

Feedback for Channels with in-Block Memory

Gerhard Kramer

Institute for Communications Engineering Technische Universität München, Germany

Information and Control in Networks Workshop Lund University, Sweden October 17-19, 2012

Outline

- 1) Review: Point-to-point channels
- 2) Feedback in Networks: Two-way Channels
- 3) Non-Standard Channels: Relay Networks with Delays
- 4) Networks with in-Block Memory (iBM)
- 5) Point-to-Point Channels with iBM
 - New capacity theorems
 - Refinement of Shannon's classic feedback capacity result
- 6) Open Problems / General Questions

1) Review: Point-to-Point Channels

- Goal: maximize R but ensure that $Pr[M \neq M] < \epsilon$ for any $\epsilon > 0$
- Capacity (Shannon 1948): $C = \max_{P_X} I(X;Y)$ Single Letter!
- Random coding: for each message m generate a code word xⁿ=x₁x₂...x_n by choosing each x_i independently with P_X(.)
- Decoder: choose **m** to maximize P(yⁿ|**m**)

ТШ

Functional Dependence Graph (FDG) for a Memoryless Channel

• Channel: Y = f(X,Z) or P(y|x) ... Shannon used both in 1948

Zⁿ is <u>noise</u>; hollow nodes represent independent random vars.

Channel with Feedback

Encoding is "strictly" causal

- Capacity (Shannon 1956): $C = \max_{P_X} I(X;Y)$
- Capacity is not increased by feedback!
- But complexity, delay, reliability are improved
- For control: "output" feedback $\overline{Y}=Y$ can be interesting

ТШП

FDG for a Channel with Output Feedback (n=3)

Functional dependence due to feedback: dashed lines

A Simple AWGN Strategy (Elias 1956, Schalkwijk & Kailath 1966)

• Results: $\sigma_n^2 = \sigma_{n-1}^2 / (1+P) \implies \sigma_N^2 = 1 / (1+P)^N$ $R = \frac{1}{2N} \log(1/\sigma_N^2) = \frac{1}{2} \log(1+P)$

ТШ

Capacity Inner/Outer Bounds (Shannon 1961): the region

$$\bigcup \begin{cases} (R_1, R_2): & 0 \le R_1 \le \mathsf{I}(\mathsf{X}_1; \mathsf{Y}_2 | \mathsf{X}_2) \\ 0 \le R_2 \le \mathsf{I}(\mathsf{X}_2; \mathsf{Y}_1 | \mathsf{X}_1) \end{cases}$$

is "achievable" if the union is over all $P(x_1)P(x_2)$

• The region is an outer bound if the union is over all $P(x_1, x_2)$

FDG for a Two-Way Channel (n=2)

- Code "words" are trees
 A₁^L(m₁) and A₂^L(m₂)
 (or code functions)
- Exempel: L=3
- Shannon's L-Letter Inner Bound: (R₁,R₂) satisfying

$$R_{1} \leq I\left(\mathbf{A}_{1}^{L}; \mathbf{Y}_{2}^{L} \middle| \mathbf{A}_{2}^{L}\right) / L$$
$$R_{2} \leq I\left(\mathbf{A}_{2}^{L}; \mathbf{Y}_{1}^{L} \middle| \mathbf{A}_{1}^{L}\right) / L$$

are achievable for $P(a_1^{L})P(a_2^{L})$

Outer bounds with P(a₁^L,a₂^L)?
 Ja.

3) Non-Standard Channels: Relay Networks with Delays El Gamal, Hassanpour, Mammen, 2007

Fig. 2. (Left) Classical relay channel. (Right) Graphical representation for relay-with-delay; d = 1 corresponds to classical relay, d = 0 corresponds to relay-without-delay.

- Exempel: X_t to Y_{1t} has "fast" propagation, relay reacts quickly
- Requires new information theory, e.g., new cut-set bound

Another Point of View: Consider Two-Way Channels

Usual approach:

- M_t appear before Tx
- <u>Channel</u> has little or no delay
- Encoder or feedback has delay

Motivation:

• Channel delays are often much smaller than device delays

Relay without Delay

Observe:

- Some time indexes shifted
- Classic IT does not apply ... best rate expressions have auxiliary random variables
- Noise effectively has memory

Aha!

• Maybe we should view these networks as having memory!

4) Networks with in-Block Memory

in-Block Memory (iBM):

- Consider as L channel uses
- Ch. memory inside block only
- Result: Get L-letter capacity expressions

Relays without Delay

- iBM of length L=2
- Get natural IT results again!

Exempel: Outer Bounds with iBM

Cut bound for two-way channels*:

$$LR_{1} \leq I\left(\mathbf{A}_{1}^{L}; Y_{2}^{L} \middle| \mathbf{A}_{2}^{L}\right) \leq I\left(X_{1}^{L}, 0Y_{1}^{L-1} \rightarrow Y_{2}^{L} \middle| X_{2}^{L}\right)$$
$$LR_{2} \leq I\left(\mathbf{A}_{2}^{L}; Y_{1}^{L} \middle| \mathbf{A}_{1}^{L}\right) \leq I\left(X_{2}^{L}, 0Y_{2}^{L-1} \rightarrow Y_{1}^{L} \middle| X_{1}^{L}\right)$$

Features:

- Generalizes classic cut bounds
- L-letter bounds
- No auxiliary variables

*Dir. Inf. Bds. due to: Baik & Chung 2011, Fong & Yeung 2012)

5) Point-to-Point Channels with iBM

- FDG on next page. Capacity: $C = \max_{P(\mathbf{a}^{L})} I(\mathbf{A}^{L}; \mathbf{Y}^{L}) / L$
- Achievability: Shannon's random coding with code trees
- <u>In-block</u> feedback can increase C
- <u>Across-block</u> feedback does not increase C
- Cardinality bounds: at most min($|\mathcal{Y}|^{L}$, $L|\mathcal{X}|^{L}|\mathcal{Z}|^{L-1}$)

Special Case 1: Block-Fading Channels

FDG for L=2 ... can cut feedback links between blocks

Special Case 2: Shannon's Channel with State

State known causally at the encoder: alphabets are time-varying

*Bounds due to Shannon 1958, Farmanbar & Khandani 2009

Special Case 3: Weissman's Action-Dependent State

•
$$C = \max_{P(\tilde{\mathbf{a}},\mathbf{a})} I(\tilde{\mathbf{A}}\mathbf{A};\mathbf{Y})/2 = \max_{P(b,\mathbf{a})} I(B\mathbf{A};\mathbf{Y})/2$$

• # of trees*: min($|\mathcal{Y}|$, $|\mathcal{B}| + |\mathcal{B}| \cdot |\mathcal{S}| \cdot (|\mathcal{X}| - 1)$)

*Improves on Weissman 2010: min($|\mathcal{Y}|, \mathcal{B}|\cdot|\mathcal{S}|\cdot|\mathcal{X}|+1$)

Some Extensions to Networks

- Get capacity for:
 - Deterministic broadcast channels with iBM
 - Degraded, deterministic, primitive relay channels with iBM
 - Certain deterministic networks with iBM via (extensions of) QMF/NNC with code trees rather than words
- High SNR Capacity of additive Gaussian noise (AGN) networks

Open Problems / General Questions

- Point-to-point channels:
 - <u>Control</u>: does iBM make sense? (e.g., is there a "relay network without delay"?)
 - Output feedback capacity: should be easy?
 - Noisy feedback: input distributions, strategies, performance
 - Channels with (action dependent) state: same questions
- Multiaccess/Broadcast/Interference:
 - Output feedback: extend Ozarow & others
- Codes for feedback: are (short) code trees really useful for
 - Communications ?
 - Control ?
 - Communications & Control ?

