Resilient distributed routing in dynamical flow networks

Giacomo Como Department of Automatic Control Lund University

LCCC workshop on Information and Control in Networks Lund, October 19, 2012

joint work with: K. Savla, D. Acemoglu, M. Dahleh, and E. Frazzoli at MIT, E. Lovisari at Lund Automatic Control

Resilient infrastructure networks

- good in business as usual, prone to disruptions
- cascade effects
 - \Rightarrow network vulnerability >> \sum component vulnerabilities

Typical Monday at 18:30

Static flow networks

di-graph $(\mathcal{V}, \mathcal{E})$ origin Odestination D capacities $C_e > 0$ $\mathcal{E}_v^+ = \{ \text{out-links of } v \}$

 $\mathcal{E}_v^- = \{\text{in-links of } v\}$

• equilibrium flow: $f = \{\overline{f_e}\}$ such that $0 \le f_e < C_e$ and

$$\sum_{e \in \mathcal{E}_{v}^{-}} f_{e} = \sum_{e \in \mathcal{E}_{v}^{+}} f_{e} \qquad \forall v \neq O, D$$

Max-flow min-cut theorem

Max-flow min-cut theorem

static, centralized, global information

Dynamical flow networks

Dynamical flow networks

$$\frac{\mathrm{d}}{\mathrm{d}t} \rho_{e} = \lambda_{v} \quad G_{e}^{v} \quad - \quad f_{e}$$

(cf. with
$$rac{\partial}{\partial t}
ho = -
abla_{ extsf{x}}\cdot f$$
)

Flow function

$$egin{aligned} \mu_e(0) &= 0 & \sup_{
ho_e \geq 0} \mu_e(
ho_e) = C_e \ & & & & & \ & & & rac{\mathrm{d}}{\mathrm{d}
ho_e} \mu_e > 0 \end{aligned}$$

Distributed routing

$$\lambda_{\mathbf{v}} = \sum_{\mathbf{e} \in \mathcal{E}_{\mathbf{v}}^{-}} \mathit{f}_{\mathbf{e}}$$
 total flow through \mathbf{v}

 $G_e^{\nu} =$ fraction of λ_{ν} routed to elocal information: $\rho^{\nu} = \{\rho_e : e \in \mathcal{E}_{\nu}^+\}$

Locally responsive distributed policies

$$\begin{aligned} G^{\nu} : \mathbb{R}^{\mathcal{E}^{+}_{+}}_{+} &\to \mathcal{P}(\mathcal{E}^{+}_{\nu}) \\ \text{(i)} \ \frac{\partial}{\partial \rho_{j}} G^{\nu}_{e} \geq 0 \qquad \forall e \neq j \in \mathcal{E}^{+}_{\nu} \\ \text{(ii)} \ \rho_{e} \to \infty \quad \Rightarrow \quad G^{\nu}_{e}(\rho^{\nu}) \to \end{aligned}$$

Locally responsive distributed policies

$$G^{\nu}: \mathbb{R}^{\mathcal{E}^{+}_{\nu}}_{+} \to \mathcal{P}(\mathcal{E}^{+}_{\nu})$$

(i) $\frac{\partial}{\partial \rho_{j}} G^{\nu}_{e} \ge 0 \qquad \forall e \neq j \in \mathcal{E}^{+}_{\nu}$
(ii) $\rho_{e} \to \infty \quad \Rightarrow \quad G^{\nu}_{e}(\rho^{\nu}) \to 0$

Ex.: i-logit

 $G_{e}^{v}(
ho^{v}) \propto lpha_{e} \exp(-eta
ho_{e})$

 $\beta > \mathbf{0}, \ \alpha \in \mathbb{R}^{\mathcal{E}^+_{\mathbf{v}}}_+$

Locally responsive distributed policies

Dynamical flow networks

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{e} = \lambda_{v} G_{e}^{v}(\rho^{v}) - \mu_{e}(\rho_{e}) \qquad e \in \mathcal{E}_{v}^{+}, \ v \in \mathcal{V} \setminus \{D\}$$

transferring if $\lim_{t\to\infty} \lambda_D(t) = \lambda_O$

Perturbed dynamical flow networks

 $\mathsf{Magnitude} \qquad \delta := \sum_{e} \delta_{e} = \sum_{e} ||\mu_{e}(\cdot) - \tilde{\mu}_{e}(\cdot)||_{\infty}$

Margin of resilience

perturbed network: $\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\rho}_{e} = \tilde{\lambda}_{v}G_{e}^{v}(\tilde{\rho}^{v}) - \tilde{\mu}_{e}(\tilde{\rho}_{e}) \qquad e \in \mathcal{E}_{v}^{+}, \ v \neq D$

 $\gamma:= \text{ inf magnitude of disruption s.t. } \lim_{t \to +\infty} \tilde{\lambda}_D(t) < \lambda_O$

Optimal resilience

residual node capacity for limit flow f^*

$$R(f^*) := \min_{v \neq D} \sum_{e \in \mathcal{E}_v^+} C_e - f_e^*$$

Optimal resilience

Theorem: acyclic network, limit flow f^*

1. distributed routing

 $\gamma \leq R(f^*)$

2. locally responsive routing \Rightarrow f^* globally attractive

$$\gamma = R(f^*)$$

Optimal resilience (cont'd)

•
$$1 \leq rac{C-\lambda_O}{R(f^*)}$$
 can be arbitrarily large

local information constraint \implies resilience loss

Optimal resilience (cont'd)

perturbations and distributed routing effect only downstream
 locally responsive policies
 \downarrow locally optimal load rebalance
 λ_v e

Bounded density capacities

Bounded density capacities

$$e = (v, w) \Rightarrow \qquad \frac{\mathrm{d}}{\mathrm{d}t} \rho_e = \chi_v(t) \lambda_v G_e^v(\rho^v) - \chi_w(t) \mu_e(\rho_e)$$

 $\chi_{\boldsymbol{v}}(\boldsymbol{t}) := 1 - \prod_{e \in \mathcal{E}_{\boldsymbol{v}}^+} (1 - \xi_e(\boldsymbol{t})) \qquad \overline{\xi_e(\boldsymbol{t})} := \mathbb{1}_{[0,\rho_e^{\max})}(\rho_e)$

Perturbation localized on \mathcal{E}_w^+ , such that $\sum_{\mathcal{E}_w^+} \tilde{\mathcal{C}}_e < \lambda_w^*$

Node *w* overloaded \Rightarrow every $e \in \mathcal{E}_w^+$ drops

Hence w drops together with all $e \in \mathcal{E}_w^-$

Possibly other nodes downstream become overloaded...

...and eventually drop

Either a new equilibrium flow is eventually achieved

...or not.

If the perturbation overloads the origin...

... no more flow passes through the network.

Theorem: $\rho_e^{\max} < +\infty \quad \forall e \implies \lim_{t \to \infty} \lambda_D(t) \in \{0, \lambda_O\}$

1 acyclic network, any distributed routing

 $\gamma \leq \Gamma(f^*)$ $\Gamma(f^*) := \dots$ backward induction

2 locally responsive routing, $d_v^+ \leq 2 \implies \gamma = \Gamma(f^*)$

 $\begin{array}{ccc} \textbf{3} \text{ locally responsive routing} & \Longrightarrow & \gamma \geq R(f^*) \end{array}$

Slowing down local flow

 $G_i^j(\rho_j, \rho^v) :=$ fraction of flow kept on j

 $1 - G_j^j(
ho_j,
ho^{
m v}) :=$ fraction of flow allowed through ${
m v}$

Slowing down achieves capacity

Theorem: Acyclic network, locally responsive policy

$$\gamma = C - \lambda_O$$

both with finite and infinite ρ_e^{\max}

Conclusion

Summary

- robust distributed routing for dynamical flow networks
- margins of resilience
- role of cascades

Current/future directions

- cycles
- multicommodity flows
- value of communication
- resilience of networks with other dynamics