
Some Problems Are Easier With Feedback

Amos Lapidoth
ETH Zurich

Information and Control in Networks, Lund, Oct. 17–19, 2012.

October 18, 2012

Joint work with Christoph Bunte.



A Discrete Memoryless Channel

W (y |x)
x Y

• X—input alphabet (finite).

• Y—output alphabet (finite).

• W (y |x)—channel law.

• Channel is memoryless: Θ1, . . . ,Θn are IID and

Yk = g
(
xk ,Θk

)
, k = 1, . . . , n.



Encoders with or without Feedback
• M = {1, . . . ,M}—message set.
• n—blocklength.
• R—rate, i.e., n−1 logM.

• Blocklength-n encoder without feedback:

f : M→ X n,

with the m-th message transmitted as

x(m) = f (m) =
(
x1(m), . . . , xn(m)

)
.

• Blocklength-n encoder with feedback:

f1 : M→ X , f2 : M×Y → X , . . . , fn : M×Yn−1 → X ,

with the m-th message transmitted as

x(m) =
(
f1
(
m
)
, f2
(
m,Y1

)
, . . . , fn

(
m,Y n−1))

=
(
x1
(
m
)
, x2
(
m,Y1

)
, . . . , xn

(
m,Y n−1)).



Decoders, Errors, and Erasure

A decoder φ is a mapping

φ : Yn →M∪ {?}.

Success is when φ(Y) = m.

Two failure modes:

• An erasure is when φ(Y) =?.

• An error is when φ(Y) ∈M \ {m}.



Channel Capacity

The channel capacity C is the supremum of achievable rates,
where a rate R is said to be achievable if for every ε > 0 we can
find a sufficiently large positive integer n0 such that for all
blocklengths n exceeding n0 there exists a rate-R blocklength-n
encoder f and and a decoder φ such that

Pr
(
φ(Y) ∈M\{m}

∣∣M = m
)
+Pr

(
φ(Y) =?

∣∣M = m
)
< ε, m ∈M.

We allow both errors and erasures but with small probability.

In the presence of feedback it is denoted CFB.



Zero-Error Capacity

The Zero-Error Capacity C0 is the supremum of achievable rates
with

Pr
(
φ(Y) ∈M\{m}

∣∣M = m
)
+Pr

(
φ(Y) =?

∣∣M = m
)
= 0, m ∈M.

We allow neither erasures nor errors

In the presence of feedback it is denoted C0,FB.



Erasures-Only Capacity

The Erasures-Only Capacity Ce-o is the supremum of achievable
rates with

Pr
(
φ(Y) ∈M \ {m}

∣∣M = m
)
= 0, m ∈M

and
Pr
(
φ(Y) =?

∣∣M = m
)
< ε, m ∈M.

We do not allow errors, but we do allow erasures
(with small probability).

In the presence of feedback it is denoted Ce-o,FB.



Computing C , C0, and Ce-o

Shannon’48:
C = max I (X ;Y ),

where the maximum is over all input distributions.

C0 is unknown.

We do know that C0 is positive if, and only if, we can find
x , x ′ ∈ X that are not confusable, i.e., for all y ∈ Y

W (y |x) ·W (y |x ′) = 0.

(When one is positive the other is zero.)

Ce-o is unknown.

We do know that Ce-o is positive if, and only if, we can find
x , x ′ ∈ X and some y ∈ Y such that

W (y |x) > 0 and W (y |x ′) = 0.

Some y is reachable from x but not from x ′.
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C0 and the Adjacency Graph

• We say that x and x ′ are confusable if for some y ∈ Y both
W (y |x) and W (y |x ′) are positive.

• The adjacency graph has vertices X , and x and x ′ are
connected by an edge if they are confusable.

• C0 is determined by this graph. Only the zeros of W (·|·)
matter.



When is C0 Positive?

• C0 > 0 if, and only if, ∃x , x ′ that are not confusable.

• Sufficiency: Use x and x ′ to send a bit per channel-use.

• Necessity: Assume that the condition is not met. Suppose
both x = (x1, . . . , xn) and x′ = (x ′1, . . . , x

′
n) are codewords.

Since xk and x ′k are confusable, there exists an output y∗k that
is reachable from both. The output (y∗1 , . . . , y

∗
n ) cannot be

decoded with zero probability of error.
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C0,FB

Shannon’56:

C0,FB =

{
0 if C0 = 0

log 1
ρ otherwise

where

ρ = min
Q

max
y∈Y

∑
x :W (y |x)>0

Q(x).
Claude Shannon

(1916–2001)



The Converse when C0 > 0

Let f1, . . . , fn be given.
Will exhibit outputs y∗1 , . . . , y

∗
n that can be produced by at least

ρn #M messages.



The Converse when C0 > 0 Contd.

Mx ,
{
m ∈M : f1(m) = x

}
, x ∈ X ,

P1(x) ,
#Mx

#M
, x ∈ X .

Choose y∗1 as the argmax in

ρ = min
Q

max
y∈Y

∑
x :W (y |x)>0

Q(x) ≤ max
y∈Y

∑
x :W (y |x)>0

P1(x)

=
∑

x :W (y∗
1 |x)>0

P1(x) =
1

#M
∑

x :W (y∗
1 |x)>0

#Mx

=
1

#M
#

 ⋃
x :W (y∗

1 |x)>0

Mx

 =
#M(1)

#M
.



The Converse when C0 > 0 Contd.

M(1)
x ,

{
m ∈M(1) : f2(m, y∗1 ) = x

}
, x ∈ X ,

P2(x) ,
#M(1)

x

#M(1)
, x ∈ X .

Choose y∗2 as the argmax in

ρ = min
Q

max
y∈Y

∑
x :W (y |x)>0

Q(x) ≥ max
y∈Y

∑
x :W (y |x)>0

P2(x)

=
∑

x :W (y∗
2 |x)>0

P2(x) =
1

#M(1)

∑
x :W (y∗

2 |x)>0

#M(1)
x

=
1

#M(1)
#

 ⋃
x :W (y∗

2 |x)>0

Mx

 =
#M(2)

#M(1)
.



The Converse when C0 > 0 Contd.

After n steps we obtain

#M(1)

#M
,

#M(2)

#M(1)
, . . . ,

#M(n)

#M(n−1) ≥ ρ.

Consequently,
#M(n)

#M
≥ ρn.

But for zero error we must have #M(n) = 1, so

#M≤ ρ−n,

i.e.,
1

n
log #M≤ log

1

ρ
.



A Simple Upper Bound on ρ
If C0 is positive, then

ρ ≤ 1− 1

#X
, C0 > 0.

Pf: Recall that

ρ = min
Q

max
y∈Y

∑
x :W (y |x)>0

Q(x).

Now choose Q (perhaps suboptimally) to be uniform

ρ ≤ max
y∈Y

∑
x :W (y |x)>0

1

#X

=
1

#X
max
y∈Y

#
{
x : W (y |x) > 0

}
≤ 1

#X
(
#X − 1

)
,

because if there were a y with W (y |x) positive for all x then C0

would be zero.



Achievability

Assume C0 > 0. Let P∗ achieve ρ:

ρ = min
Q

max
y

∑
x :W (y |x)>0

Q(x) = max
y

∑
x :W (y |x)>0

P∗(x).

By choosing ceilings/floors judiciously, we find nonnegative
integers {mx}x∈X s.t.

mx

#M
= P∗(x)± 1

#M
, x ∈ X .

Choose mx of the messages in M to result in x1 being x :

#Mx

#M
= P∗(x)± 1

#M
, x ∈ X .



Achievability Contd.
After observing y1, the survivor set M(1) is

M(1) =
⋃

x :W (y1|x)>0

Mx .

Its cardinality is upper-bouned by:

#M(1) =
∑

x :W (y1|x)>0

#Mx

≤
∑

x :W (y1|x)>0

(
#MP∗(x) + 1

)
≤ max

y

∑
x :W (y |x)>0

(
#MP∗(x) + 1

)
= #Mρ+ max

y
#
{
x : W (y |x) > 0

}
≤ #Mρ+

(
#X − 1

)
,

where the last line is b/c C0 > 0, so no y is reachable from all x ’s.



Achievability Contd.
After observing y1, we choose the sets

M(1)
x ,

{
m ∈M(1) : f2(m, y1) = x

}
, x ∈ X

so that
#M(1)

x

#M(1)
= P∗(x)± 1

#M(1)
, x ∈ X .

After observing y2 the survivor set M(2) is

M(2) =
⋃

x :W (y2|x)>0

M(1)
x .

Its cardinality is upper-bounded by:

#M(2) ≤ #M(1)ρ+
(
#X − 1

)
≤ #Mρ2 + (ρ+ 1)

(
#X − 1

)



Achievability Contd.

After observing y1, . . . , yk , the survivor set M(k) satisfies

#M(k) ≤ #Mρk + (ρk−1 + ρk−2 + · · ·+ 1)
(
#X − 1

)
≤ #Mρk +

1

1− ρ
(
#X − 1

)
≤ #Mρk + #X

(
#X − 1

)
Thus, if #M = bρ−nc we can reduce the survivor set to a
singleton in n +

⌈
log2

(
1 + #X (#X − 1)

)⌉
channel uses for a

total rate of

logbρ−nc
n +

⌈
log2

(
1 + #X (#X − 1)

)⌉ → log
1

ρ
.



C0,FB Can Exceed C0

For some channels

C0,FB > C0

Peter Elias
(1923–2001)



The Z-Channel

0 0

1 1
1− ε

ε

• If y = 1, then x must be 1.

L(y) =
{
m ∈M : xi (m) = 1 whenever yi = 1

}
.

• If #L(y) = 1, we can decode error-free. Otherwise we must
declare an erasure.



For the Z-Channel Ce-o = C

• Let the received sequence y = y1, . . . , yn have ν1 ones.

• Assume each codeword has n0 zeros and n1 = n − n0 ones.

p
(
y|x(m)

)
= (1− ε)ν1 εn1−ν1 , m ∈ L(y).

• All the messages in L(y) have the same likelihood.

• The erasures-only decoder is identical to an ML decoder that
declares a failure if there are ties.

• Since constant-composition codes with an ML decoder that
declares a failure in the case of ties achieve capacity

Ce-o = C .

• In particular,
Ce-o > 0 whenever ε < 1.



When is Ce-o > 0?

(
Ce-o > 0

)
⇔
(
∃x , x ′, y : W (y |x) > 0 and W (y |x ′) = 0

)
.

Necessity: If every reachable y is reachable from all inputs, then no
output sequence can be decoded error-free.



When is Ce-o > 0?

(
Ce-o > 0

)
⇔
(
∃x , x ′, y : W (y |x) > 0 and W (y |x ′) = 0

)
.

Necessity: If every reachable y is reachable from all inputs, then no
output sequence can be decoded error-free.



Sufficiency
Let x , x ′, y be as above:

W (y |x) > 0 and W (y |x ′) = 0.

• Use only x , x ′, and define

Ỹ =

{
0 if Y 6= y

1 otherwise.

• This induces a Z-channel

x ′ 0

x 1
W (y |x)

• And for this Z-channel Ce-o = C > 0.



The Z-Channel Is Very Useful

NACK 0

ACK 1
ε

1− ε

• To send NACK send 0, 0, . . . , 0 (ν times).

• To send ACK send 1, 1, . . . , 1 (ν times).

• If 1 is received at least once, declare “ACK”. Otherwise,
“NACK”.

With this approach

Pr(“ACK” |NACK) = 0,

Pr(“NACK” |ACK) ≤ (1− ε)ν .



Ce-o,FB

Bunte & AL: We don’t know Ce-o, but we do know Ce-o,FB!

Ce-o,FB =

{
0 if Ce-o = 0

C otherwise.

The proof that (
Ce-o = 0

)
⇒
(
Ce-o,FB = 0

)
is straightforward: if Ce-o = 0, then every reachable y is reachable
from all x ’s, and no output sequence can be decoded also in the
presence of feedback.
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Achievability of Ce-o,FB when Ce-o > 0

Phase I:

• Send the message using a blocklength-n encoder f̃ and
decoder φ̃ of rate (nearly) C that have a maximal probability
of error smaller than δ/2.

• Form the tentative decision φ̃(Y1, . . . ,Yn).

• This tentative decision is known to the transmitter via the
feedback.

Phase II:

• Send an ACK or NACK ν times with ν large enough so that
Pr(“NACK” |ACK) < δ/2.

Produce the tentative decision if “ACK”; otherwise an erasure.



Analysis of Two-Phase Scheme

Pr
(
error

∣∣M = m
)

= Pr
(
φ̃(Y) 6= m

∣∣M = m
)

Pr
(
“ACK”

∣∣NACK
)

= 0.

Pr
(
erasure

∣∣M = m
)

= Pr
(
φ̃(Y) 6= m

∣∣M = m
)︸ ︷︷ ︸

≤δ/2

Pr
(
“NACK”

∣∣NACK
)

+ Pr
(
φ̃(Y) = m

∣∣M = m
)

Pr
(
“NACK”

∣∣ACK
)︸ ︷︷ ︸

≤δ/2

≤ δ.



Ce-o,FB Can Exceed Ce-o

a a

b b

c c

ε

ε

1− ε

1− ε

Since Ce-o is positive, Ce-o,FB = C , and

Ce-o,FB ≈ log 3, ε� 1.

However, as we next argue,

Ce-o = 1.



Ce-o,FB Can Exceed Ce-o Contd.

a a

b b

c c

ε

ε

1− ε

1− ε

If
(y1, . . . , yi−1, a, yi+1, . . . , yn)

is decoded to m, then so can

(y1, . . . , yi−1, b, yi+1, . . . , yn),

and this reduces the probability of erasure. Thus, for the purposes
of Ce-o, we can combine the outputs a and b to a single output
{a, b}. This reduces the size of the output alphabet to 2.



Thank You!

Regular Capacity:
CFB = C .

Zero-Error Capacity:

C0,FB =

{
0 if C0 = 0

log 1
ρ otherwise

where
ρ = min

Q
max
y∈Y

∑
x :W (y |x)>0

Q(x).

Erasures-Only Capacity:

Ce-o,FB =

{
0 if Ce-o = 0

C otherwise
.


