Resilient distributed routing in dynamical flow networks

Giacomo Como Department of Automatic Control Lund University

LCCC workshop on Information and Control in Networks Lund, October 19, 2012

joint work with: K. Savla, D. Acemoglu, M. Dahleh, and E. Frazzoli at MIT, E. Lovisari at Lund Automatic Control

Resilient infrastructure networks

- \blacktriangleright good in business as usual, prone to disruptions
	- \triangleright cascade effects
- \Rightarrow network vulnerability $>>$ \sum component vulnerabilities

Typical Monday at 18:30 p.m. Monday 11, 2011, at 6:30 p.m. Monday 11, 2011, at 7:30 p.m. Monday, July 11, 2011, at 7:30 p.m. Monday

Static flow networks

di-graph $(\mathcal{V}, \mathcal{E})$ origin O destination D capacities $C_e > 0$ $\mathcal{E}_{\mathsf{v}}^+=\{\mathsf{out}\text{-links of }\mathsf{v}\}$ $\mathcal{E}_{v}^{-} = \{\text{in-links of } v\}$

equilibrium flow: $f = \{f_e\}$ such that $0 \le f_e < C_e$ and

$$
\sum_{e\in \mathcal{E}_v^-} f_e = \sum_{e\in \mathcal{E}_v^+} f_e \qquad \forall v\neq \mathit{O}, \mathit{D}
$$

Max-flow min-cut theorem

Max-flow min-cut theorem

 \triangleright static, centralized, global information

Dynamical flow networks

Dynamical flow networks

$$
\frac{\mathrm{d}}{\mathrm{d}t} \rho_e = \lambda_v \quad G_e^v \quad - \quad f_e
$$

(cf. with
$$
\frac{\partial}{\partial t}\rho = -\nabla_x \cdot f
$$
)

Flow function

$$
\mu_e(0) = 0 \qquad \sup_{\rho_e \ge 0} \mu_e(\rho_e) = C_e
$$

$$
\frac{d}{d\rho_e} \mu_e > 0
$$

Distributed routing

$$
\lambda_v = \sum_{e \in \mathcal{E}_v^-} f_e \text{ total flow through } v
$$

 $G_{e}^{V} =$ fraction of λ_{V} routed to e local information: $\rho^{\vee} = \{ \rho_e : e \in \mathcal{E}_{\mathsf{v}}^+ \}$

Locally responsive distributed policies

$$
G^{v}: \mathbb{R}_{+}^{\mathcal{E}_{+}^{+}} \to \mathcal{P}(\mathcal{E}_{v}^{+})
$$
\n(i)
$$
\frac{\partial}{\partial \rho_{j}} G_{e}^{v} \ge 0 \qquad \forall e \ne j \in \mathcal{E}_{v}^{+}
$$
\n(ii)
$$
\rho_{e} \to \infty \quad \Rightarrow \quad G_{e}^{v}(\rho^{v}) \to 0
$$

Locally responsive distributed policies

$$
G^{\vee}: \mathbb{R}_{+}^{\mathcal{E}_{+}^{+}} \to \mathcal{P}(\mathcal{E}_{\vee}^{+})
$$
\n(i)
$$
\frac{\partial}{\partial \rho_{j}} G_{e}^{\vee} \geq 0 \qquad \forall e \neq j \in \mathcal{E}_{\vee}^{+}
$$
\n(ii)
$$
\rho_{e} \to \infty \quad \Rightarrow \quad G_{e}^{\vee}(\rho^{\vee}) \to 0
$$

Ex.: i-logit

 $G_{\mathbf{e}}^{\vee}(\rho^{\vee}) \propto \alpha_{\mathbf{e}} \exp(-\beta \rho_{\mathbf{e}})$ e^{ν} (ρ^{ν}) $\propto \alpha_e \exp(-\beta \rho_e)$ $\beta > 0, \ \alpha \in \mathbb{R}_+^{\mathcal{E}^+_{+}}$

Locally responsive distributed policies

$$
G^{\vee}: \mathbb{R}_{+}^{\mathcal{E}_{+}^{+}} \to \mathcal{P}(\mathcal{E}_{\nu}^{+})
$$
\n(i) $\frac{\partial}{\partial \rho_{j}} G_{e}^{\vee} \geq 0 \quad \forall e \neq j \in \mathcal{E}_{\nu}^{+}$ \n(ii) $\rho_{e} \to \infty \quad \Rightarrow \quad G_{e}^{\vee}(\rho^{\vee}) \to 0$ \n
\n(i) \Rightarrow network is monotone (i.e., Jacobian is Metzler) $\Rightarrow \dots$
\n $\Rightarrow \dots || \ ||_{1}$ contraction $\Rightarrow \lim_{t \to \infty} \lambda_{D}(t)$ independent of $\rho(0)$

Dynamical flow networks

$$
\frac{\mathrm{d}}{\mathrm{d}t}\rho_e = \lambda_v G_e^v(\rho^v) - \mu_e(\rho_e) \qquad \qquad e \in \mathcal{E}_v^+, \ v \in \mathcal{V} \setminus \{D\}
$$

transferring if $\lim_{t\to\infty} \lambda_D(t) = \lambda_O$

Perturbed dynamical flow networks

 $\mathsf{Magnitude} \qquad \delta := \sum_{\mathsf{e}} \delta_{\mathsf{e}} = \sum_{\mathsf{e}} || \mu_{\mathsf{e}}(\,\cdot\,) - \tilde{\mu}_{\mathsf{e}}(\,\cdot\,) ||_{\infty}$

Margin of resilience

perturbed network: $\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\rho}_{\mathrm{e}} = \tilde{\lambda}_{\mathrm{v}}\, \mathcal{G}_{\mathrm{e}}^{\mathrm{v}}(\tilde{\rho}^{\mathrm{v}}) - \tilde{\mu}_{\mathrm{e}}(\tilde{\rho}_{\mathrm{e}}) \qquad \mathrm{e} \in \mathcal{E}_{\mathrm{v}}^{+}, \ v \neq D$

 $\gamma := \inf \mathsf{magnitude}$ of disruption s.t. $\lim_{t \to +\infty} \tilde{\lambda}_D(t) < \lambda_O$

Optimal resilience

residual node capacity for limit flow f^*

$$
R(f^*) := \min_{v \neq D} \sum_{e \in \mathcal{E}_v^+} C_e - f_e^*
$$

Optimal resilience

Theorem: acyclic network, limit flow f^*

1. distributed routing

 $\gamma \leq R(f^*)$

2. locally responsive routing \Rightarrow f^{*} globally attractive

$$
\gamma = R(f^*)
$$

Optimal resilience (cont'd)

$$
R(f^*) := \min_{v \neq D} \sum_{e \in \mathcal{E}_v^+} C_e - f_e^*
$$

$$
1 \leq \frac{C - \lambda_O}{R(f^*)}
$$
 can be arbitrarily large

local information constraint =⇒ resilience loss

Optimal resilience (cont'd)

$$
R(f^*) := \min_{v \neq D} \sum_{e \in \mathcal{E}_v^+} C_e - f_e^*
$$

 \overrightarrow{v} \overrightarrow{v} \overrightarrow{e} λ $_{n}$ \triangleright perturbations and distributed routing effect only downstream \blacktriangleright locally responsive policies ⇓ locally optimal load rebalance

Bounded density capacities

Bounded density capacities

$$
e = (v, w) \Rightarrow \frac{d}{dt} \rho_e = \chi_v(t) \lambda_v G_e^v(\rho^v) - \chi_w(t) \mu_e(\rho_e)
$$

 $\chi_{\tiny V}(t) := 1 - \prod_{e \in {\mathcal E}_\mathbf{v}^+} (1 - \xi_e(t)) \qquad \xi_e(t) := \mathbbm{1}_{[0,\rho_e^{\rm max})}(\rho_e)$

Perturbation localized on $\mathcal E^+_{\sf w}$, such that $\sum_{\mathcal E_{\sf w}^+} \widetilde{\mathsf C}_{\sf e}<\lambda_{\sf w}^*$

Node w overloaded \Rightarrow every $e \in \mathcal{E}^+_{w}$ drops

Hence w drops together with all $e \in \mathcal{E}_w^-$

Possibly other nodes downstream become overloaded...

...and eventually drop

Either a new equilibrium flow is eventually achieved

...or not.

If the perturbation overloads the origin...

... no more flow passes through the network.

Theorem: $\rho_e^{\text{max}} < +\infty \quad \forall e \quad \Longrightarrow \quad \lim_{t \to \infty} \lambda_D(t) \in \{0, \lambda_O\}$

1 acyclic network, any distributed routing

 $\gamma \leq \Gamma(f^*)$ $\Gamma(f^*) := \dots$ backward induction

 2 locally responsive routing, $d_{\rm v}^+\leq 2\quad\Longrightarrow\quad \gamma=\mathsf{\Gamma}(f^*)$ 3 locally responsive routing $\implies \gamma > R(f^*)$

Slowing down local flow

 $\mathcal{G}^{j}_{j}(\rho_{j},\rho^{\nu}):=$ fraction of flow kept on j

 $1-G^{j}_{j}(\rho_{j},\rho^{\mathsf{v}})$:= fraction of flow allowed through $\mathsf{\nu}$

Slowing down achieves capacity

Theorem: Acyclic network, locally responsive policy

$$
\gamma = \mathcal{C} - \lambda_{\mathcal{O}}
$$

both with finite and infinite $\rho_{\bm{e}}^{\textsf{max}}$

Conclusion

Summary

- \triangleright robust distributed routing for dynamical flow networks
- \triangleright margins of resilience
- \triangleright role of cascades
- Current/future directions
- \blacktriangleright cycles
- \blacktriangleright multicommodity flows
- \triangleright value of communication
- \triangleright resilience of networks with other dynamics