The Complex Braid of Communication and Control

Massimo Franceschetti

January 2007

CYBER-PHYSIC/

January 2012

Abstraction

Problem formulation

• Linear dynamical system

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + v_k, \\ y_k &= Cx_k + w_k \end{aligned}$$

A composed of unstable modes $|\lambda_1| \ge 1, \cdots, |\lambda_n| \ge 1$

Time-varying channel

Slotted time-varying channel evolving at the same time scale of the system

Objective: identify the trade-off between system's unstable modes and channel's rate to guarantee stability:

$$\sup_{k} ||x_{k}|| < \infty$$
or
$$\sup_{k} \mathbb{E}[||x_{k}||^{2}] < \infty$$

Information-theoretic approach

- A rate-based approach, transmit R_k bits/time
- Derive data-rate theorems quantifying how much rate is needed to construct a stabilizing quantizer/controller pair

Network-theoretic approach

- A **packet-based** approach (a packet models a real number)
- Determine the critical packet loss probability above which the system cannot be stabilized by any control scheme

Information-theoretic approach

• Tatikonda-Mitter (IEEE-TAC 2002)

Rate process $k R_k = R$ known at the transmitter Disturbances and initial state support: bounded Data rate theorem: $R > R_c = \log |\lambda|$ a.s. stability Rate

Time

• Generalizes to vector case as:

$$R > \sum_{u} m_u \log |\lambda_u|$$

Information-theoretic approach

• Nair-Evans (SIAM-JCO 2004)

Rate process $\forall k \ R_k = R$ known at the transmitter Disturbances and initial state support: unbounded Bounded higher moment (e.g. Gaussian distribution) Data rate theorem: $R > R_c = \log |\lambda|$ Second moment stability Rate

Generalizes to vector case as:

$$R > \sum_{u} m_u \log |\lambda_u|$$

Time

Intuition

- Want to compensate for the expansion of the state during the communication process
- At each time step, the uncertainty volume of the state

 $\uparrow |\lambda|^2 \quad \downarrow 2^{-2R}$

• Keep the product less than one for second moment stability

 $R > \log |\lambda|$

Information-theoretic approach

• Martins-Dahleh-Elia (IEEE-TAC 2006)

Rate process{: R_k } i.i.d process distributed as RDisturbances and initial state support: bounded Causal knowledge channel: coder and decoder have knowledge $k_i \gg k_{i=0}^k$ Data rate theorem: $|\lambda|^2 \mathbb{E} \left[2^{-2R}\right] < 1$ Second moment stability

Intuition

• At each time step, the uncertainty volume of the state

$$\uparrow |\lambda|^2 \quad \downarrow 2^{-2R_i}$$

 Keep the *average* of the product less than one for second moment stability

$$|\lambda|^2 \mathbb{E}\left[2^{-2R}\right] < 1$$

Information-theoretic approach

• Minero-F-Dey-Nair (IEEE-TAC 2009)

Rate process{ R_k i.i.d process distributed as RDisturbances and initial state support: unbounded Bounded higher moment (e.g. Gaussian distribution) Causal knowledge channel: coder and decoder have knowledge of $|\lambda|^2 \mathbb{E} \left[2^{-2R}\right] < 1$ Data rate theorem:

 $\{R_i\}_{i=0}^k$

• Vector case, necessary and sufficient conditions almost tight

 Necessity: Based on entropy power inequality and maximum entropy theorem

 Sufficiency: Difficulty is in the unbounded support, uncertainty about the state cannot be confined in any bounded interval, design an adaptive quantizer to avoid saturation, achieve high resolution through successive refinements.

Network-theoretic approach

• A packet-based approach (a packet models a real number)

$$R_k = \begin{cases} \infty & \text{w.p. } 1 - p \\ 0 & \text{w.p. } p \end{cases}$$

Critical dropout probability

- Sinopoli-Schenato-F-Sastry-Poolla-Jordan (IEEE-TAC 2004)
- Gupta-Murray-Hassibi (System-Control-Letters 2007)
- Elia (System-Control-Letters 2005)

$$p < p_c = \frac{1}{|\lambda|^2}$$

• Generalizes to vector case as:

$$p < p_c = \max_i \frac{1}{|\lambda_i|^2}$$

Critical dropout probability

- Can be viewed as a special case of the information-theoretic approach
- Gaussian disturbance requires unbounded support data rate theorem of Minero, F, Dey, Nair, (2009) to recover the result

$$\mathbb{E}\left[\frac{|\lambda|^2}{2^{2R}}\right] = p\frac{|\lambda|^2}{2^0} + (1-p)\frac{|\lambda|^2}{2^{2r}} < 1$$
$$\implies p < \frac{1}{|\lambda|^2}, \text{ as } r \to \infty$$

Stabilization over channels with memory

• Gupta-Martins-Baras (IEEE-TAC 2009)

• Critical "recovery probability"

$$q > q_c = 1 - \frac{1}{|\lambda^2|}$$

Stabilization over channels with memory

• You-Xie (IEEE-TAC 2010)

Information-theoretic approach **Two-state** Markov chain, fixed R or zero rate Disturbances and initial state support: unbounded Let T be the excursion time of state R

Q

• Data-rate theorem $R > R_c = \frac{1}{2} \log \mathbb{E}[|\lambda|^{2T}]$

• For $R \to \infty$ recover the critical probability $q_c = 1 - \frac{1}{|\lambda^2|}$

Stabilization over channels with memory

• Minero-Coviello-F (IEEE-TAC to appear)

Information-theoretic approach Disturbances and initial state support: unbounded Time-varying rate $R_k \in \{r_1, \cdots, r_n\}$ Arbitrary positively recurrent time-invariant Markov chain of nstates = $P\{R_{k+1} = r_j | R_k = r_i\}$

 Obtain a general data rate theorem that recovers all previous results using the theory of Jump Linear Systems

Markov Jump Linear System

Define an auxiliary dynamical system (MJLS)

$$z_{k+1} = \frac{|\lambda|}{2^{R_k}} z_k + c$$
$$z_0 < \infty, c \ge 0$$

Markov Jump Linear System

- Let H be the $n \times n$ matrix defined by the transition probabilities and the rates

$$h_{ij} = \frac{1}{2^{2r_j}} p_{ji}$$

- Let $\rho(H)$ be the spectral radius of H
- The MJLS is mean square stable $|\mathbf{ff}|^2 \rho(H) < 1$
- Relate the stability of MJLS to the stabilizability of our system

Data rate theorem

• Stabilization in mean square sense over Markov time-varying channels is possible if and only if the corresponding MJLS is mean square stable, that is:

 $|\lambda|^2 \rho(H) < 1$

Previous results as special cases

Minero, Coviello, F (2011)Theory Of thing Everything

Tatikonda, Mitter (2002) Gupta Murray Hassibi (2007) You Xie (2010) Nair Evans (2004) Gupta Martins Baras (2009) Martins Dahleh Elia (2006) Minero, F, Dey, Nair (2009)

What next

• Is this the end of the journey?

- No! journey is still wide open
- ... introducing noisy channels

Insufficiency of Shannon capacitySahai-Mitter (IEEE-IT 2006)

• Example: i.i.d. erasure channel

$$R_k \sim R = \begin{cases} r & \text{w.p. } 1-p \\ 0 & \text{w.p. } p \end{cases}$$

• Data rate theorem:

$$\begin{aligned} |\lambda|^2 \mathbb{E}(2^{-2R}) < 1 &\implies |\lambda|^2 (2^{-2r}(1-p)+p) < 1 \\ \text{as } r \to \infty \ p < \frac{1}{|\lambda|^2} \end{aligned}$$

• Shannon capacity:

$$C = (1-p)r \to \infty$$

Capacity with stronger reliability constraints

- Shannon capacity soft reliability constraint $r_r \to 0$
- Zero-error capacity C_0 hard reliability constraint $R_{err} = 0$
- Anytime capacity_{CA} medium reliability constraint $\mathbb{P}((\hat{M}_{0|k}, \dots, \hat{M}_{d|k}) \neq (M_0, \dots, M_d)) = O(2^{-\alpha d})$ for all $d \leq k$

 $C_0 \le C_A \le C$

Alternative formulations

- Undisturbed systems
- Tatikonda-Mitter (IEEE-AC 2004)
- Matveev-Savkin (SIAM-JCO 2007)

 $C>\log |\lambda|\;$ a.s. stability

- Disturbed systems (bounded)
- Matveev-Savkin (IJC 2007) $C_0 > \log |\lambda|$ a.s. stability
- Sahai-Mitter (IEEE-IT 2006) $C_A > \log |\lambda| \text{ moment stability}$

Anytime reliable codes: Shulman (1996), Ostrovsky, Rabani, Schulman (2009), Como, Fagnani, Zampieri (2010), Sukhavasi, Hassibi (2011)

The Bode-Shannon connection

- Connection with the capacity of channels with feedback
- Elia (IEEE-TAC 2004)
- Ardestanizadeh-F (IEEE-TAC 2012)
- Ardestanizadeh-Minero-F (IEEE-IT 2012)

Control over a Gaussian channel Ardestanizadeh, F (2012)

$$\begin{split} U &= \sum_{i \in \mathcal{U}} \log |\lambda_i| \text{ Instability} \\ &\frac{1}{2\pi} \int_{-\pi}^{\pi} |T(e^{j\omega})|^2 S_Z(\omega) d\omega \leq P \text{ Power constraint} \end{split}$$

 $T(z) = \frac{L(z)}{1 + L(z)}$ Complementary sensitivity function

 Z_i Stationary (colored) Gaussian noise

Control over a Gaussian channel Ardestanizadeh, F (2012)

 C_F Feedback capacity

$$\sup_{\mathcal{L}} U = C_F$$

 The largest instability U over all LTI systems that can be stabilized by unit feedback over the stationary Gaussian channel, with power constraint P corresponds to the Shannon capacity C_F of the stationary Gaussian channel with feedback [Kim(2010)] with the same power constraint P.

Communication using control

- This duality between control and feedback communication for Gaussian channels can be exploited to design communication schemes using control tools
- MAC, broadcast channels with feedback
- Elia (IEEE-TAC 2004)
- Ardestanizadeh-Minero-F (IEEE-IT 2012)

Conclusion

- Data-rate theorems for stabilization over time-varying rate channels, after a beautiful journey of about a decade, are by now fairly well understood
- The journey (quest) for noisy channels is still going on
- The terrible thing about the quest for truth is that you may find it

• For papers: www.circuit.ucsd.edu/~massimo/papers.html