

Optimal Radio-Mode Switching for wireless Networked Control Systems N. Cardoso, F. Garin, C. Canudas-de-Wit

Presented by: Carlos Canudas de Wit

CNRS-GIPSA-Lab, NeCS Team, Grenoble, FRANCE

October 17-19th, 2012

Material from:

- Energy-aware wireless networked control using radio-mode management, N. Cardoso, Ph.D. Dissertation, University of Grenoble, Oct. 2012.
- Energy-aware wireless networked control using radio-mode management, N. Cardoso de Castro, C. Canudas-de-Wit, and F. Garin. ACC 2012, Montréal, Canada
- Smart Energy-Aware Sensors for Event-Based Control,

N. Cardoso De Castro; D. E. Quevedo; F. Garin; C. Canudas-de-Wit.

CNRS, GIPSA-lab, NeCS-Team

Introduction ••••••	Problem formulation	Infinite horizon case 00000	Finite horizon case	Conclusion
Motivation				

- Sensors will be packaged together with communication protocols, RF electronics, and energy management systems.
- Onstraints: low cost, ease of replacement, low energy consumption, and efficient communication links.
- Implications: intelligent sensors with low consumption (sleep and wake-up modes), for life-time maximization

Example: Traffic system with distributed density sensors. Traffic flow sensor

The smart sensor wireless node

Radio is often the main energy-consumer

Executing 3 million instructions is equivalent to transmitting 1000 bits at a distance of 100 meters in terms of expended energy

Introduction				Conclusion
00000	00000	00000	000	
Physical lay	/er			

Power Control

- Transmission power is related to communication reliability
- Power control aims to save energy, limit interferences, face channel varying conditions

Figure: A source can adapt its transmission power level to change the success probability of the transmission.

Introduction		Infinite horizon case	Conclusion
00000			
Data Link	(MAC) layer		

Radio-mode management

- Radio-mode = **state of activity** of the radio chip (*e.g.* Tx, Rx, Idle, Sleep) where some components are turned off
- Control community only considers ON and OFF
- θ_i -Energy stay cost per unit of time (at node *i*),
- $\theta_{i,j}$ -Energy transition costs between *i* and *j*.

Choosing a mode is a **trade-off** between **energy** consumption and node **awareness**.

Figure: Illustration of a 3 radio-modes switching automata

Figure: Illustration of a 5 radio-modes switching automata

- Low-consuming radio-mode not used in control
- Higher power modes have higher probability of transmission success
- **Problem considered here**: co-design of mode management and control laws to save further energy

- 2 nodes scenario
- Battery-powered smart sensor node (with computation capabilities)
- Energy saving at the sensor side
- Time-triggered sensing (negligible cost) and Event-Triggered transmission

Problem: How to design the radio mode, and the control input u_k

 $x_{k+1} = Ax_k + Bu_k + w_k$ $x_k \in \mathbb{R}^{n_x}, u_k \in \mathbb{R}^{n_u}$

$$\begin{split} x_{k+1} &= Ax_k + Bu_k + w_k \\ m_k \in \mathbb{M} \triangleq \mathbb{M}_1 \cup \mathbb{M}_2 \\ \mathbb{M}_1 \triangleq \{1, 2, \cdots, N_1\} \\ \mathbb{M}_2 \triangleq \{N_1 + 1, N_1 + 2, \cdots, N\} \\ \theta_{i,j} - \text{Transition cost}, \forall (i,j) \in \mathbb{M} \\ \theta_i - \text{Stay cost}, \forall (i) \in \mathbb{M} \end{split}$$

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + w_k \\ m_k &\in \mathbb{M} \triangleq \mathbb{M}_1 \cup \mathbb{M}_2 \\ \mathbb{M}_1 &\triangleq \{1, 2, \cdots, N_1\} \\ \mathbb{M}_2 &\triangleq \{N_1 + 1, N_1 + 2, \cdots, N\} \\ \theta_{i,j} &- \text{Transition cost}, \forall (i,j) \in \mathbb{M} \\ \theta_i &- \text{Stay cost}, \forall (i) \in \mathbb{M} \end{aligned}$$

channel

Introduction 00000	Problem formulation	Infinite horizon case 00000	Finite horizon case	Conclusion
Model a	nd setup			

 $\begin{aligned} x_{k+1} &= Ax_k + Bu_k + w_k \\ m_k &\in \mathbb{M} \triangleq \mathbb{M}_1 \cup \mathbb{M}_2 \\ \mathbb{M}_1 &\triangleq \{1, 2, \cdots, N_1\} \\ \mathbb{M}_2 &\triangleq \{N_1 + 1, N_1 + 2, \cdots, N\} \\ \theta_{i,j} &- \text{Transition cost}, \forall (i, j) \in \mathbb{M} \\ \theta_i &- \text{Stay cost}, \forall (i) \in \mathbb{M} \end{aligned}$

	Problem formulation	Infinite horizon case	Conclusion
	00000		
Model and	setup		

 $x_{k\perp 1} = Ax_k + Bu_k + w_k$ $m_k \in \mathbb{M} \triangleq \mathbb{M}_1 \cup \mathbb{M}_2$ $\mathbb{M}_1 \triangleq \{1, 2, \cdots, N_1\}$ $\mathbb{M}_2 \triangleq \{N_1 + 1, N_1 + 2, \cdots, N\}$ $\theta_{i,i}$ – Transition cost, $\forall (i,j) \in \mathbb{M}$ θ_i – Stay cost, \forall (*i*) $\in \mathbb{M}$

$$\mathbb{P} \{ \beta_k = 0 | m_k = m \} = \epsilon(m)$$
$$\hat{u}_k = \mu(x_k, u_{k-1}, m_k)$$
$$v_k = \eta(x_k, u_{k-1}, m_k)$$

Introduction 00000	Problem formulation ●○○○○	Infinite horizon case 00000	Finite horizon case	Conclusion
Model and	setup			

 $\begin{aligned} x_{k+1} &= Ax_k + Bu_k + w_k \\ m_k &\in \mathbb{M} \triangleq \mathbb{M}_1 \cup \mathbb{M}_2 \\ \mathbb{M}_1 &\triangleq \{1, 2, \cdots, N_1\} \\ \mathbb{M}_2 &\triangleq \{N_1 + 1, N_1 + 2, \cdots, N\} \\ \theta_{i,j} &- \text{Transition cost}, \forall (i,j) \in \mathbb{M} \end{aligned} \qquad \begin{aligned} \mathbb{P} \left\{ \beta_k = 0 | m_k = m \right\} &= \epsilon(m) \\ \hat{u}_k &= \mu(x_k, u_{k-1}, m_k) \\ v_k &= \eta(x_k, u_{k-1}, m_k) \\ u_k &= \begin{cases} \beta_k \hat{u}_k + (1 - \beta_k) u_{k-1}, & \text{if } \mathsf{T}x, \\ u_{k-1}, & \text{otherwise.} \end{cases} \end{aligned}$

Introduction 00000	Problem formulation ○●○○○	Infinite horizon case 00000	Finite horizon case	Conclusion
Switche	d model			
$\forall k: ch$ Switch	noice between N radio ning is triggered by th	p-modes $\Rightarrow N$ subsystem switching decision	stems <i>v_k</i>	

Given μ and η : $\begin{cases}
z_{k+1} = f_{\nu_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
m_{k+1} = \nu_k = \eta(z_k, m_k) \\
\hat{u}_k = \mu(z_k, m_k),
\end{cases}$ $f_{\nu_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
= \Phi_{\nu_k}(\beta_k)z_k + \Gamma_{\nu_k}(\beta_k)\hat{u}_k + \omega_k
\end{cases}$

$$\begin{split} & \widetilde{u}_k = u_{k-1} \ (ext{control memory}) \\ & z_k = \begin{bmatrix} x_k \\ \widetilde{u}_k \end{bmatrix} \ (ext{augmented state}) \\ & (z_k, m_k) \in \mathbb{X} = \mathbb{R}^{n_x + n_u} imes \mathbb{M} \ (ext{switched system state}) \end{split}$$

Introduction 00000	Problem formulation	Infinite horizon case 00000	Finite horizon case	Conclusion
Switche	d model			
∀k: ch	oice between N radio	p-modes \Rightarrow N subsys	stems	

Switching is triggered by the switching decision v_k

Given
$$\mu$$
 and η :

$$\begin{cases}
z_{k+1} = f_{v_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
m_{k+1} = v_k = \eta(z_k, m_k) \\
\hat{u}_k = \mu(z_k, m_k),
\end{cases}$$

$$f_{v_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
= \Phi_{v_k}(\beta_k)z_k + \Gamma_{v_k}(\beta_k)\hat{u}_k + \omega_k
\end{cases}$$

If
$$\mathbf{v} \in \mathbb{M}_{1}$$
 (Tx case):

$$\Phi_{v_{k}}(\beta_{k}) = \begin{cases} \Phi_{CL} = \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} & \text{if } \beta_{k} = 1 \\ \Phi_{OL} = \begin{bmatrix} A & B \\ \mathbf{0} & \mathbf{I} \end{bmatrix} & \text{if } \beta_{k} = 0. \end{cases}$$

$$\Gamma_{v_{k}}(\beta_{k}) = \begin{cases} \Gamma_{CL} = \begin{bmatrix} B \\ \mathbf{I} \end{bmatrix} & \text{if } \beta_{k} = 1 \\ \Gamma_{OL} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} & \text{if } \beta_{k} = 0. \end{cases}$$

$$\begin{split} & \widetilde{u}_k = u_{k-1} \ (ext{control memory}) \\ & z_k = \begin{bmatrix} x_k \\ \widetilde{u}_k \end{bmatrix} \ (ext{augmented state}) \\ & (z_k, m_k) \in \mathbb{X} = \mathbb{R}^{n_x + n_u} imes \mathbb{M} \ (ext{switched system state}) \end{split}$$

Introduction 00000	Problem formulation ○●○○○	Infinite horizon case 00000	Finite horizon case	Conclusion
Switche	d model			
	· · · · · · · · · · · ·			

 $\forall k$: choice between N radio-modes \Rightarrow N subsystems Switching is triggered by the switching decision v_k

Given
$$\mu$$
 and η :

$$\begin{cases}
z_{k+1} = f_{\nu_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
m_{k+1} = \nu_k = \eta(z_k, m_k) \\
\hat{u}_k = \mu(z_k, m_k),
\end{cases}$$

$$f_{\nu_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\
= \Phi_{\nu_k}(\beta_k) z_k + \Gamma_{\nu_k}(\beta_k) \hat{u}_k + \omega_k
\end{cases}$$

If
$$v \in \mathbb{M}_{1}$$
 (Tx case):

$$\Phi_{v_{k}}(\beta_{k}) = \begin{cases} \Phi_{CL} = \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} & \text{if } \beta_{k} = 1 \\ \Phi_{OL} = \begin{bmatrix} A & B \\ \mathbf{0} & \mathbf{I} \end{bmatrix} & \text{if } \beta_{k} = 0. \\ \Gamma_{v_{k}}(\beta_{k}) = \begin{cases} \Gamma_{CL} = \begin{bmatrix} B \\ \mathbf{I} \end{bmatrix} & \text{if } \beta_{k} = 1 \\ \Gamma_{OL} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} & \text{if } \beta_{k} = 0. \end{cases}$$

$$\begin{split} \tilde{u}_{k} &= u_{k-1} \text{ (control memory)} \\ z_{k} &= \begin{bmatrix} x_{k} \\ \tilde{u}_{k} \end{bmatrix} \text{ (augmented state)} \\ (z_{k}, m_{k}) \in \mathbb{X} = \mathbb{R}^{n_{x}+n_{u}} \times \mathbb{M} \text{ (switched system state)} \end{split}$$

Introduction 00000	Problem formulation ○○●○○	Infinite horizon case 00000	Finite horizon case	Conclusion
Opti	misation problem			
S	witched formulation of the	e cost-to-go		
	$\ell_{v_k}(z_k, m_k, \hat{u}_k, \beta_k) = z_k^\top 0$	$Q_{m{v}_k}(eta_k) z_k + \hat{u}_k^ op R_{m{v}_k}(eta_k)$	$(\hat{u}_k)\hat{u}_k + \underbrace{\theta_{m_k,v_k}}_{m_k,v_k}$	

If
$$v_k \in \mathbb{M}_1$$
, (Tx case): $Q_{v_k}(\beta_k) = \begin{cases} Q_{CL} = \begin{bmatrix} \overline{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} & \text{if } \beta_k = 1 \\ Q_{OL} = \begin{bmatrix} \overline{Q} & \mathbf{0} \\ \mathbf{0} & \overline{R} \end{bmatrix} & \text{if } \beta_k = 0 \\ R_{v_k}(\beta_k) = \begin{cases} R_{CL} = \overline{R} & \text{if } \beta_k = 1 \\ R_{OL} = \mathbf{0} & \text{if } \beta_k = 0 \end{cases}$
If $v_k \in \mathbb{M}_2$, (no Tx case): $Q_{v_k}(\beta_k) = Q_{OL} \forall \beta_k \\ R_{v_k}(\beta_k) = R_{OL} \forall \beta_k \end{cases}$

 $\mathcal{V} = \{v_0, v_1, \dots, v_{H-1}\}$: switching sequence

$$\begin{aligned} z_{k+1} &= r_{v_k}(z_k, u_k, \beta_k, \omega_k) \\ m_{k+1} &= v_k = \eta(z_k, m_k) \\ \hat{u}_k &= \mu(z_k, m_k) \\ \mathcal{U} &= \{u_0, u_1, \dots, u_{H-1}\}: \text{ control sequence} \\ \mathcal{V} &= \{v_0, v_1, \dots, v_{H-1}\}: \text{ switching sequence} \end{aligned}$$

- H: horizon length
- λ : discount factor
- $\ell_F(z,m)$: final cost

Infinite horizon $H \rightarrow \infty$

- $\lambda < 1$
- Final cost $\ell_F(z,m) = 0$
- optimal stationary feedback $u^* = \mu(z, m)$ and $v^* = \eta(z, m)$ independent of k
- $J^*(z_0, m_0) \triangleq \min_{\mu, \eta} J_{\mu, \eta}(z_0, m_0)$

 $\mathcal{U} = \{u_0, u_1, \dots, u_{H-1}\}: \text{ control sequence} \\ \mathcal{V} = \{v_0, v_1, \dots, v_{H-1}\}: \text{ switching sequence} \end{cases}$

Infinite horizon $H \to \infty$

- $\bullet \ \lambda < 1$
- Final cost ℓ_F(z, m) = 0
- optimal stationary feedback $u^* = \mu(z, m)$ and $v^* = \eta(z, m)$ independent of k

•
$$J^*(z_0, m_0) \triangleq \min_{\mu,\eta} J_{\mu,\eta}(z_0, m_0)$$

Finite receding horizon from k to k + H - 1

- $\lambda = 1$
- optimal stationary feedback: $u_{[k,k+H-1]}^*(z,m)$ and $v_{[k,k+H-1]}^*(z,m)$
- Finite-Time implementation

 *l*_F(z_H, m_H)
- $J^*(z_k, m_k) \triangleq \min_{\mathcal{U}, \mathcal{V}} J_{\mathcal{U}, \mathcal{V}}(z_k, m_k)$

	Problem formulation		Conclusion
	00000		
Dynamic	Programming		

Bellman's Principle of Optimality

 $J_{H-i}^{*}(z, m)$ is the optimal cost function, k = H - i over an horizon *i*:

$$J_{H-i}^{*}(z,m) = \min_{(\hat{u},v) \in \mathbb{U}(z)} \left\{ \mathsf{E}_{\beta,\omega} \left[\lambda^{H-i} \ell_{v}(z,m,\hat{u},\beta) + J_{H-i+1}^{*}(f_{v}(z,\hat{u},\omega,\beta),v) \right] \right\}$$

00000	00000	00000	000	
Dynamic	Programming			

Bellman's Principle of Optimality

 $J_{H-i}^{*}(z,m)$ is the optimal cost function, k = H - i over an horizon *i*:

$$J_{H-i}^{*}(z,m) = \min_{(\hat{u},v) \in \mathbb{U}(z)} \left\{ \mathsf{E}_{\beta,\omega} \left[\lambda^{H-i} \ell_{v}(z,m,\hat{u},\beta) + J_{H-i+1}^{*}(f_{v}(z,\hat{u},\omega,\beta),v) \right] \right\}$$

The Value Iteration method

Use previous recursing to compute the optimal cost backward in time, with $V_0(z,m) \triangleq 0$

$$V_{i+1}(z,m) = \min_{(\hat{u},v)\in\mathbb{U}(z)} \left\{ \underset{\beta,\omega}{\mathsf{E}} \left[\ell_v(z,m,\hat{u},\beta) + \lambda V_i(f_v(z,\hat{u},\omega,\beta),v) \right] \right\}$$
$$(\mu_i^*(z,m),\eta_i^*(z,m)) \triangleq \arg_{(\hat{u},v)\in\mathbb{U}(z)} \left\{ \underset{\beta,\omega}{\mathsf{E}} \left[\ell_v(z,m,\hat{u},\beta) + \lambda V_i(f_v(z,\hat{u},\omega,\beta),v) \right] \right\}$$
$$\lim_{i\to\infty} V_i(z,m) = J^*(z,m)$$

I				
		00000		
Introduction	Problem formulation	Infinite horizon case	Finite horizon case	Conclusion

Offline computation

$$\begin{split} \bar{\mathbb{X}} &= \texttt{discretise}(\mathbb{X});\\ V_0(z,m) &= 0;\\ \texttt{for}(\texttt{i} = \texttt{1 to i} = \texttt{I}) \{\\ \texttt{compute } V_{i+1}(z,m) &= \mathcal{F}(V_i(z,m)) \\ & \forall (z,m) \in \bar{\mathbb{X}}; \\ \} \end{split}$$

 ${\tt I}$ is large enough to assume convergence

Provides the optimal Value Function $V_{\infty}(z, m)$, and an optimal joint policy μ^*, η^* , along the set $\bar{\mathbb{X}}$, i.e.

$$v^* = \eta^*(z, m), \quad u^* = \mu^*(z, m)$$

Online computation

At each time k: get (z_k, m_k) ; $if((z_k, m_k) \in \overline{\mathbb{X}})$ compute $v_k^* = \eta^*(z_k, m_k);$ }else{ set $v_k^* = 1;$ set mode m_{k+1} to v_k^* ; $if(v_k^* \in \mathbb{M}_1)$ compute $u_{k}^{*} = \mu^{*}(z_{k}, m_{k});$ send update u_k^* ;

Infinita k	orizon colution	Dotorminic		
00000	00000	0000	000	
		Infinite horizon case		Conclusion

Lase

Deterministic case

- No noise $(w_k = 0 \forall k > 0)$,
- No dropout $(\beta_k = 1 \forall k > 0)$

SOLUTION

 \Rightarrow only one transmitting mode ($N_1 = 1$)

An explicit formulation of the value function $V_i(z, m)$ can be computed.

Idea

Exploit a structure of $V_i(z, m)$ preserved along iterations.

$$V_i(z,m) = \min_{(\Pi,\pi)\in\mathcal{P}_i} \left\{ z^\top \Pi z + \pi_m \right\}$$

Compute \mathcal{P}_i rather than $V_i(z, m)$. (Π, π)- set of matrices and vectors.

L. C. Stationer	den an traiteachailteachai	Determinist	and the state of the	
00000	00000	00000	000	
		Infinite horizon case		Conclusion

Infinite horizon solution - Deterministic case-details

$$V_i(z,m) = \min_{(\Pi,\pi)\in\mathcal{P}_i} \left\{ z^\top \Pi z + \pi_m \right\}$$

Compute \mathcal{P}_i rather than $V_i(z, m)$.

 $\mathcal{P}_i = \{(\Pi_1, \pi_1), (\Pi_2, \pi_2), \ldots\}, \text{ card}(\mathcal{P}_i) = 2^i$ Given (Π, π) : Π is a symmetric matrix and $\pi = [\pi_1, \ldots, \pi_N] \in \mathbb{R}^N$ is a vector.

$$\mathcal{P}_{1} = \left\{ \begin{pmatrix} \mathbf{0}, \begin{bmatrix} 0, & 0, & \dots, & 0 \end{bmatrix} \end{pmatrix} \right\}$$

$$\mathcal{P}_{i+1} = \mathcal{P}_{i+1}^{(1)} \cup \mathcal{P}_{i+1}^{(2)}$$

$$\mathcal{P}_{i+1}^{(1)} \triangleq \left\{ \begin{pmatrix} Q_{CL} + \lambda \Phi_{CL}^{\top} \Pi \Phi_{CL} - \lambda \kappa_{\Pi}^{\top} \Gamma_{CL}^{\top} \Pi \Phi_{CL}, \begin{bmatrix} (\theta_{1,1} + \lambda \pi_{1}), & \dots, & (\theta_{N,1} + \lambda \pi_{1}) \end{bmatrix} \right) \right\}$$
such that $(\Pi, \pi) \in \mathcal{P}_{i}$ and $\kappa_{\Pi} = (R_{CL} + \lambda \Gamma_{CL}^{\top} \Pi \Gamma_{CL})^{-1} \lambda \Gamma_{CL}^{\top} \Pi \Phi_{CL} \right\}$

$$\mathcal{P}_{i+1}^{(2)} \triangleq \left\{ \begin{pmatrix} Q_{OL} + \lambda \Phi_{OL}^{\top} \Pi \Phi_{OL}, \begin{bmatrix} \min_{v \in \mathbb{M}_{2}} \{\theta_{1,v} + \lambda \pi_{v}\} \\ \vdots \\ \min_{v \in \mathbb{M}_{2}} \{\theta_{N,v} + \lambda \pi_{v}\} \end{bmatrix}^{\top} \right\}$$
such that $(\Pi, \pi) \in \mathcal{P}_{i} \right\}$

CNRS, GIPSA-lab, NeCS-Team

Energy-aware control and communication co-design in wireless NCSs

Simulation results (Online)

Comparison to periodic switching patterns, $\epsilon = 0.3$ (30% of messages are dropped):

- Blue: Event-based Optimal trajectory
- Red: Best-optimal periodic trajectory (2ON, 2Idle, 2OFF)
- drops: Bernoulli distribution (same in both cases)

Figure: Output of the system, x_k .

Figure: Switching decision, vk.

Einita h				
00000	00000	00000	000	
			Finite horizon case	Conclusion

Lase

Optimisation problem (Finite receding horizon):

$$\begin{cases} z_{k+1} = f_{v_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\ m_{k+1} = v_k = \eta(z_k, m_k), \quad \hat{u}_k = \mu(z_k, m_k), \end{cases}$$

Find
$$(\mathcal{U}^*, \mathcal{V}^*)$$
 such that

$$\mathcal{J}_{\mathcal{U}^*, \mathcal{V}^*}(z_k, m_k) = \min_{\mathcal{U}, \mathcal{V}} \left\{ \mathop{\mathsf{E}}_{\substack{\beta_k, \, \omega_k \\ k = 0, \, 1, \dots}} \left[z_{k+H}^\top Q_F z_{k+H} + \sum_{i=k}^{k+H-1} \ell_{v_i}(z_i, m_i, \hat{u}_i, \beta_i) \right] \right\}$$

00000	00000	00000	000			
Finite horizon case						

Optimisation problem (Finite receding horizon):

$$\begin{cases} z_{k+1} = f_{v_k}(z_k, \hat{u}_k, \beta_k, \omega_k) \\ m_{k+1} = v_k = \eta(z_k, m_k), \quad \hat{u}_k = \mu(z_k, m_k), \end{cases}$$

Find
$$(\mathcal{U}^*, \mathcal{V}^*)$$
 such that

$$J_{\mathcal{U}^*, \mathcal{V}^*}(z_k, m_k) = \min_{\mathcal{U}, \mathcal{V}} \left\{ \underset{\substack{\beta_k, \, \omega_k \\ k = 0, \, 1, \dots}}{\mathsf{E}} \left[z_{k+H}^\top Q_F z_{k+H} + \sum_{i=k}^{k+H-1} \ell_{v_i}(z_i, m_i, \hat{u}_i, \beta_i) \right] \right\}$$

Solution of the optimisation problem are the stationary functions:

 $\forall i = 1 \dots H$.

$$\mathcal{U}^*(z,m) = \{u_k^*, u_{k+1}^*, \dots, u_{k+H-1}^*\}, \quad u_{k+i-1}^* = \mu_i^*(z,m),$$

$$\mathcal{V}^*(z,m) = \{v_k^*, v_{k+1}^*, \dots, v_{k+H-1}^*\}, \quad v_{k+i-1}^* = \eta_i^*(z,m),$$

Only the first function is applied: $u_k^* = \mu_1^*(z_k, m_k)$, $v_k^* = \eta_1^*(z_k, m_k)$

Input to	Input to State practical stability							
00000	00000	00000	000					
		Infinite horizon case	Finite horizon case	Conclusion				

Input-to-State practical stability

Assumptions

- Deterministic case, and no drops
- There exists $\kappa \in \mathbb{R}^{n_u imes (n_x + n_u)}$, and $Q_F > 0$ such that:

$$\begin{split} (\Phi_{CL} - \Gamma_{CL}\kappa)^\top Q_F (\Phi_{CL} - \Gamma_{CL}\kappa) - Q_F + Q_{CL} + \kappa^\top R_{CL}\kappa &\leq 0\\ \text{and} \quad \max\{|\operatorname{eigs}(\Phi_{CL} - \Gamma_{CL}\kappa)|\} &\leq 1. \end{split}$$

مد جریم ا		يتدالها محمال		
00000	00000	00000	000	
		Infinite horizon case	Finite horizon case	Conclusion

Input-to-State practical stability

Assumptions

- Deterministic case, and no drops
- There exists $\kappa \in \mathbb{R}^{n_u \times (n_x + n_u)}$, and $Q_F > 0$ such that:

$$\begin{split} (\Phi_{\textit{CL}} - \Gamma_{\textit{CL}}\kappa)^\top Q_{\textit{F}} (\Phi_{\textit{CL}} - \Gamma_{\textit{CL}}\kappa) - Q_{\textit{F}} + Q_{\textit{CL}} + \kappa^\top R_{\textit{CL}}\kappa \leq 0 \\ & \text{and} \quad \max\{|\operatorname{eigs}(\Phi_{\textit{CL}} - \Gamma_{\textit{CL}}\kappa)|\} \leq 1. \end{split}$$

Theorem

The closed-loop system admits a GISpS-Lyapunov function, and then it is GISpS, *i.e.* there exist a \mathcal{KL} -function γ , and a constant $c \ge 0$, such that, for all $(z_0, m_0) \in \mathbb{X}$:

$$\|z_k\| \leq \gamma(\|z_0\|, k) + c, \quad k \in \mathbb{Z}_{\geq 0}$$

Proof. The GISpS-Lyapunov function is:

$$V_i(z,m) = \min_{(\Pi,\pi)\in\mathcal{P}_i} \left\{ z^\top \Pi z + \pi_m \right\}$$

		Infinite horizon case		Conclusion
00000	00000	00000	000	
Conclusion				

Summary:

- Formulation of control problem accounting for several radio modes
- Solutions via Dynamic Programming
- Convergence of the Value Iteration method in the infinite/finite case
- Stability assessment in the deterministic finite case

More to do:

- Stability in the stochastic finite case
- Relax optimality to lighten the computation burden
- Stability in the infinite case
- Extension to multi-node setup