Some Problems Are Easier With Feedback

Amos Lapidoth ETH Zurich

Information and Control in Networks, Lund, Oct. 17-19, 2012.

October 18, 2012

Joint work with Christoph Bunte.

A Discrete Memoryless Channel

$$\xrightarrow{X}$$
 $W(y|x)$ \xrightarrow{Y}

- *X*—input alphabet (finite).
- *Y*—output alphabet (finite).
- W(y|x)—channel law.
- Channel is memoryless: $\Theta_1, \ldots, \Theta_n$ are IID and

$$Y_k = g(x_k, \Theta_k), k = 1, \ldots, n.$$

Encoders with or without Feedback

- $\mathcal{M} = \{1, \dots, M\}$ —message set.
- *n*—blocklength.
- *R*—rate, i.e., $n^{-1} \log M$.
- Blocklength-*n* encoder without feedback:

$$\mathbf{f}: \mathcal{M} \to \mathcal{X}^n,$$

with the *m*-th message transmitted as

$$\mathbf{x}(m) = f(m) = (x_1(m), \ldots, x_n(m)).$$

• Blocklength-*n* encoder with feedback:

$$f_1 \colon \mathcal{M} \to \mathcal{X}, \ f_2 \colon \mathcal{M} \times \mathcal{Y} \to \mathcal{X}, \dots, f_n \colon \mathcal{M} \times \mathcal{Y}^{n-1} \to \mathcal{X},$$

with the *m*-th message transmitted as

$$\mathbf{x}(m) = \left(f_1(m), f_2(m, Y_1), \dots, f_n(m, Y^{n-1})\right) \\ = \left(x_1(m), x_2(m, Y_1), \dots, x_n(m, Y^{n-1})\right).$$

Decoders, Errors, and Erasure

A decoder ϕ is a mapping

$$\phi\colon \mathcal{Y}^n\to \mathcal{M}\cup\{?\}.$$

Success is when $\phi(\mathbf{Y}) = m$.

Two failure modes:

- An erasure is when $\phi(\mathbf{Y}) = ?$.
- An error is when $\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\}$.

Channel Capacity

The channel capacity C is the supremum of achievable rates, where a rate R is said to be achievable if for every $\epsilon > 0$ we can find a sufficiently large positive integer n_0 such that for all blocklengths n exceeding n_0 there exists a rate-R blocklength-nencoder f and and a decoder ϕ such that

$$\Pr(\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\} \mid M = m) + \Pr(\phi(\mathbf{Y}) = ? \mid M = m) < \epsilon, \ m \in \mathcal{M}.$$

We allow both errors and erasures but with small probability.

In the presence of feedback it is denoted C_{FB} .

Zero-Error Capacity

The Zero-Error Capacity ${\color{black} C_0}$ is the supremum of achievable rates with

$$\Pr(\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\} \mid M = m) + \Pr(\phi(\mathbf{Y}) = ? \mid M = m) = \mathbf{0}, \ m \in \mathcal{M}.$$

We allow neither erasures nor errors

In the presence of feedback it is denoted $C_{0,FB}$.

Erasures-Only Capacity

The Erasures-Only Capacity C_{e-o} is the supremum of achievable rates with

$$\Pr(\phi(\mathbf{Y}) \in \mathcal{M} \setminus \{m\} \mid M = m) = 0, \quad m \in \mathcal{M}$$

and

$$\Pr(\phi(\mathbf{Y}) = ? | M = m) < \epsilon, \quad m \in \mathcal{M}.$$

We do not allow errors, but we do allow erasures (with small probability).

In the presence of feedback it is denoted $C_{e-o,FB}$.

Computing C, C_0 , and C_{e-o}

Shannon'48:

$C = \max I(X; Y),$

where the maximum is over all input distributions.

Computing C, C_0 , and C_{e-o}

Shannon'48:

$C = \max I(X; Y),$

where the maximum is over all input distributions.

C_0 is unknown.

We do know that C_0 is positive if, and only if, we can find $x, x' \in \mathcal{X}$ that are not confusable, i.e., for all $y \in \mathcal{Y}$

 $W(y|x) \cdot W(y|x') = 0.$

(When one is positive the other is zero.)

Computing C, C_0 , and C_{e-o}

Shannon'48:

$C = \max I(X; Y),$

where the maximum is over all input distributions.

C_0 is unknown.

We do know that C_0 is positive if, and only if, we can find $x, x' \in \mathcal{X}$ that are not confusable, i.e., for all $y \in \mathcal{Y}$

 $W(y|x) \cdot W(y|x') = 0.$

(When one is positive the other is zero.)

C_{e-o} is unknown.

We do know that C_{e-o} is positive if, and only if, we can find $x, x' \in \mathcal{X}$ and some $y \in \mathcal{Y}$ such that

$$W(y|x) > 0$$
 and $W(y|x') = 0$.

Some y is reachable from x but not from x'.

C_0 and the Adjacency Graph

- We say that x and x' are confusable if for some $y \in \mathcal{Y}$ both W(y|x) and W(y|x') are positive.
- The adjacency graph has vertices \mathcal{X} , and x and x' are connected by an edge if they are confusable.
- C₀ is determined by this graph. Only the zeros of W(·|·) matter.

When is C_0 Positive?

• $C_0 > 0$ if, and only if, $\exists x, x'$ that are not confusable.

When is C_0 Positive?

- $C_0 > 0$ if, and only if, $\exists x, x'$ that are not confusable.
- Sufficiency: Use x and x' to send a bit per channel-use.
- Necessity: Assume that the condition is not met. Suppose both x = (x₁,...,x_n) and x' = (x'₁,...,x'_n) are codewords. Since x_k and x'_k are confusable, there exists an output y^{*}_k that is reachable from both. The output (y^{*}₁,...,y^{*}_n) cannot be decoded with zero probability of error.

 $C_{0,\text{FB}}$

Shannon'56:

$$C_{0,\text{FB}} = \begin{cases} 0 & \text{if } C_0 = 0 \\ \log rac{1}{
ho} & \text{otherwise} \end{cases}$$

where

$$\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).$$

Claude Shannon (1916–2001)

The Converse when $C_0 > 0$

Let f_1, \ldots, f_n be given. Will exhibit outputs y_1^*, \ldots, y_n^* that can be produced by at least $\rho^n \# \mathcal{M}$ messages.

The Converse when $C_0 > 0$ Contd.

$$\mathcal{M}_{x} \triangleq \{ m \in \mathcal{M} : f_{1}(m) = x \}, \quad x \in \mathcal{X},$$
$$P_{1}(x) \triangleq \frac{\# \mathcal{M}_{x}}{\# \mathcal{M}}, \quad x \in \mathcal{X}.$$

Choose y_1^* as the argmax in

$$\begin{split} \rho &= \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x) \leq \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} P_1(x) \\ &= \sum_{x: W(y_1^*|x) > 0} P_1(x) = \frac{1}{\# \mathcal{M}} \sum_{x: W(y_1^*|x) > 0} \# \mathcal{M}_x \\ &= \frac{1}{\# \mathcal{M}} \# \left(\bigcup_{x: W(y_1^*|x) > 0} \mathcal{M}_x \right) = \frac{\# \mathcal{M}^{(1)}}{\# \mathcal{M}}. \end{split}$$

The Converse when $C_0 > 0$ Contd.

$$\mathcal{M}_{x}^{(1)} \triangleq \left\{ m \in \mathcal{M}^{(1)} : f_{2}(m, y_{1}^{*}) = x \right\}, \quad x \in \mathcal{X},$$
$$P_{2}(x) \triangleq \frac{\# \mathcal{M}_{x}^{(1)}}{\# \mathcal{M}^{(1)}}, \quad x \in \mathcal{X}.$$

Choose y_2^* as the argmax in

$$\begin{split} \rho &= \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x) \geq \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} P_2(x) \\ &= \sum_{x: W(y_2^*|x) > 0} P_2(x) = \frac{1}{\# \mathcal{M}^{(1)}} \sum_{x: W(y_2^*|x) > 0} \# \mathcal{M}_x^{(1)} \\ &= \frac{1}{\# \mathcal{M}^{(1)}} \# \left(\bigcup_{x: W(y_2^*|x) > 0} \mathcal{M}_x \right) = \frac{\# \mathcal{M}^{(2)}}{\# \mathcal{M}^{(1)}}. \end{split}$$

The Converse when $C_0 > 0$ Contd.

After *n* steps we obtain

$$\frac{\# \mathcal{M}^{(1)}}{\# \mathcal{M}}, \frac{\# \mathcal{M}^{(2)}}{\# \mathcal{M}^{(1)}}, \dots, \frac{\# \mathcal{M}^{(n)}}{\# \mathcal{M}^{(n-1)}} \ge \rho.$$

Consequently,

$$\frac{\# \mathcal{M}^{(n)}}{\# \mathcal{M}} \ge \rho^n.$$

But for zero error we must have $\# \mathcal{M}^{(n)} = 1$, so

$$\#\mathcal{M}\leq\rho^{-n},$$

i.e.,

$$\frac{1}{n}\log \# \mathcal{M} \le \log \frac{1}{\rho}.$$

A Simple Upper Bound on ρ

If C_0 is positive, then

$$\rho \leq 1 - \frac{1}{\# \mathcal{X}}, \quad C_0 > 0.$$

Pf: Recall that

$$\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).$$

Now choose Q (perhaps suboptimally) to be uniform

$$\begin{split} \rho &\leq \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} \frac{1}{\# \mathcal{X}} \\ &= \frac{1}{\# \mathcal{X}} \max_{y \in \mathcal{Y}} \# \Big\{ x : W(y|x) > 0 \Big\} \\ &\leq \frac{1}{\# \mathcal{X}} \big(\# \mathcal{X} - 1 \big), \end{split}$$

because if there were a y with W(y|x) positive for all x then C_0 would be zero.

Achievability

Assume $C_0 > 0$. Let P^* achieve ρ :

$$\rho = \min_{Q} \max_{y} \sum_{x: W(y|x) > 0} Q(x) = \max_{y} \sum_{x: W(y|x) > 0} P^*(x).$$

By choosing ceilings/floors judiciously, we find nonnegative integers $\{m_x\}_{x\in\mathcal{X}}$ s.t.

$$rac{m_{\mathsf{x}}}{\#\,\mathcal{M}}=\mathsf{P}^*(\mathsf{x})\pmrac{1}{\#\,\mathcal{M}},\quad\mathsf{x}\in\mathcal{X}.$$

Choose m_x of the messages in \mathcal{M} to result in x_1 being x:

$$rac{\#\,\mathcal{M}_x}{\#\,\mathcal{M}}= {\mathcal{P}}^*(x)\pm rac{1}{\#\,\mathcal{M}}, \quad x\in \mathcal{X}.$$

Achievability Contd.

After observing y_1 , the survivor set $\mathcal{M}^{(1)}$ is

$$\mathcal{M}^{(1)} = \bigcup_{x: \mathcal{W}(y_1|x) > 0} \mathcal{M}_x.$$

Its cardinality is upper-bouned by:

$$\begin{split} \# \,\mathcal{M}^{(1)} &= \sum_{x: \mathcal{W}(y_1|x) > 0} \# \,\mathcal{M}_x \\ &\leq \sum_{x: \mathcal{W}(y_1|x) > 0} (\# \,\mathcal{M}P^*(x) + 1) \\ &\leq \max_y \sum_{x: \mathcal{W}(y|x) > 0} (\# \,\mathcal{M}P^*(x) + 1) \\ &= \# \,\mathcal{M}\rho + \max_y \# \Big\{ x: \mathcal{W}(y|x) > 0 \Big\} \\ &\leq \# \,\mathcal{M}\rho + (\# \,\mathcal{X} - 1), \end{split}$$

where the last line is $b/c C_0 > 0$, so no y is reachable from all x's.

Achievability Contd.

After observing y_1 , we choose the sets

$$\mathcal{M}_x^{(1)} \triangleq \big\{ m \in \mathcal{M}^{(1)} : f_2(m, y_1) = x \big\}, \quad x \in \mathcal{X}$$

so that

$$\frac{\#\,\mathcal{M}_{x}^{(1)}}{\#\,\mathcal{M}^{(1)}}=P^{*}(x)\pm\frac{1}{\#\,\mathcal{M}^{(1)}},\quad x\in\mathcal{X}.$$

After observing y_2 the survivor set $\mathcal{M}^{(2)}$ is

$$\mathcal{M}^{(2)} = \bigcup_{x: W(y_2|x) > 0} \mathcal{M}^{(1)}_x.$$

Its cardinality is upper-bounded by:

$$\begin{split} \# \, \mathcal{M}^{(2)} &\leq \# \, \mathcal{M}^{(1)} \rho + \big(\# \, \mathcal{X} - 1 \big) \\ &\leq \# \, \mathcal{M} \rho^2 + (\rho + 1) \big(\# \, \mathcal{X} - 1 \big) \end{split}$$

Achievability Contd.

After observing y_1, \ldots, y_k , the survivor set $\mathcal{M}^{(k)}$ satisfies

$$egin{aligned} &\#\,\mathcal{M}
ho^k = \#\,\mathcal{M}
ho^k + (
ho^{k-1} +
ho^{k-2} + \cdots + 1)ig(\#\,\mathcal{X} - 1ig) \ &\leq \#\,\mathcal{M}
ho^k + rac{1}{1-
ho}ig(\#\,\mathcal{X} - 1ig) \ &\leq \#\,\mathcal{M}
ho^k + \#\,\mathcal{X}ig(\#\,\mathcal{X} - 1ig) \end{aligned}$$

Thus, if $\# \mathcal{M} = \lfloor \rho^{-n} \rfloor$ we can reduce the survivor set to a singleton in $n + \lceil \log_2(1 + \# \mathcal{X}(\# \mathcal{X} - 1)) \rceil$ channel uses for a total rate of

$$\frac{\log\lfloor\rho^{-n}\rfloor}{n+\lceil\log_2(1+\#\mathcal{X}(\#\mathcal{X}-1))\rceil}\to\log\frac{1}{\rho}.$$

$C_{0,\text{FB}}$ Can Exceed C_0

For some channels

 $C_{0,FB} > C_0$

Peter Elias

Peter Elias (1923–2001)

Acknowledgement

I am indebted to Peter Elias for first pointing out that a feedback link could increase the zero-error capacity, as well as for several suggestions that were helpful in the proof of Theorem 7.

The Z-Channel

• If y = 1, then x must be 1.

$$\mathcal{L}(\mathbf{y}) = ig\{ m \in \mathcal{M} : x_i(m) = 1 ext{ whenever } y_i = 1 ig\}.$$

 If # L(y) = 1, we can decode error-free. Otherwise we must declare an erasure.

For the Z-Channel $C_{e-o} = C$

- Let the received sequence $\mathbf{y} = y_1, \ldots, y_n$ have ν_1 ones.
- Assume each codeword has n_0 zeros and $n_1 = n n_0$ ones.

$$p(\mathbf{y}|\mathbf{x}(m)) = (1-\epsilon)^{\nu_1} \epsilon^{n_1-\nu_1}, \quad m \in \mathcal{L}(\mathbf{y}).$$

- All the messages in $\mathcal{L}(\mathbf{y})$ have the same likelihood.
- The erasures-only decoder is identical to an ML decoder that declares a failure if there are ties.
- Since constant-composition codes with an ML decoder that declares a failure in the case of ties achieve capacity

$$C_{\text{e-o}} = C.$$

In particular,

 $C_{\text{e-o}} > 0$ whenever $\epsilon < 1$.

When is $C_{e-o} > 0$?

$$\Big(\mathcal{C}_{\mathsf{e-o}}>0\Big)\Leftrightarrow \Big(\exists x,x',y:\mathcal{W}(y|x)>0 ext{ and } \mathcal{W}(y|x')=0\Big).$$

When is $C_{e-o} > 0$?

$$\Big(C_{\mathsf{e-o}} > 0\Big) \Leftrightarrow \Big(\exists x, x', y : W(y|x) > 0 \text{ and } W(y|x') = 0\Big).$$

Necessity: If every reachable *y* is reachable from all inputs, then no output sequence can be decoded error-free.

Sufficiency

Let x, x', y be as above:

$$W(y|x) > 0$$
 and $W(y|x') = 0$.

• Use only x, x', and define

$$ilde{Y} = egin{cases} 0 & ext{if } Y
eq y \ 1 & ext{otherwise.} \end{cases}$$

• This induces a Z-channel

• And for this Z-channel $C_{e-o} = C > 0$.

The Z-Channel Is Very Useful

- To send NACK send $0, 0, \ldots, 0$ (ν times).
- To send ACK send $1, 1, \ldots, 1$ (ν times).
- If 1 is received at least once, declare "ACK". Otherwise, "NACK".

With this approach

 $\begin{aligned} &\mathsf{Pr}(\text{``ACK''} | \mathsf{NACK}) = 0, \\ &\mathsf{Pr}(\text{``NACK''} | \mathsf{ACK}) \leq (1 - \epsilon)^{\nu}. \end{aligned}$

$C_{\text{e-o,FB}}$

Bunte & AL: We don't know $C_{e-o, FB}!$

$$C_{\text{e-o,FB}} = \begin{cases} 0 & \text{if } C_{\text{e-o}} = 0 \\ C & \text{otherwise.} \end{cases}$$

$C_{\text{e-o,FB}}$

Bunte & AL: We don't know C_{e-o} , but we do know $C_{e-o,FB}$!

$$C_{e-o,FB} = egin{cases} 0 & \mbox{if } C_{e-o} = 0 \ C & \mbox{otherwise.} \end{cases}$$

The proof that

$$\left(C_{\text{e-o}}=0
ight)\Rightarrow\left(C_{\text{e-o,FB}}=0
ight)$$

is straightforward: if $C_{e-o} = 0$, then every reachable y is reachable from all x's, and no output sequence can be decoded also in the presence of feedback.

Achievability of $C_{e-o,FB}$ when $C_{e-o} > 0$

Phase I:

- Send the message using a blocklength-*n* encoder \tilde{f} and decoder $\tilde{\phi}$ of rate (nearly) *C* that have a maximal probability of error smaller than $\delta/2$.
- Form the tentative decision $\tilde{\phi}(Y_1, \ldots, Y_n)$.
- This tentative decision is known to the transmitter via the feedback.

Phase II:

• Send an ACK or NACK ν times with ν large enough so that Pr("NACK" | ACK) < $\delta/2$.

Produce the tentative decision if "ACK"; otherwise an erasure.

Analysis of Two-Phase Scheme

$$\Pr(\operatorname{error} | M = m) = \Pr(\tilde{\phi}(\mathbf{Y}) \neq m | M = m) \Pr(\text{``ACK''} | \operatorname{NACK})$$
$$= 0.$$

$$\Pr(\text{erasure} \mid M = m) = \underbrace{\Pr(\tilde{\phi}(\mathbf{Y}) \neq m \mid M = m)}_{\leq \delta/2} \Pr(\text{``NACK''} \mid \text{NACK}) + \Pr(\tilde{\phi}(\mathbf{Y}) = m \mid M = m) \underbrace{\Pr(\text{``NACK''} \mid \text{ACK})}_{\leq \delta/2} \\ \leq \delta.$$

C_{e-o,FB} Can Exceed C_{e-o}

Since C_{e-o} is positive, $C_{e-o,FB} = C$, and

 $C_{ ext{e-o,FB}} pprox \log 3, \quad \epsilon \ll 1.$

However, as we next argue,

 $C_{e-o} = 1.$

 $C_{e-o,FB}$ Can Exceed C_{e-o} Contd.

lf

$$(y_1, \ldots, y_{i-1}, a, y_{i+1}, \ldots, y_n)$$

is decoded to m, then so can

$$(y_1, \ldots, y_{i-1}, \mathbf{b}, y_{i+1}, \ldots, y_n),$$

and this reduces the probability of erasure. Thus, for the purposes of C_{e-o} , we can combine the outputs *a* and *b* to a single output $\{a, b\}$. This reduces the size of the output alphabet to 2.

Thank You!

Regular Capacity:

$$C_{\rm FB}=C.$$

Zero-Error Capacity:

$$C_{0,\text{FB}} = egin{cases} 0 & ext{if } C_0 = 0 \ \log rac{1}{
ho} & ext{otherwise} \end{cases}$$

where

$$\rho = \min_{Q} \max_{y \in \mathcal{Y}} \sum_{x: W(y|x) > 0} Q(x).$$

Erasures-Only Capacity:

$$\mathcal{C}_{ extsf{e-o,FB}} = egin{cases} 0 & extsf{if} \ \mathcal{C}_{ extsf{e-o}} = 0 \ \mathcal{C} & extsf{otherwise} \end{cases}.$$