LCCC Workshop October 2012

Pattern Formation in Multi-Cellular Systems

Murat Arcak

EECS, University of California, Berkeley

How do spatial gene expression patterns form?

- \triangleright Fundamental problem in developmental biology
- \triangleright New challenge for synthetic biology
- Mathematical analysis and design hampered by large-scale models

Decompositional Approach: Exploit I/O properties of subsystems (cells) and their coupling structure (diffusion¹, contact signaling, etc.)

[1] Hsia, Holtz, Huang, Maharbiz, Arcak, "A feedback quenched oscillator produces Turing patterning with one diffuser." PLoS Computational Biology, 2012.

Contact-Mediated Inhibition

Common patterning mechanism in multi-cellular organisms, *e.g.*, Notch signaling in mammalian cells:

Delta in one cell inhibits production of Delta in adjacent cells:

Literature: Simulations for specific models^{2,3,4} of Notch signaling. Patterning analysis under restrictive assumptions (*e.g.*, two cells). **This talk:** A scalable technique for predicting patterns, applicable to a broad class of systems.

[2] Collier *et al. J.Theo.Bio.* **1996; [3] Ghosh & Tomlin** *IEE Sys.Bio***. 2004; [4] Sprinzak** *et al. PLoS Comp.Bio. 20***11**

Interconnected Dynamical Model

Define scaled adjacency matrix for the contact graph:

 $p_{ij} = \begin{cases} d_i^{-1} & \text{if vertices } i \text{ and } j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$

where d_i : vertex degree. Eigenvalues of $P: -1 \leq \lambda_N \leq \cdots \leq \lambda_1 = 1$

$$
\dot{N}_i = \beta - \gamma N_i - k N_i \langle D_j \rangle_i \n\dot{D}_i = g(S_i) - \gamma D_i - k D_i \langle N_j \rangle_i \n\dot{S}_i = -\gamma S_i + k N_i \langle D_j \rangle_i.
$$

Define input and output:

$$
u_i = \left[\begin{array}{c} \langle N_j \rangle_i \\ \langle D_j \rangle_i \end{array} \right] \quad y_i = \left[\begin{array}{c} N_i \\ D_i \end{array} \right]
$$

 I/O model for each cell:

$$
u = \begin{bmatrix} u_{(1)} \\ u_{(2)} \end{bmatrix} \longrightarrow \begin{bmatrix} \dot{N} & = & \beta - \gamma N - kN u_{(2)} \\ \dot{D} & = & g(S) - \gamma D - k D u_{(1)} \\ \dot{S} & = & -\gamma S + k N u_{(2)} \end{bmatrix} \longrightarrow y = \begin{bmatrix} N \\ D \end{bmatrix}
$$

Assumptions on the I/O Model

$$
u \longrightarrow \qquad \dot{x} = f(x, u), \ y = h(x) \longrightarrow y
$$

1) For each constant u there is a hyperbolic, globally asymptotically stable steady-state: $x = S(u)$.

2) The steady-state I/O map:

 $T(u) := h(S(u))$

is decreasing: $u \succeq v \Rightarrow T(u) \preceq T(v)$.

3) For simplicity, henceforth assume SISO, differentiable $T(\cdot)$, and $T'(u) < 0$ for all u

The Homogeneous Steady-State

Fixed point of $T(\cdot)$ determines a spatially homogeneous steady-state:

and instability of this steady-state sets the stage for patterning:

Instability Criterion: $\lambda_N < 0$ and $|T'(u^*)| > |\lambda_N|^{-1}$ where λ_N is the smallest eigenvalue of P.

Pattern Templates from Graph Partitioning

A **partition** of the vertex set into classes O_1, \dots, O_r is **equitable** if $\exists \bar{p}_{ij}, i, j = 1, \ldots, r$, such that the adjacency matrix P satisfies:

$$
\sum_{l \in C_j} p_{kl} = \overline{p}_{ij} \quad \forall k \in O_i
$$

$$
P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{bmatrix} \qquad \overline{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}
$$

Look for steady-states where vertices in the same class are identical:

$$
\begin{bmatrix}\n u_1 \\
\vdots \\
u_N\n\end{bmatrix} = P \begin{bmatrix}\n T(u_1) \\
\vdots \\
T(u_N)\n\end{bmatrix}\n\qquad\n\begin{aligned}\n u_i &= w_j \\
\forall i \in O_j \\
\vdots \\
w_r\n\end{aligned}\n\qquad\n\begin{bmatrix}\n w_1 \\
\vdots \\
w_r\n\end{bmatrix} = \overline{P} \begin{bmatrix}\n T(w_1) \\
\vdots \\
T(w_r)\n\end{bmatrix}
$$
\n**(reduced)**

Example: Bipartite Graphs

$$
P = \begin{bmatrix} 0 & P_{12} \\ \hline P_{21} & 0 \end{bmatrix} \implies \overline{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

Steady-states consistent with the bipartition are period-two solutions of the I/O map:

$$
\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \overline{P} \begin{bmatrix} T(w_1) \\ T(w_2) \end{bmatrix}
$$

A period-two solution indeed exists if $|T'(u^*)| > 1$ at the fixed pt. u^* :

Equitable Partitions from Symmetries

Given graph $\mathcal{G}(V, E)$, an **automorphism** is a permutation $g: V \to V$ such that if $(i, j) \in E$ then also $(gi, gj) \in E$.

The **automorphism group**, $Aut(\mathcal{G})$, is the set of all automorphisms. $H \subset Aut(\mathcal{G})$ is a **subgroup** if it is closed under composition & inverse. The action of all permutations in subgroup H forms an equitable partition of the vertex set into **orbits**, $O_i = \{hi : h \in H\}.$

orbits generated by subgroup:

$$
H = \{Id, 13254\}
$$

Computational discrete algebra software, $e.g.$ GAP, identify subgroups

Which Partitions Admit Patterns?

Given a partition, define *reduced graph* \overline{G} with vertex and edge sets:

 $\overline{V} = \{O_1, \ldots, O_r\}$ $\overline{E} = \{(O_i, O_j) : i \neq j, \overline{p}_{ij} \neq 0 \text{ or } \overline{p}_{ji} \neq 0\}$

Theorem: Suppose \overline{G} is bipartite and define the cone:

 $\mathcal{K} = \{w \in \mathbb{R}^r : w_i w_j \leq 0 \text{ if } i \text{ and } j \text{ are adjacent in } \overline{G}\}.$

If for every eigenvector of \overline{P} in $\mathcal{K} \cup -\mathcal{K}$:

 $\lambda < 0$ and $|T'(u^*)| > |\lambda|^{-1}$

then (reduced) admits a nonhomogeneous solution.

Examples

Bipartite Graphs:

Checkerboard patterns emerge when $|T'(u^*)| > 1$:

Odd-Length Cycles:

A symmetric pattern emerges when $|T'(u^*)| > \sec(\pi/N)$:

Two-Dimensional Mesh with Wrap-Arounds:

226 distinct equitable partitions identified from symmetries.

Theorem above applied to those with only two orbits:

Buckminsterfullerene Graphs:

32 faces, interpreted as graph vertices. Full automorphism group has two orbits: O_1 : {12 pentagons}, O_2 : {20 hexagons} Theorem above confirms "soccerball" pattern" for $|T'(u^*)| > 2$

Buckminster Fuller (1895-1983)

Current Research Topics

- Relaxing the assumptions of the theorem (*e.g.*, bipartite reduced graph)
- \triangleright Characterizing the stability and domain of attraction of the patterns
- \triangleright Generic convergence to patterns proven for bipartite graphs.⁵ Can other graphs exhibit complex dynamics?
- Application: A synthetic multi-cellular patterning system…

[5] Arcak, "Pattern formation by lateral inhibition: An analysis applicable to large scale networks of cells." Submitted.

Acknowledgment:

Ana Ferreira, Katia Nepomnyashchaya, NSF, AFOSR