
K
)

with K bin.

Definition

Denote the set of stabilizing, sparsity constrained controllers (i.e. satisfying
K bin) with S.
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Norm-optimal control: Sparsity constrained

Problem

Given P and an appropriate pre-selected K bin:

min
K∈S

∥∥∥Pzw + Pzu K
(
I + GK

)−1Pyw

∥∥∥

Main obstacles:
No known convex parametrization of stabilizing controllers (in general).
Optimal controllers may be non-linear (Witsenhausen ’68).
Simple sequential linear quadratic Gaussian problems have non-linear
optimal solutions. (Lipsa & Martins, Automatica ’10)

X(0)- e+ -Y (0)?

V (0)

F0 -U(0) e+?
V (1)

-Y (1)
F1 - . . . Fm−1 -X(m)

min E
[

(X(m) − X(0))2 + %
∑m−1

i=0 U(i)2
]
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Main Idea: Optimal solutions for certain lqg problems may be nonlinear
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[G]31 [G]32 [G]33

 , K ∈

? O O
? ? ?
? ? ?


How do we check if the sparsity constraints allow for a convex parametrization?

Answer: If and only if the following holds (Rotkowitz & Lall):

KGK ∈ S for all K ∈ S

The following is a key invariance identity:

K ∈ S ⇐⇒ K (I + GK )−1 ∈ S
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There may be a convex Q-parametrization of all stabilizing controllers.

Linear controllers are optimal for norm-based formulations.

It encompasses other characterizations that allow for convex parametrization of
the sparsity constrained controllers.
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Open questions:

Given a plant what is the sparsest constraint on the controller that preserves QI?
State of the art: Rotkowitz & Martins, ”On The Nearest Quadratically Invariant
Information Constraint,” IEEE Transactions On Automatic Control, Vol. 57, No. 5,
May 2012, pp. 1314 - 1319.

(Main questions) Existing parametrizations of stabilizing controllers
require an initial stabilizing controller. When does such a controller exist? When it
does exist, how can it be computed? Can we characterize all sparsity-constrained
stabilizing controllers in a way analogous to Youla’s parametrization? (this talk)
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Necessary and Sufficient Conditions for Stabilizability under QI

Problem

Existing parametrizations of stabilizing controllers under QI rely on an initial
stable stabilizing controller. When does a stabilizing controller exist? How do
we compute it, if one does exist? Can we characterize all
sparsity-constrained stabilizing controllers in a way analogous to Youla’s
parametrization?

Is it QI?

This talk

yes

no

No convex parametrization

no

yes
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Necessary and Sufficient Conditions for Stabilizability under QI

Doubly-Coprime Factorization of G (Nett, Jacobson and Ballas ’84)

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

Theorem

Given G and a QI sparsity constraint S, there exists a stabilizing K in S if and
only if there exists some DCF of G such that

Pattern(X̃ M̃) ≤ K bin or Pattern(MX ) ≤ K bin. (1)
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Key idea behind the proof:

Proposition

Given any DCF of G, select K to be the central controller
K = X̃ Ỹ−1 = Y−1X. The following identities hold:

MX = K
(
I + GK

)−1
, X̃ M̃ = K

(
I + GK

)−1 (2)

Proof: We verify that MX = K
(
I + GK

)−1 holds. The proof that
XM̃ = K

(
I + GK

)−1 is true is analogous. From K = Y−1X and G = NM−1,
we get that K

(
I + GK

)−1
=
(
I + Y−1XNM−1)−1Y−1X , where we used the

fact that K
(
I + GK

)−1
=
(
I + KG

)−1K . Finally, using Bézout’s identity we get
that

(
I + Y−1XNM−1) =

(
I + Y−1(I −MY )M−1) = MY , which concludes the

proof.
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Key idea behind the proof:

Proposition

Given any DCF of G, select K to be the central controller
K = X̃ Ỹ−1 = Y−1X. The following identities hold:

MX = K
(
I + GK

)−1
, X̃ M̃ = K

(
I + GK

)−1 (2)

Proof: We verify that MX = K
(
I + GK

)−1 holds. The proof that
XM̃ = K

(
I + GK

)−1 is true is analogous. From K = Y−1X and G = NM−1,
we get that K

(
I + GK

)−1
=
(
I + Y−1XNM−1)−1Y−1X , where we used the

fact that K
(
I + GK

)−1
=
(
I + KG

)−1K . Finally, using Bézout’s identity we get
that

(
I + Y−1XNM−1) =

(
I + Y−1(I −MY )M−1) = MY , which concludes the

proof.

Main Idea:

If S is quadratically invariant then K (I + GK )−1 ∈ S ⇔ K ∈ S
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Idea for Numerical Synthesis of a Sparse Controller under QI

Theorem

Given G and a QI sparsity constraint S, there exists a stabilizing K in S if and
only if there exists some DCF of G such that

Pattern(X̃ M̃) ≤ K bin or Pattern(MX ) ≤ K bin. (3)

Find some Doubly-Coprime Factorization of G

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

that satisfies (3)!
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Outline: Numerical Synthesis of a Sparse Controller under QI

The Youla Parametrization to the Rescue

Start with any Doubly-Coprime Factorization of the plant:
G = NM−1 = M̃−1Ñ [

Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

then for any Youla parameter Q[
(Y −QÑ) (X + QM̃)

−Ñ M̃

] [
M −(X̃ + MQ)

N (Ỹ − NQ)

]
= Iny +nu . (4)

is another DCF of the plant G and its associated central controller is given by

K = −
(
X̃ + MQ

)(
Ỹ − NQ

)−1

=
(
Y −QÑ

)−1(X + QM̃
)
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Outline: Numerical Synthesis of a Sparse Controller under QI

Start with any Doubly-Coprime Factorization of the plant:
G = NM−1 = M̃−1Ñ [

Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

find some Youla parameter Q such that for the newly obtained DCF[
(Y −QÑ) (X + QM̃)

−Ñ M̃

] [
M −(X̃ + MQ)

N (Ỹ − NQ)

]
= Iny +nu . (5)

for which the following holds:

Pattern
(
MQM̃ + X̃ M̃

)
≤ K bin or Pattern

(
MQM̃ + MX

)
≤ K bin. (6)
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Numerical Synthesis of a Sparse Controller under QI

Start with any Doubly-Coprime Factorization of the plant:

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

Corollary

Given a plant G and a QI sparsity constraint, G is stabilizable with a sparsity
constrained controller K belonging to the set S if and only if, starting from any
DCF of G, there exists a Youla parameter Q such that

Pattern
(
MQM̃ + X̃ M̃

)
≤ K bin or Pattern

(
MQM̃ + MX

)
≤ K bin. (7)
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Synthesis of a Sparse Controller as an Exact Model–Matching Problem

Start with any Doubly-Coprime Factorization of the plant:

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

Theorem

Given a plant G and a QI sparsity constraint S, G is stabilizable with a
sparsity constrained controller K belonging to the set S if and only if, starting
from any DCF of G, there exists a Youla parameter Q such that vec(Q) is a
stable solution of the following linear system of TFM equations

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃ M̃

)
, (8)

where Φ
def
= I − diag(K bin). If a stabilizing controller in S exists then it can be

written as K = (Y −QÑ)−1(X + QM̃).
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The Exact Model–Matching Problem with Stability

Start with any Doubly-Coprime Factorization of the plant:

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

Exact Model–Matching with Stability:

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃ M̃

)
Exact Model–Matching (Wolovich, 1970s )

Exact Model–Matching with Stability (Antsaklis, 1980s)

Numerical Methods for Exact Model–Matching with Stability (Chu & Van
Dooren, Automatica, 2006.)
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The Youla Parametrization of All Sparse Stabilizing Controllers

Start some any Doubly-Coprime Factorization of the plant:

G = NM−1 = M̃−1Ñ

[
Y X
−Ñ M̃

] [
M −X̃
N Ỹ

]
= Im+p

that satisfies

Pattern(X̃ M̃) ≤ K bin or Pattern(MX ) ≤ K bin. (9)

Corollary

Consider a plant G and a QI sparsity constraint S. If G is stabilizable by a
controller K in S, and consequently a DCF of G satisfying (9) exists, the set
of all stabilizing controllers of G belonging to the set S is given by
K =

(
X̃ + MQ

)(
Ỹ − NQ

)−1 and the Youla parameter Q must satisfy:

vec(Q) ∈ Null
(

Φ
(
MT ⊗ M̃

))
, (10)

where Φ
def
= I − diag(K bin).
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Sparsity Constrained Model-Matching Problem

Corollary

Consider a plant G and a QI sparsity constraint S. If G is stabilizable by a
controller K in S, and consequently a DCF of G satisfying (9) exists, the set
of all stabilizing controllers of G belonging to the set S is given by
K =

(
X̃ + MQ

)(
Ỹ − NQ

)−1 where the Youla parameter Q must satisfy:

vec(Q) ∈ Null
(

Φ
(
MT ⊗ M̃

))
, (11)

where Φ
def
= I − diag(K bin).

The sparsity constrained model-matching program is given by:

min
vec(Q) stab. in Null

(
Φ(MT⊗M̃)

) ‖T1 + T2QT3‖
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Numerical Example

G =

 1
λ+4

1
λ−2

1
λ−1 0

1
λ+5

1
λ−3

, K bin =

[
0 1 0
1 1 1

]

We use Nett & Jacobson’s state–space formulas to obtain the following DCF
of G:

M̃ =

 λ−2
λ+6 0 0
0 λ−1

λ+7
λ−3
λ+7

0 0 λ−3
λ+8

, M =

[
λ−1
λ+9 0
0 (λ−2)(λ−3)

(λ+10)(λ+11)

]

X =

[
λ−2
λ+6

1
λ+7

λ−3
λ+8

1
λ+6

λ−1
λ+7

1
λ+8

]
Need to find Q that satisfies:

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
MX
)
, (12)

where Φ
def
= I − diag(K bin).
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Numerical Example

M̃ =

 λ−2
λ+6 0 0
0 λ−1

λ+7
λ−3
λ+7

0 0 λ−3
λ+8

, M =

[
λ−1
λ+9 0
0 (λ−2)(λ−3)

(λ+10)(λ+11)

]

X =

[
λ−2
λ+6

1
λ+7

λ−3
λ+8

1
λ+6

λ−1
λ+7

1
λ+8

]
Need to find Q that satisfies:

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
MX
)
, (13)

where Φ
def
= I − diag(K bin). In this case a solution can be found to be:

Q =

[
1 0 1
0 1 λ+8

λ+7

]
The resulting stabilizing central controller is given by:

K =

[
λ+17
λ+7 0

754 (λ+5.87)(λ−0.4525)
(λ+4)(λ+5)(λ+6)(λ+8)

(λ+42.5389)(λ−2.5389)
(λ+6)(λ+8)

]−1 [
0 1

λ+7 0
1
λ+6 0 1

λ+8

]
,
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A Meaningful, Particular Case

Decoupled Doubly-Coprime Factorizations



Motivation Outline Theme 1 Theme 2 Conclusions and Open Questions

Preliminary notation and definitions:

The input and output are partitioned as follows:

yT =
[
yT

[1] · · · yT
[ry ]

]T
,

∑ry
i=1 mi = m

uT =
[
uT

[1] · · · uT
[ru ]

]T
,

∑ru
i=1 pi = p

(14)

The partition above induces the following block-partition of G and K :

G =

G[11] · · · G[1ru ]

...
. . .

...
G[ry 1] · · · G[ry ru ]



K =

K[11] · · · K[1ry ]

...
. . .

...
K[ru1] · · · K[ru ry ]


(15)
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Preliminary notation and definitions:

Remark

Given factorizations of G and K as G = M̃−1Ñ = NM−1 and
K = X̃ Ỹ−1 = Y−1X, respectively, the partition in (14) will induce a unique
block-partition structure on the factors N, M, Ñ, M̃, X , Y , X̃ and Ỹ as well.

Definition

Let Ñ and M̃ be a factorization of G. The pair (Ñ, M̃) is called output
decoupled if M̃ has the following block diagonal structure:

M̃ = diag({M̃[ii]}
ry
i=1) (16)

where diag({M[ii]}
ry
i=1) is defined as:

diag({M̃[ii]}
ry
i=1)

def
=


M̃[11] 0 · · · 0

0 M̃[22] · · · 0
...

. . .
...

0 0 · · · M̃[ry ry ]

 (17)
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Preliminary notation and definitions:

Definition

Let Ñ and M̃ be a factorization of G. The pair (Ñ, M̃) is called output
decoupled if M̃ has the following block diagonal structure:

M̃ = diag({M̃[ii]}
ry
i=1) (16)

where diag({M[ii]}
ry
i=1) is defined as:

diag({M̃[ii]}
ry
i=1)

def
=


M̃[11] 0 · · · 0

0 M̃[22] · · · 0
...

. . .
...

0 0 · · · M̃[ry ry ]

 (17)

Definition

Let N and M be a factorization of G. The pair (N,M) is called input
decoupled if M has the following block diagonal structure:

M = diag({M[ii]}ru
i=1) (18)
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Preliminary notation and definitions:

Definition

Let Ñ and M̃ be a factorization of G. The pair (Ñ, M̃) is called output
decoupled if M̃ has the following block diagonal structure:

M̃ = diag({M̃[ii]}
ry
i=1) (16)

where diag({M[ii]}
ry
i=1) is defined as:

diag({M̃[ii]}
ry
i=1)

def
=


M̃[11] 0 · · · 0

0 M̃[22] · · · 0
...

. . .
...

0 0 · · · M̃[ry ry ]

 (17)

Remark

Notice that an output (input) decoupled factorization can always be
constructed by factoring each block row of G separately as follows:[

G[i1] · · ·G[iru ]

]
= M̃−1

[ii]

[
Ñ[i1] · · · Ñ[iru ]

]
, i ∈ 1, ry (18)
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Preliminary notation and definitions:

Definition

Let Ñ and M̃ be a factorization of G. The pair (Ñ, M̃) is called output
decoupled if M̃ has the following block diagonal structure:

M̃ = diag({M̃[ii]}
ry
i=1) (16)

where diag({M[ii]}
ry
i=1) is defined as:

diag({M̃[ii]}
ry
i=1)

def
=


M̃[11] 0 · · · 0

0 M̃[22] · · · 0
...

. . .
...

0 0 · · · M̃[ry ry ]

 (17)

Definition

A DCF
(
M,N, M̃, Ñ, X ,Y , X̃ , Ỹ

)
of G is called input/output decoupled if the

pairs (N,M) and (Ñ, M̃) are input and output decoupled, respectively.
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On Input/Output DCFs

Input/output decoupled pairs may not be coprime, much less doubly coprime

[
G[i1] · · ·G[iru ]

]
= M̃−1

[ii]

[
Ñ[i1] · · · Ñ[iru ]

]
, i ∈ 1, ry . (18)

G[11] · · · G[1ru ]

...
. . .

...
G[ry 1] · · · G[ry ru ]

 =


M̃−1

[11] · · · 0
...

. . .
...

0 · · · M̃−1
[ry ry ]




Ñ[11] · · · Ñ[1ru ]

...
. . .

...
N[ry 1] · · · Ñ[ry ru ]

 (19)

Proposition

The output decoupled factorization (19) is coprime if and only if the TFM

Ψ =


M̃[11] · · · 0 Ñ[11] · · · Ñ[1ru ]

...
. . .

...
...

...
0 · · · M̃[ry ry ] N[ry 1] · · · Ñ[ry ru ]


has full row–rank at the finite set of points λ ∈ (C− Ω) (unstable poles of G).
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Preliminary notation and definitions:

Definition

Given K in R(λ)p×m, we define Pattern(K ) ∈ Bru×ry as follows:

Pattern(K )ij
def
=

{
0 if K[ij] = 0pi×mj

1 otherwise
i , j ∈ 1, ru × 1, ry (20)

where 0pi×mj is a matrix with pi rows and mj columns and whose entries are
all zero.

Definition

Conversely, for any binary matrix K bin in Bru×ry , we define the following linear
subspace:

Sparse(K bin)
def
=
{

K ∈ R(λ)p×m∣∣Pattern(K ) ≤ K bin
}

(21)

Definition

Given K bin in Bru×ry , the sparsity constraint S is defined as:

S def
= Sparse(K bin), (22)
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Preliminary Facts:

Remark

As a consequence of the definitions above, the following holds for any
input/output decoupled DCF of G:

Pattern(M) ≤ Iru×ru , Pattern(N) ≤ Gbin

Pattern(M̃) ≤ Iry×ry , Pattern(Ñ) ≤ Gbin
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Preliminary Facts:

Remark

As a consequence of the definitions above, the following holds for any
input/output decoupled DCF of G:

Pattern(M) ≤ Iru×ru , Pattern(N) ≤ Gbin

Pattern(M̃) ≤ Iry×ry , Pattern(Ñ) ≤ Gbin

Recall the following Theorem ...

Theorem

Given a plant G and a QI sparsity constraint, G is stabilizable with a sparsity
constrained controller K belonging to the set S if and only if, starting from any
DCF of G, there exists a Youla parameter Q such that vec(Q) is a stable
solution to the linear system of TFM equations

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃ M̃

)
where Φ

def
= I − diag(K bin).
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Specialized Results for the Input/Output Decoupled DCF Case:

Remark

As a consequence of the definitions above, the following holds for any
input/output decoupled DCF of G:

Pattern(M) ≤ Iru×ru , Pattern(N) ≤ Gbin

Pattern(M̃) ≤ Iry×ry , Pattern(Ñ) ≤ Gbin

From Previous Theorem ...

Φ
(
MT ⊗ M̃

)
vec(Q0) = −Φ vec

(
X̃ M̃

)
Corollary

Let S be a given QI sparsity constraint and (M,N, M̃, Ñ,X ,Y , X̃ , Ỹ ) an
input/output decoupled DCF of G. Assume that there is a stabilizing
controller in S and let stable Q0 be selected to satisfy the condition above.
Any stabilizing controller in S can be written as K = (Y −QÑ)−1(X + QM̃),
where Q is obtained as:

Q = Q0 + Qδ, stable Qδ ∈ S (23)
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Specialized Results for the Input/Output Decoupled DCF Case:

Remark

As a consequence of the definitions above, the following holds for any
input/output decoupled DCF of G:

Pattern(M) ≤ Iru×ru , Pattern(N) ≤ Gbin

Pattern(M̃) ≤ Iry×ry , Pattern(Ñ) ≤ Gbin

From Previous Theorem ...

Φ
(
MT ⊗ M̃

)
vec(Q0) = −Φ vec

(
X̃ M̃

)
Corollary

Let
(
M,N, M̃, Ñ, X ,Y, X̃ , Ỹ

)
be an input/output decoupled DCF of G. Given

a QI sparsity constraint S, G is stabilizable by a controller in S if and only if
M−1X̃S⊥ is stable, where X̃S⊥ results from the additive factorization
X̃ = X̃S + X̃S⊥ satisfying Pattern(X̃S) ≤ K bin and Pattern(X̃S⊥) ≤ K bin

⊥ .
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Theme 2

Plant

DECENTRALIZED CONTROLLER

Characterization of stabilizability:

- Fixed Modes,

  

- Structured fixed modes, 

- Quotient fixed modes

Distributed State Estimation

classical

new applications
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Problem formulation

LTI Plant

OBSERVER 1

OBSERVER m

DISTRIBUTED OBSERVER
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Problem formulation

LTI Plant

OBSERVER 1

OBSERVER m

DISTRIBUTED OBSERVER

LTI plant is described as:

x(k + 1) = Ax(k)

y(k) = Cx(k)

where y(k) =
(

yT
1 (k), · · · , yT

m(k)
)T

x(k) ∈ Rn, yi (k) ∈ Rri
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Problem formulation

LTI Plant

OBSERVER 1

OBSERVER m

DISTRIBUTED OBSERVER

Definition: Consider a LTI plant with state x(k) and a distributed observer
with local state estimates {x̂i (k)}i∈V . The distributed observer is said to
achieve omniscience asymptotically if the following holds:

lim
k→∞

||x̂i (k)− x(k)|| = 0, i ∈ V

Objective Determine whether a LTI distributed observer exists for which
omniscience is attained, and if so construct one.

Advantages: Tractable robustness analysis and frequency domain
performance analysis in the presence of exogenous inputs
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A convenient distributed observer structure

Consider the following structure for each ”local” observer:

x̂i (k + 1) = A
∑
j∈Ni

wij x̂j (k)︸ ︷︷ ︸
state estimate

+Hi (yi (k)− Ci x̂i (k))︸ ︷︷ ︸
measurement innovation

+Qi zi (k)︸ ︷︷ ︸
aug. state

, i ∈ V

zi (k + 1) = Ri (yi (k)− Ci x̂i (k)) + Sizi (k)

where Hi ∈ Rn×ri , Qi ∈ Rn×µi , Ri ∈ Rµi×ri , Si ∈ Rµi×µi , and µi is the
dimension of zi (k). We refer to W = (wij )i,j∈V as a weight matrix, and
{Hi ,Qi ,Ri ,Si} as gain matrices. The neighborhood Ni consists of the
vertices with outgoing edges terminating in i . These matrices are the design
parameters that need to be computed.

Notice that the network is used to disseminate state estimates.
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A convenient distributed observer structure

Consider the following structure for each ”local” observer:

x̂i (k + 1) = A
∑
j∈Ni

wij x̂j (k)︸ ︷︷ ︸
state estimate

+Hi (yi (k)− Ci x̂i (k))︸ ︷︷ ︸
measurement innovation

+Qi zi (k)︸ ︷︷ ︸
aug. state

, i ∈ V

zi (k + 1) = Ri (yi (k)− Ci x̂i (k)) + Sizi (k)

where Hi ∈ Rn×ri , Qi ∈ Rn×µi , Ri ∈ Rµi×ri , Si ∈ Rµi×µi , and µi is the
dimension of zi (k). We refer to W = (wij )i,j∈V as a weight matrix, and
{Hi ,Qi ,Ri ,Si} as gain matrices. The neighborhood Ni consists of the
vertices with outgoing edges terminating in i . These matrices are the design
parameters that need to be computed.

Notice that the network is used to disseminate state estimates.
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Main result

LTI Plant

OBSERVER 1

OBSERVER m

DISTRIBUTED OBSERVER

Theorem: Let G(V ,E) be a strongly connected communication graph.
There exist a stochastic weight matrix W = (wij )i,j∈V and gain matrices
{Hi ,Qi ,Ri ,Si}i∈V such that the resulting distributed observer achieves
omniscience asymptotically if and only if the pair (A,C) is detectable.
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Key observation and connections to decentralized stabilization and
fixed modes

Notice that we can write the error dynamics of as follows.

εi (k + 1) =
∑
j∈Ni

wijAεj (k)− HiCiεi (k)−Qizi (k)

zi (k + 1) = RiCiεi (k) + Sizi (k)

where εi (k)
def
= x(k)− x̂i (k). We can also write as follows :(

ε(k + 1)
z(k + 1)

)
=

(
W⊗ A− B̄H̄C̄ −B̄Q̄

R̄C̄ S̄

)(
ε(k)
z(k)

)
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Key observation and connections to decentralized stabilization and
fixed modes

Notice that we can write the error dynamics of as follows.

εi (k + 1) =
∑
j∈Ni

wijAεj (k)− HiCiεi (k)−Qizi (k)

zi (k + 1) = RiCiεi (k) + Sizi (k)

where εi (k)
def
= x(k)− x̂i (k). We can also write as follows :(

ε(k + 1)
z(k + 1)

)
=

(
W⊗ A− B̄H̄C̄ −B̄Q̄

R̄C̄ S̄

)(
ε(k)
z(k)

)
where

B̄ =
(
B̄1, · · · , B̄m

)
with B̄i = e(i)

m ⊗ In

C̄ =
(

C̄T
1 , · · · , C̄T

m

)T
with C̄i =

(
e(i)

m

)T
⊗ Ci

H̄ = diag (H1, · · · ,Hm) , Q̄ = diag (Q1, · · · ,Qm)

R̄ = diag (R1, · · · ,Rm) , S̄ = diag (S1, · · · ,Sm)
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j∈Ni

wijAεj (k)− HiCiεi (k)−Qizi (k)

zi (k + 1) = RiCiεi (k) + Sizi (k)

where εi (k)
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= x(k)− x̂i (k). We can also write as follows :(
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Necessary and sufficient conditions for stabilizability as well as design
methods have been proposed in:

S.-H. Wang and E. J. Davison, On the stabilization of decentralized control
systems, IEEE Trans. Automat. Contr., vol. AC-18, no. 5, Oct. 1973.

B. D. O. Anderson and D. J. Clements, Algebraic characterization of fixed modes
in decentralized control, Automatica, vol. 17, no. 5, pp. 703712, 1981.

E. J. Davison and U. Ozguner, Characterizations of decentralized fixed modes for
interconnected systems, Automatica, vol. 19, no. 2, pp. 169182, 1983.
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Conclusions and Open Questions

New recent results have provided algebraic techniques to test the existence of
convex parametrizations of sparsity-constrained controllers.

We have leveraged on these recent ideas to develop a factorization-based theory
that extends Youla’s classical formulation for the design of sparsity constrained
controllers. The key idea is recasting the sparsity constraints on the controller as
subspace constraints (hence convex) on the Youla parameter.

We are currently working on a simple method to optimally modify one block of an
existing stabilizing block diagonal controller. There are no results on effective
independent search methods, with performance guarantees.
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