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Basic Ideas of Mean Field Games
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Part 1 – CDMA Power Control

Base Station & Individual Agents
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Part 1 – CDMA Power Control

Lognormal channel attenuation: 1 ≤ i ≤ N

ith channel: dxi = −a(xi + b)dt+ σdwi, 1 ≤ i ≤ N

Transmitted power = channel attenuation × power
= exi(t)pi(t)
(Charalambous, Menemenlis; 1999)

Signal to interference ratio (Agent i) at the base station

= exipi/
[
(β/N)

∑N
j 6=i e

xjpj + η
]

How to optimize all the individual SIR’s?

Self defeating for everyone to increase their power

Humans display the “Cocktail Party Effect”: Tune hearing to
frequency of friend’s voice (E. Colin Cherry)
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Part 1 – CDMA Power Control

Can maximize
∑N

i=1 SIRi with centralized control.
(HCM, 2004)

Since centralized control is not feasible for complex systems,
how can such systems be optimized using decentralized
control?

Idea: Use large population properties of the system together
with basic notions of game theory.

Massive game theoretic control systems: Large ensembles of
partially regulated competing agents

Fundamental issue: The relation between the actions of each
individual agent and the resulting mass behavior
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Part 2 – Basic LQG Game Problem

Individual Agent’s Dynamics:

dxi = (aixi + bui)dt+ σidwi, 1 ≤ i ≤ N.

(scalar case only for simplicity of notation)

xi: state of the ith agent

ui: control

wi: disturbance (standard Wiener process)

N : population size
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Part 2 – Basic LQG Game Problem

Individual Agent’s Cost:

Ji(ui, ν) , E

∫ ∞
0

e−ρt[(xi − ν)2 + ru2i ]dt

Basic case: ν , γ.( 1
N

∑N
k 6=i xk + η)

Main features:

Agents are coupled via their costs

Tracked process ν:

(i) stochastic
(ii) depends on other agents’ control laws
(iii) not feasible for xi to track all xk trajectories for large N
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Part 2 – Large Popn. Models with Game Theory Features

Economic models: Cournot-Nash equilibria (Lambson)

Advertising competition: game models (Erickson)

Wireless network res. alloc.: (Alpcan et al., Altman, HCM)

Admission control in communication networks: (Ma, MC)

Public health: voluntary vaccination games (Bauch & Earn)

Biology: stochastic PDE swarming models (Bertozzi et al.)

Sociology: urban economics (Brock and Durlauf et al.)

Renewable Energy: Charging control of of PEVs (Ma et al.)
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Part 2 – Preliminary Optimal LQG Tracking

LQG Tracking: Take x∗ (bounded continuous) for scalar model:

dxi = aixidt+ buidt+ σidwi

Ji(ui, x
∗) = E

∫ ∞
0

e−ρt[(xi − x∗)2 + ru2i ]dt

Riccati Equation: ρΠi = 2aiΠi −
b2

r
Π2
i + 1, Πi > 0

Set β1 = −ai + b2

r Πi, β2 = −ai + b2

r Πi + ρ, and assume β1 > 0

Mass Offset Control: ρsi =
dsi
dt

+ aisi −
b2

r
Πisi − x∗.

Optimal Tracking Control: ui = − b
r

(Πixi + si)

Boundedness condition on x∗ implies existence of unique solution si.
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Part 2 – Key Intuition

When the tracked signal is replaced by the deterministic mean
state of the mass of agents:

Agent’s feedback = feedback of agent’s local
stochastic state

+

feedback of
deterministic mass offset

Think Globally, Act Locally
(Geddes, Alinsky, Rudie-Wonham)
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Part 2 – LQG-NCE Equation Scheme

The Fundamental NCE Equation System

Continuum of Systems: a ∈ A; common b for simplicity

ρsa =
dsa
dt

+ asa −
b2

r
Πasa − x∗

dxa
dt

= (a− b2

r
Πa)xa −

b2

r
sa,

x(t) =

∫
A
xa(t)dF (a),

x∗(t) = γ(x(t) + η) t ≥ 0

Riccati Equation : ρΠa = 2aΠa −
b2

r
Π2
a + 1, Πa > 0

Individual control action ua = − b
r (Πaxa + sa) is optimal w.r.t

tracked x∗.

Does there exist a solution (xa, sa, x
∗; a ∈ A)?

Yes: Fixed Point Theorem
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Part 2 – NCE Feedback Control

Proposed MF Solution to the Large Population LQG Game Problem
The Finite System of N Agents with Dynamics:

dxi = aixidt+ buidt+ σidwi, 1 ≤ i ≤ N, t ≥ 0

Let u−i , (u1, · · · , ui−1, ui+1, · · · , uN ); then the individual cost

Ji(ui, u−i) , E

∫ ∞
0

e−ρt{[xi − γ(
1

N

N∑
k 6=i

xk + η)]2 + ru2i }dt

Algorithm: For ith agent with parameter (ai, b) compute:
• x∗ using NCE Equation System

•


ρΠi = 2aiΠi − b2

r Π2
i + 1

ρsi = dsi
dt + aisi − b2

r Πisi − x∗
ui = − b

r (Πixi + si)
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Part 2 – Saddle Point Nash Equilibrium

Agent y is a maximizer

Agent x is a minimizer
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Part 2 – Nash Equilibrium

The Information Pattern:

Fi , σ(xi(τ); τ ≤ t) FN , σ(xj(τ); τ ≤ t, 1 ≤ j ≤ N)

Fi adapted control: Uloc,i FN adapted control: U

The Equilibria:

The set of controls U0 = {u0i ; u0i adapted to Uloc,i, 1 ≤ i ≤ N}
generates a Nash Equilibrium w.r.t. the costs {Ji; 1 ≤ i ≤ N} if,
for each i,

Ji(u
0
i , u

0
−i) = inf

ui∈U
Ji(ui, u

0
−i)
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Part 2 – ε-Nash Equilibrium

ε-Nash Equilibria:

Given ε > 0, the set of controls U0 = {u0i ; 1 ≤ i ≤ N} generates
an ε-Nash Equilibrium w.r.t. the costs {Ji; 1 ≤ i ≤ N} if,
for each i,

Ji(u
0
i , u

0
−i)− ε ≤ inf

ui∈U
Ji(ui, u

0
−i) ≤ Ji(u0i , u0−i)

14 / 47



Part 2 – NCE Control: First Main Result

Theorem 1: (MH, PEC, RPM, 2003)

Subject to technical conditions, the NCE Equations have a unique
solution for which the NCE Control Algorithm generates a set of controls

UNnce = {u0i ; 1 ≤ i ≤ N}, 1 ≤ N <∞, where

u0i = − b
r

(Πixi + si)

which are s.t.

(i) All agent systems S(Ai), 1 ≤ i ≤ N, are second order stable.

(ii) {UNnce; 1 ≤ N <∞} yields an ε-Nash equilibrium for all ε,
i.e. ∀ε > 0 ∃N(ε) s.t. ∀N ≥ N(ε)

Ji(u
0
i , u

0
−i)− ε ≤ inf

ui∈U
Ji(ui, u

0
−i) ≤ Ji(u0i , u0−i),

where ui ∈ U is adapted to FN .
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Network Based Auctions and Applications of MFG
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Part 3 – Network Based Auction: Overview

Game theoretic methods for market pricing and resource
allocation on distributed networks

Two-level network structure

Lower level: quantized progressive second price auctions with
fixed local quantities

Higher level: cooperative consensus allocation of local
quantities

Convergence and efficiency analysis of network based auctions

Applications of Mean Field Game to auctions and networks
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Part 3 – ISO / RTO
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Part 3 – Hydro-Québec

60 hydroelectric
generating stations

36,971 MW installed
capacity

175 TW storage capacity

579 dams, 97 control
structures

www.hydroforthefuture.com
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Part 3 – Worldwide Examples of Extreme Price Volatility

Illinois [1] East US [2] Ontario [1]

The Netherlands [1] New Zealand [3] West Texas [4]

[1] Cho & Meyn, 2010 [2] http://www.ferc.gov [3] http://www.treasury.govt.nz [4] Giberson, 2008
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Part 3 – Quantized PSP Auctions (Jia & Caines 2011)

A non-cooperative game;
N buyer agents bid for a divisible resource C;
Given a finite price set B0

p , each buyer agent BAi makes a
quantized bid: si = (pi, qi) = (price, quantity), pi ∈ B0

p ;
A bid profile is s = (s1, · · · , sN );
θi : R+ → R+, is the valuation function, and θ

′
i is the

(decreasing) demand function;
A market price function (MPF) for BAi is

Pi(z, s−i) = inf

y ≥ 0 : C −
∑

pk>y,k 6=i
qk ≥ z

 .

Objective: Design a market mechanism (i.e., assignment of
allocations) and find a bidding rule for each agent which
individually maximizes its utility function and which leads to a
Nash equilibria and which is socially efficient (i.e. max sum
individual utilities).
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Part 3 – PSP Mechanism (celebrated VCG mechanism)

The PSP allocation rule and cost function are defined as:

ai(s) = ai((pi, qi), s−i) = min{qi,
qi∑

k:pk=pi
qk
Qi(pi, s−i)},

(reasonable: MPF constrained allocation)

ci(s) =
∑
j 6=i

pj [aj((0, 0), s−i)− aj(si, s−i)] ,

(reasonable: corresponding to opportunity costs)

where Qi(y, s−i) is the available quantity at price y given s−i.

Then BAi’s utility function ui(s) = θi(ai(s))− ci(s).
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Part 3 – Best Reply

Given s−i and elastic θ
′
i, utility maximum implies the best (bid)

reply,

vi =
[
sup

{
q ≥ 0 : θ

′
i(q) > Pi(q, s−i)

}]+
, wi = θ

′
i(vi) ∈ R+.
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Part 3 – Quantized Strategies

A generic buyer, e.g., Agent 2:

Applies the same utility
function and allocation rule
as PSP.

Makes the quantized price
and quantity bid:
pki ∈ B0

p , q
k
i = θ

′−1
i (pki ), 1 ≤

i ≤ N, k ≥ 0, where there is
no bid fee.

Bids are made synchronously.
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Part 3 – Quantized PSP State-Space Dynamical System

P k+1
i (q, sk−i) = arg inf

p≥0

C ≥ q +
∑

pkj>p,j 6=i

qkj

 ,

vk+1
i = sup

{
q ≥ 0 : θ′i(q) > P k+1

i (q, sk−i)
}
,

(best quantity reply given sk−i)

(pk+1
i , qk+1

i ) =
(
T
(
vk+1
i , sk, B0

p

)
, Di(p

k+1
i )

)
, ∀1 ≤ i ≤ N.

(quantized strategy)

Note:

pki ∈ B0
p , Di = θ

′−1
i , and T is a quantization operation of vi.

(pki , q
k
i ) is γ-best reply and truth-telling: γ depending on B0

p .
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Part 3 – Convergence of Q-PSP

Theorem 2: (PJ&PEC 2010) Subject to some mild assumptions,
the dynamical Q-PSP system converges in at most k∗ iterations to
the unique price p∗, which satisfies

p∗ = min{p ∈ B0
p :

∑
1≤i≤N

Di(p) ≤ C}

where k∗ satisfies

k∗ = |{p ∈ B0
p :

∑
1≤i≤N

Di(p) > C}|+ 1.

Proof:

min{pki } is monotonically decreasing.

min{pki } = max{pki } in the limit.∑
iDi(·) is called the (inverse) aggregate demand function.
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Part 3 – Properties of the Limit

The limit bidding profile s∗ is a γ(B0
p)-NE.

The limit allocation is efficient (i.e., max
∑

i θi) up to√
γ(B0

p) under mild assumptions on demand functions.

k∗ is independent of the number of buyer agents.

p∗ and k∗ are independent of the initial bidding profile.
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Part 3 – Approximation of Competitive Equilibrium

pc is called market clearing price and it can be shown to
correspond to an efficient allocation under mild assumptions on
demand functions. pc > max{p ∈ B0

p , p < p∗}.
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Part 3 – Two-level Network-Based Auction (NBA)

A supplier network with 

an arbitrary topology: 

nodes as auctions

A local auction network 

with a clique topology: 

nodes as agents

M Vertices on the higher level
network with an arbitrary topology
G = (V,E) are suppliers.

Vertices on the lower level networks
with a clique topology represent
buyers.

Each lower level network associated
with one supplier is a local Q-PSP
auction Gh.

C =
∑M

h=1Ch is fixed and all
networks are connected.
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Part 3 – Local Limit Prices Vs. Global Limit Price
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Part 3 – Consensus Analysis of Local Quantities

Unbalanced fixed local quantities prevent a globally efficient
allocation being achieved.

Local quantities are adjusted cooperatively based on their
neighbors’ information (quantities and quantized limit prices):

Quantity re-allocation algorithm

Ch(k + 1)− Ch(k) =
∑
j∈Nh

Φhj(Cj(k), Ch(k), p∗j (k), p∗h(k)),

1 ≤ h ≤M.

(Superscript ∗ denotes quantization in the following context.)

The time scale of the higher level network is significantly
larger than that in local auctions.
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Part 3 – Passivity Condition

Lemma: For any local auction Gh, the corresponding limit price
function p∗h(C), for a given quantity C, satisfies the passivity
property:

(p∗h(C1)− p∗h(C2))(C1 − C2) ≤ 0, ∀ 1 ≤ h ≤M.

This is a consequence of the decreasing property of the demand
functions and the nature of limit prices of Q-PSP auctions.
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Part 3 – Convergence of Two-level NBA

Theorem 3: (PJ&PEC 2011) Consider a (two-level) network-based
Q-PSP auction associated with a connected higher level network
topology and the quantity re-allocation algorithm:

Φhj(Cj , Ch) = −α · (p∗j (Cj)− p∗h(Ch)), ∀ 1 ≤ h ≤M.

where quantized p∗h(·) ∈ B0
p for any 1 ≤ h ≤M . Then there exist

a sufficiently small α > 0 and limit quantities {C∞h , 1 ≤ h ≤M}
with

∑
hC
∞
h = C, such that, for any initial condition:

{C(k), p∗(k)} converges to [C∞h , p
∗
g]1≤h≤M ,

where p∗h(C∞h ) = p∗g for all h.
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Part 3 – Convergence of Two-level NBA: Proof

Proof:

The weighted consensus dynamics is formulated such that:

C(k + 1) = C(k) + αLp∗(C(k))

⇒ p(k + 1) = p(k)− αβ(k)Lp∗(k), ∀ k ≥ 0,

where β(k) > 0 depends upon the aggregate local demand
functions.
(It is noted p is continuously valued and calculated from C
and β, and p∗ is the quantized local limit price vector.)

The consensus to a unique price p∗g is achieved since

all the Perron matrices generated in the algorithm are SIA
(stochastic, indecomposable and aperiodic), and

all positive entries of the Perron matrices are
lower-bounded

Note: p∗g is the quantized market clearing price for the entire
network.
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Part 3 – Extension with Continuous Pricing

Theorem 4: (PJ&PEC 2011) Consider a (two-level) network-based
Q-PSP auction. Assume the higher level network is connected, the
local prices are permitted to take continuous real values, and

Φhj(Cj , Ch) = −α · (pj(Cj)− ph(Ch)), ∀ 1 ≤ h ≤M,

then there exist a unique set {C∞h , 1 ≤ h ≤M} with
∑

hC
∞
h = C

and a unique price pg, s. t., for any initial condition,

{C(k), p(k)} converges geometrically to [C∞h , pg]1≤h≤M .

Note: pg is the Global Market Clearing Price (GMCP) (parallel to
pc in a single auction).
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Part 3 – Effect of Local Quantity Consensus
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Part 3 – Numerical Examples

The convergence
of quantized
NBAs with
different network
topology.
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Numerical Examples Cont.
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Part 3 – Static MF Strategies for Quantized Auctions

If s−i is not completely known to Buyer Agent BAi, the
quantized strategy is not feasible directly.

Mean Field Framework:

Each buyer agent is assumed to have a statistical distribution
on the demand functions of the population.

Apply quantized strategies for an infinite population at each
time instant.

The price distribution converges to a delta unit mass function
on p∗, as each buyer agent can solve for it instantaneously
from the expected aggregate demand function and the total
capacity.

Each buyer agent in the finite population case uses the infinite
population best reply w.r.t p∗.

39 / 47



Part 3 – MF application on NBA: Motivations

Prior info + MFG: convergence to the limit for very large
population, independent of network topologies.

If network connectivity temporarily breaks down the consensus
theory cannot be used and MFG is an excellent substitute.
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Part 3 – Cont. Time NBA with MF Strategy

Assumption 1: In the lower level auctions limit prices are
achieved instantaneously w.r.t. the higher level dynamics.

A continuous time (large population) stochastic NBA problem
is formulated as a dynamic game with:

The stochastic dynamics for each supplier SAh:

dCh(t) = uh(t)dt+ σdwh(t), 1 ≤ h ≤M, t ≥ 0.

Ch: state of supplier SAh, uh: control input, {wh}:
independent Wiener processes.

Since dCh(t) = −dph(t)/βh(t) (from the aggregate local
demand functions), for simplicity of analysis:

dph(t) = −βh(t)(uh(t)dt+ σdwh(t)), 1 ≤ h ≤M, t ≥ 0.
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Part 3 – Empirical Initial State Distribution

Assumption 2: The initial state distribution function F satisfies∫
A dF (ξ) = 1 where A is a compact set containing all initial local

limit prices. Denote the empirical distribution function for M
suppliers

F (M)(x) :=
1

M

M∑
h=1

1ph(0)≤x.

It is assumed that {F (M),M ≥ 1} converges to F weakly: for any
bounded and continuous function φ defined on R,

lim
M→∞

∫
φ(x)dF (M)(x) =

∫
φ(x)dF (x),
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Part 3 – Cost, Mass Behavior and MF Strategy

Individual (supplier) long run average cost is:

Jh = lim
T→∞

inf
1

T

∫ T

0
([ph(Ch)−

∑M
k 6=h ph(Ch)

M − 1
]2 + ru2h)dt, r > 0.

Given a distribution F of initial states , the MF equation
system for infinite population is

dsξ(t)/dt = sξ(t)/
√
r + p∗(t),

dp̄ξ(t)/dt = βξ · (p̄ξ(t)/
√
r + sξ(t)/r),

p∗(t) =

∫
p̄ξ(t)dF.

MF strategy is uξ(t) = βξ · (pξ(t)/
√
r + sξ(t)/r).
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Part 3 – MF Strategy and Closed-loop MF System

MF equation system has a unique solution p∗(t) in infinite
population, s(p∗(t)) is then available.

limt→∞ p
∗(t) = pg (GMCP), i.e., limt→∞

∫
p̄ξ(t)dF = pg.

Then each supplier SAh applies the infinite population MF
strategy in the finite population case:

uoh(t) = βh · (poh(t)/
√
r + sh(p∗(t))/r).

The resulting closed-loop dynamics is:

dpoh(t) = βh · (poh(t)/
√
r + sh(p∗(t))/r)dt+ σdwh(t).
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Part 3 – MF Consensus

Theorem 5: (PJ&PEC 2012) Subject to the instantaneous
convergence assumption on the lower level dynamics and the
empirical initial state distribution assumption, if all suppliers in the
higher level network apply MF strategies:

uoh(t) = βh · (poh(t)/
√
r + sh(p∗(t))/r),

then a mean consensus is asymptotically reached almost surely and

lim
M→∞

1

M

M∑
h=1

poh(t) = p∗(t), a.s. dF ,

where limt→∞ |p̄oh(t)− pg| = 0 for all 1 ≤ h ≤M , which
corresponds to an ε-Nash equilibrium.

ε is the difference between the initial state average of the finite
population and the expected initial state of an infinite population.
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Part 3 – Challenges for MFG Limits of Network Consensus
Algorithms

Prior info + MFG: convergence to the limit for very large
population, independent of network topologies.

If network connectivity temporarily breaks down the consensus
theory cannot be used and MFG is an excellent substitute.

If the prior data on ”current initial conditions” gets updated
(by observation or adaptation) then we can recompute the
MFG solution. But an ”optimal” finite time theory is still
needed unless we go to full stochastic adaptive control theory
solution. (Kizilake and PEC).

The controlled (i.e not in response to network breakdown) mix
of MFG and Consensus (optimal) is still to be worked out.

The higher level substitution of an MFG algorithm does not
need to be an competitive NCE algorithm but can be a
cooperative (SCE) , with very similar results.
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Summary

MFG is a theory for solving a class of decentralized
decision-making problems with many competing agents.
Auctions are an example of these problems.

Quantized PSP auction is developed for fast convergence and
realistic modelling.

Two-level NBA is designed for Q-PSP with incomplete
bidding information. A consensus on the local limit prices is
achieved by the NBA algorithm, which corresponds to a
quantized efficient quantity allocation.

Fragile networks and expensive communication lead to MFG
at the upper level which yields a mean consensus and an
ε-NE, which corresponds to a near-efficient allocation
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