Some Problems Are Easier With Feedback

Amos Lapidoth ETH Zurich

Information and Control in Networks, Lund, Oct. 17–19, 2012.

October 18, 2012

Joint work with Christoph Bunte.

A Discrete Memoryless Channel

$$
\xrightarrow{x} W(y|x) \xrightarrow{Y}
$$

- \mathcal{X} —input alphabet (finite).
- \mathcal{Y} -output alphabet (finite).
- $W(y|x)$ —channel law.
- Channel is memoryless: $\Theta_1, \ldots, \Theta_n$ are IID and

$$
Y_k = g(x_k, \Theta_k), k = 1, \ldots, n.
$$

Encoders with or without Feedback

- $M = \{1, \ldots, M\}$ —message set.
- n —blocklength.
- R —rate, i.e., $n^{-1} \log M$.
- Blocklength-n encoder without feedback:

$$
f: \mathcal{M} \to \mathcal{X}^n,
$$

with the m -th message transmitted as

$$
\mathbf{x}(m) = f(m) = (x_1(m), \ldots, x_n(m)).
$$

• Blocklength-n encoder with feedback:

$$
f_1\colon \mathcal{M}\to \mathcal{X},\ f_2\colon \mathcal{M}\times \mathcal{Y}\to \mathcal{X},\ldots, f_n\colon \mathcal{M}\times \mathcal{Y}^{n-1}\to \mathcal{X},
$$

with the *m*-th message transmitted as

$$
\mathbf{x}(m) = (f_1(m), f_2(m, Y_1), \dots, f_n(m, Y^{n-1}))
$$

= $(x_1(m), x_2(m, Y_1), \dots, x_n(m, Y^{n-1})).$

Decoders, Errors, and Erasure

A decoder ϕ is a mapping

$$
\phi\colon \mathcal{Y}^n\to \mathcal{M}\cup \{?\}.
$$

Success is when $\phi(\mathbf{Y}) = m$.

Two failure modes:

- An erasure is when $\phi(\mathbf{Y}) = ?$.
- An error is when $\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\}.$

Channel Capacity

The channel capacity C is the supremum of achievable rates, where a rate R is said to be achievable if for every $\epsilon > 0$ we can find a sufficiently large positive integer n_0 such that for all blocklengths *n* exceeding n_0 there exists a rate-R blocklength-*n* encoder f and and a decoder ϕ such that

$$
\Pr(\phi(\mathbf{Y}) \in \mathcal{M}\setminus\{m\} \mid M = m) + \Pr(\phi(\mathbf{Y}) = ? \mid M = m) < \epsilon, \ m \in \mathcal{M}.
$$

We allow both errors and erasures but with small probability.

In the presence of feedback it is denoted C_{FB} .

Zero-Error Capacity

The Zero-Error Capacity C_0 is the supremum of achievable rates with

$$
Pr(\phi(\mathbf{Y}) \in \mathcal{M}\setminus\{m\} \mid M = m) + Pr(\phi(\mathbf{Y}) = ? \mid M = m) = 0, \ m \in \mathcal{M}.
$$

We allow neither erasures nor errors

In the presence of feedback it is denoted $C_{0,FB}$.

Erasures-Only Capacity

The Erasures-Only Capacity C_{e-0} is the supremum of achievable rates with

$$
\Pr(\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\} \mid M = m) = 0, \quad m \in \mathcal{M}
$$

and

$$
Pr(\phi(\mathbf{Y}) = ? | M = m) < \epsilon, \quad m \in \mathcal{M}.
$$

We do not allow errors, but we do allow erasures (with small probability).

In the presence of feedback it is denoted $C_{\text{e-0}}$ FB.

Computing C, C_0 , and C_{e-o}

Shannon'48:

$C = \max I(X; Y),$

where the maximum is over all input distributions.

Computing C, C_0 , and C_{e-a}

Shannon'48:

$C = \max I(X; Y)$,

where the maximum is over all input distributions.

$C₀$ is unknown.

We do know that C_0 is positive if, and only if, we can find $x, x' \in \mathcal{X}$ that are not confusable, i.e., for all $y \in \mathcal{Y}$

 $W(y|x) \cdot W(y|x') = 0.$

(When one is positive the other is zero.)

Computing C, C_0 , and C_{e-a}

Shannon'48:

$C = \max I(X; Y)$,

where the maximum is over all input distributions.

$C₀$ is unknown.

We do know that C_0 is positive if, and only if, we can find $x, x' \in \mathcal{X}$ that are not confusable, i.e., for all $y \in \mathcal{Y}$

 $W(y|x) \cdot W(y|x') = 0.$

(When one is positive the other is zero.)

$C_{\text{e-o}}$ is unknown.

We do know that C_{e-a} is positive if, and only if, we can find $x, x' \in \mathcal{X}$ and some $y \in \mathcal{Y}$ such that

$$
W(y|x) > 0 \text{ and } W(y|x') = 0.
$$

Some y is reachable from x but not from x' .

C_0 and the Adjacency Graph

- We say that x and x' are confusable if for some $y \in \mathcal{Y}$ both $W(y|x)$ and $W(y|x')$ are positive.
- The adjacency graph has vertices \mathcal{X} , and x and x' are connected by an edge if they are confusable.
- C_0 is determined by this graph. Only the zeros of $W(\cdot|\cdot)$ matter.

When is C_0 Positive?

• $C_0 > 0$ if, and only if, $\exists x, x'$ that are not confusable.

When is C_0 Positive?

- $C_0 > 0$ if, and only if, $\exists x, x'$ that are not confusable.
- Sufficiency: Use x and x' to send a bit per channel-use.
- Necessity: Assume that the condition is not met. Suppose both $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{x}' = (x'_1, \ldots, x'_n)$ are codewords. Since x_k and x'_k are confusable, there exists an output y_k^* that is reachable from both. The output (y_1^*, \ldots, y_n^*) cannot be decoded with zero probability of error.

 $C_{0,FB}$

Shannon'56:

$$
C_{0,\text{FB}} = \begin{cases} 0 & \text{if } C_0 = 0\\ \log \frac{1}{\rho} & \text{otherwise} \end{cases}
$$

where

$$
\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).
$$

Claude Shannon (1916–2001)

The Converse when $C_0 > 0$

Let f_1, \ldots, f_n be given. Will exhibit outputs y_1^*,\ldots,y_n^* that can be produced by at least $\rho^n \# \mathcal{M}$ messages.

The Converse when $C_0 > 0$ Contd.

$$
\mathcal{M}_x \triangleq \{ m \in \mathcal{M} : f_1(m) = x \}, \quad x \in \mathcal{X},
$$

$$
P_1(x) \triangleq \frac{\# \mathcal{M}_x}{\# \mathcal{M}}, \quad x \in \mathcal{X}.
$$

Choose y_1^* as the argmax in

$$
\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x) \leq \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} P_1(x)
$$
\n
$$
= \sum_{x: W(y_1^*|x) > 0} P_1(x) = \frac{1}{\# \mathcal{M}} \sum_{x: W(y_1^*|x) > 0} \# \mathcal{M}_x
$$
\n
$$
= \frac{1}{\# \mathcal{M}} \# \left(\bigcup_{x: W(y_1^*|x) > 0} \mathcal{M}_x \right) = \frac{\# \mathcal{M}^{(1)}}{\# \mathcal{M}}.
$$

The Converse when $C_0 > 0$ Contd.

$$
\mathcal{M}_x^{(1)} \triangleq \{ m \in \mathcal{M}^{(1)} : f_2(m, y_1^*) = x \}, \quad x \in \mathcal{X},
$$

$$
P_2(x) \triangleq \frac{\# \mathcal{M}_x^{(1)}}{\# \mathcal{M}^{(1)}}, \quad x \in \mathcal{X}.
$$

Choose y_2^* as the argmax in

$$
\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x) \ge \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} P_2(x)
$$

=
$$
\sum_{x: W(y_2^*|x) > 0} P_2(x) = \frac{1}{\# \mathcal{M}^{(1)}} \sum_{x: W(y_2^*|x) > 0} \# \mathcal{M}_x^{(1)}
$$

=
$$
\frac{1}{\# \mathcal{M}^{(1)}} \# \left(\bigcup_{x: W(y_2^*|x) > 0} \mathcal{M}_x \right) = \frac{\# \mathcal{M}^{(2)}}{\# \mathcal{M}^{(1)}}.
$$

The Converse when $C_0 > 0$ Contd.

After *n* steps we obtain

$$
\frac{\# \mathcal{M}^{(1)}}{\# \mathcal{M}}, \frac{\# \mathcal{M}^{(2)}}{\# \mathcal{M}^{(1)}}, \ldots, \frac{\# \mathcal{M}^{(n)}}{\# \mathcal{M}^{(n-1)}} \geq \rho.
$$

Consequently,

$$
\frac{\#\mathcal{M}^{(n)}}{\#\mathcal{M}} \geq \rho^n.
$$

But for zero error we must have $\#\mathcal{M}^{(n)}=1$, so

$$
\#\mathcal{M}\leq \rho^{-n},
$$

i.e.,

$$
\frac{1}{n}\log\#\mathcal{M}\leq\log\frac{1}{\rho}.
$$

A Simple Upper Bound on ρ

If C_0 is positive, then

$$
\rho\leq 1-\frac{1}{\#\mathcal{X}},\quad C_0>0.
$$

Pf: Recall that

$$
\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).
$$

Now choose Q (perhaps suboptimally) to be uniform

$$
\rho \leq \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} \frac{1}{\#\mathcal{X}}
$$

=
$$
\frac{1}{\#\mathcal{X}} \max_{y \in \mathcal{Y}} \#\left\{x: W(y|x) > 0\right\}
$$

$$
\leq \frac{1}{\#\mathcal{X}} (\#\mathcal{X} - 1),
$$

because if there were a y with $W(y|x)$ positive for all x then C_0 would be zero.

Achievability

Assume $C_0 > 0$. Let P^* achieve ρ :

$$
\rho = \min_{Q} \max_{y} \sum_{x: W(y|x) > 0} Q(x) = \max_{y} \sum_{x: W(y|x) > 0} P^*(x).
$$

By choosing ceilings/floors judiciously, we find nonnegative integers $\{m_x\}_{x \in \mathcal{X}}$ s.t.

$$
\frac{m_{x}}{\# \mathcal{M}} = P^*(x) \pm \frac{1}{\# \mathcal{M}}, \quad x \in \mathcal{X}.
$$

Choose m_x of the messages in M to result in x_1 being x:

$$
\frac{\#\mathcal{M}_x}{\#\mathcal{M}}=P^*(x)\pm\frac{1}{\#\mathcal{M}},\quad x\in\mathcal{X}.
$$

Achievability Contd.

After observing y_1 , the survivor set $\mathcal{M}^{(1)}$ is

$$
\mathcal{M}^{(1)}=\bigcup_{x:W(y_1|x)>0}\mathcal{M}_x.
$$

Its cardinality is upper-bouned by:

$$
\# \mathcal{M}^{(1)} = \sum_{x: W(y_1|x) > 0} \# \mathcal{M}_x
$$
\n
$$
\leq \sum_{x: W(y_1|x) > 0} (\# \mathcal{M}P^*(x) + 1)
$$
\n
$$
\leq \max_{y} \sum_{x: W(y|x) > 0} (\# \mathcal{M}P^*(x) + 1)
$$
\n
$$
= \# \mathcal{M}\rho + \max_{y} \# \Big\{ x: W(y|x) > 0 \Big\}
$$
\n
$$
\leq \# \mathcal{M}\rho + (\# \mathcal{X} - 1),
$$

where the last line is b/c $C_0 > 0$, so no y is reachable from all x's.

Achievability Contd.

After observing y_1 , we choose the sets

$$
\mathcal{M}_x^{(1)} \triangleq \{m \in \mathcal{M}^{(1)} : f_2(m, y_1) = x\}, \quad x \in \mathcal{X}
$$

so that

$$
\frac{\# \mathcal{M}_{x}^{(1)}}{\# \mathcal{M}^{(1)}} = P^{*}(x) \pm \frac{1}{\# \mathcal{M}^{(1)}}, \quad x \in \mathcal{X}.
$$

After observing y_2 the survivor set $\mathcal{M}^{(2)}$ is

$$
\mathcal{M}^{(2)} = \bigcup_{x: W(y_2|x)>0} \mathcal{M}_x^{(1)}.
$$

Its cardinality is upper-bounded by:

$$
\#\mathcal{M}^{(2)} \leq \#\mathcal{M}^{(1)}\rho + (\#\mathcal{X} - 1)
$$

$$
\leq \#\mathcal{M}\rho^2 + (\rho + 1)(\#\mathcal{X} - 1)
$$

Achievability Contd.

After observing y_1, \ldots, y_k , the survivor set $\mathcal{M}^{(k)}$ satisfies

$$
\# \mathcal{M}^{(k)} \leq \# \mathcal{M} \rho^{k} + (\rho^{k-1} + \rho^{k-2} + \dots + 1)(\#\mathcal{X} - 1)
$$

$$
\leq \# \mathcal{M} \rho^{k} + \frac{1}{1 - \rho} (\#\mathcal{X} - 1)
$$

$$
\leq \# \mathcal{M} \rho^{k} + \#\mathcal{X} (\#\mathcal{X} - 1)
$$

Thus, if $\#\mathcal{M} = \lfloor \rho^{-n} \rfloor$ we can reduce the survivor set to a singleton in $n + \big\lceil \log_2 \big(1 + \# \, \mathcal{X}(\#\, \mathcal{X} - 1) \big) \big\rceil$ channel uses for a total rate of

$$
\frac{\log \lfloor \rho^{-n} \rfloor}{n + \big\lceil \log_2 \big(1 + \# \, \mathcal{X}(\#\, \mathcal{X} - 1) \big) \big\rceil} \to \log \frac{1}{\rho}.
$$

$C_{0,FB}$ Can Exceed C_0

For some channels

 $C_{0,FB} > C_0$

Peter Elias

Peter Elias (1923–2001)

Acknowledgement

I am indebted to Peter Elias for first pointing out that a feedback link could increase the zero-error capacity, as well as for several suggestions that were helpful in the proof of Theorem 7.

The Z-Channel

• If $y = 1$, then x must be 1.

$$
\mathcal{L}(\mathbf{y}) = \{ m \in \mathcal{M} : x_i(m) = 1 \text{ whenever } y_i = 1 \}.
$$

• If $\#\mathcal{L}(\mathbf{y}) = 1$, we can decode error-free. Otherwise we must declare an erasure.

For the Z-Channel $C_{\epsilon_{-0}} = C$

- Let the received sequence $y = y_1, \ldots, y_n$ have ν_1 ones.
- Assume each codeword has n_0 zeros and $n_1 = n n_0$ ones.

$$
p(\mathbf{y}|\mathbf{x}(m)) = (1-\epsilon)^{\nu_1} \epsilon^{n_1-\nu_1}, \quad m \in \mathcal{L}(\mathbf{y}).
$$

- All the messages in $\mathcal{L}(\mathbf{y})$ have the same likelihood.
- The erasures-only decoder is identical to an ML decoder that declares a failure if there are ties.
- Since constant-composition codes with an ML decoder that declares a failure in the case of ties achieve capacity

$$
\mathcal{C}_{e\text{-}o}=\mathcal{C}.
$$

• In particular,

 $C_{\text{eq}} > 0$ whenever $\epsilon < 1$.

When is $C_{e-o} > 0$?

$$
\Big(\textit{C}_{e\text{-}o}>0\Big)\Leftrightarrow\Big(\exists x,x',y:W(y|x)>0\,\,\text{and}\,\,W(y|x')=0\Big).
$$

When is $C_{e-a} > 0$?

$$
\Big(\textit{\textsf{C}}_{e\text{-}o} > 0 \Big) \Leftrightarrow \Big(\exists x,x',y: \textit{W}(y|x) > 0 \text{ and } \textit{W}(y|x') = 0 \Big).
$$

Necessity: If every reachable y is reachable from all inputs, then no output sequence can be decoded error-free.

Sufficiency

Let x, x', y be as above:

$$
W(y|x) > 0 \text{ and } W(y|x') = 0.
$$

• Use only x, x' , and define

$$
\tilde{Y} = \begin{cases} 0 & \text{if } Y \neq y \\ 1 & \text{otherwise.} \end{cases}
$$

• This induces a Z-channel

• And for this Z-channel $C_{e-o} = C > 0$.

The Z-Channel Is Very Useful

- To send NACK send $0, 0, \ldots, 0$ (ν times).
- To send ACK send $1, 1, \ldots, 1$ (ν times).
- If 1 is received at least once, declare "ACK". Otherwise, "NACK".

With this approach

$$
Pr("ACK" | NACK) = 0,
$$

Pr("NACK" | ACK) $\leq (1 - \epsilon)^{\nu}$.

$C_{e-o,FB}$

Bunte & AL: We don't know C_{e-o} , but we do know $C_{e-o,FB}!$

$$
C_{e-o,FB} = \begin{cases} 0 & \text{if } C_{e-o} = 0 \\ C & \text{otherwise.} \end{cases}
$$

$C_{\rho-\alpha}$ FB

Bunte & AL: We don't know C_{e-o} , but we do know $C_{e-o,FB}!$

$$
C_{\textrm{e-o},\textrm{FB}}=\begin{cases} 0 & \textrm{if } C_{\textrm{e-o}}=0 \\ C & \textrm{otherwise.} \end{cases}
$$

The proof that

$$
\Big(\mathit{C}_{e\text{-}o}=0\Big)\Rightarrow \Big(\mathit{C}_{e\text{-}o,FB}=0\Big)
$$

is straightforward: if $C_{e-o} = 0$, then every reachable y is reachable from all x 's, and no output sequence can be decoded also in the presence of feedback.

Achievability of $C_{e-o,FB}$ when $C_{e-o} > 0$

Phase I:

- Send the message using a blocklength-n encoder \tilde{f} and decoder $\tilde{\phi}$ of rate (nearly) C that have a maximal probability of error smaller than $\delta/2$.
- Form the tentative decision $\tilde{\phi}(Y_1, \ldots, Y_n)$.
- This tentative decision is known to the transmitter via the feedback.

Phase II:

• Send an ACK or NACK ν times with ν large enough so that Pr("NACK" $|ACK| \leq \delta/2$.

Produce the tentative decision if "ACK"; otherwise an erasure.

Analysis of Two-Phase Scheme

$$
Pr(\text{error} | M = m) = Pr(\tilde{\phi}(\mathbf{Y}) \neq m | M = m) Pr("ACK" | NACK)
$$

= 0.

$$
\Pr(\text{erasure} \mid M = m) = \underbrace{\Pr(\tilde{\phi}(\mathbf{Y}) \neq m \mid M = m)}_{\leq \delta/2} \Pr(\text{``NACK''} \mid \text{NACK})
$$
\n
$$
+ \Pr(\tilde{\phi}(\mathbf{Y}) = m \mid M = m) \underbrace{\Pr(\text{``NACK''} \mid \text{ACK})}_{\leq \delta/2}
$$
\n
$$
\leq \delta.
$$

$C_{e-o,FB}$ Can Exceed C_{e-o}

Since C_{e-o} is positive, $C_{e-o,FB} = C$, and

 $C_{\text{e--o},\text{FB}} \approx \log 3$, $\epsilon \ll 1$.

However, as we next argue,

 $C_{e-o} = 1.$

 $C_{e-o,FB}$ Can Exceed C_{e-o} Contd.

If

$$
(y_1,\ldots,y_{i-1},a,y_{i+1},\ldots,y_n)
$$

is decoded to m , then so can

$$
(y_1,\ldots,y_{i-1},b,y_{i+1},\ldots,y_n),
$$

and this reduces the probability of erasure. Thus, for the purposes of C_{e-o} , we can combine the outputs a and b to a single output $\{a, b\}$. This reduces the size of the output alphabet to 2.

Thank You!

Regular Capacity:

$$
\mathcal{C}_{FB}=\mathcal{C}.
$$

Zero-Error Capacity:

$$
C_{0,\text{FB}} = \begin{cases} 0 & \text{if } C_0 = 0\\ \log \frac{1}{\rho} & \text{otherwise} \end{cases}
$$

where

$$
\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).
$$

Erasures-Only Capacity:

$$
C_{\text{e-o},\text{FB}} = \begin{cases} 0 & \text{if } C_{\text{e-o}} = 0 \\ C & \text{otherwise} \end{cases}.
$$