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Italian Institute of Technology

* Created in 2003, headquarters in Genova
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e Over 70 researchers (from 25 PhD students to 5 Full Professors).

* Multidisciplinary approach to design and control, such as the
development of SEA-based CoMan and hydraulic HyQ robots.




Over 70 researchers (from 25 PhD students to 5 Full Professors).

Multidisciplinary approach to design and control, such as the
development of SEA-based CoMan and hydraulic HyQ robots.

ADVR resources include a 7-DOFs Barrett WAM manipulator, a
Barrett Hand, a 7-DOFs KUKA Lightweight Arm and a 6-cameras
VICON motion tracking system.

EU research projects: RobotCub, Viactors, Octopus, Hands.DVI,
Amarsi, Saphari (2012), Stiff-Flop (2012) and Pandora (2012).

Learning and Interaction Group at ADVR created in 2009.
(4 postdocs (2012), 5 PhD students)
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Compliant control for safe HRI
M(q)§+C(q,9)4+9(q) =Tc+Tr+70

Grawty compensation
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Task execution
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Flexible representation of skills through a
superposition of basis flow field

scalar weight linear subsystem
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Some examples:
* Gaussian Mixture Regression (GMR)
[Calinon et al, IEEE RAM 17(2), 2010]
* Stable Estimator of Dynamical Systems (SEDS)
[Khansari and Billard, IROS’10]
* Dynamic Movement Primitives (DMP)
[ljspeert et al, IROS’01][Hoffmann et al, ICRA’09]

* Correlated Dynamic Movement Primitives
[Calinon, Sardellitti and Caldwell, IROS’10]

* Takagi-Sugeno (TS) fuzzy model

[Takagi and Sugeno, IEEE Trans. SMC 15(1), 1985]




Core idea: K
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Original formulation: K
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TS =— —OS
[A.J. Ijspeert, J. Nakanishi and S. Schaal, IR0S’2001]

Variant of DMP based on mechanical springs analogy:
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[H. Hoffmann, P. Pastor, D.H. Park and S. Schaal, ICRA’2009]
[S. Calinon, F. D’halluin, D.G. Caldwell and A. Billard, Humanoids’2009]



Extension




Gaussian Mixture Regression (GMR

P(£°1ET)
=t =i+ it
P (&%, £9) encoded in GMM, P (£°|€7) retrieved through GMR
[S. Calinon, F. Guenter and A. Billard, IEEE Trans. on SMC-B 37(2), 2007]
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Extension of Dy

i YOO XK

& = sz hi(t) [K?(M?" —x) — K"fi?]

[Sylvain Calinon, Irene Sardellitti and Darwin Caldwell, IR0S’2010]
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[Sylvain Calinon, Irene Sardellitti and Darwin Caldwell, IR0S’2010]



Learning adaptive stiffness by extracting
variability and correlation information

, Invariant demonstrations
Tasks Multiple 3
demonstrations High gains to track the desired position

[Sylvain Calinon, Irene Sardellitti and Darwin Caldwell, IR0S’2010]



aptive stiffness by extracting

Learning ad
variability and correlation information

[Sylvain Calinon, Irene Sardellitti and Darwin Caldwell, IR0S’2010]



[Sylvain Calinon, Irene Sardellitti and Darwin Caldwell, IR0S’2010]



Task-param

N g

Some examples:

* Based on Parametric Hidden Markov Model (PHMM):

[Wilson and Bobick, IEEE Trans. on Pattern Analysis and Machine Intelligence 21(9), 1999]
[Krueger, Herzog, Baby, Ude and Kragic, IEEE Robotics & Automation Magazine 17(2), 2010]

e Based on Gaussian Mixture Regression (GMR):

[Muehlig, Gienger, Hellbach, Steil and Goerick, ICRA’2009]
[Cederborg, Ming, Baranes and Oudeyer, IROS’2010]

* Based on Dynamic Movement Primitives (DMP):
[Kober, Mohler and Peters, IROS’2008]
[Ude, Gams, Asfour and Morimoto, IEEE Trans. on Robotics 26(5), 2010]
[Matsubara, Hyon and Morimoto, Neural Networks 24(5), 2011]
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Stiffness ellipsoids at different time steps in the movement
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Stochastic reproduction trials




Extension to collaborative m

anipulation skills

Each assembly task is characterized by different sequences, positions and
orientations of components, with haptic and movement patterns specific to
the item to assemble.
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[Collaboration between IIT and IRI, UPC, Barcelona, Spain]
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[Collaboration between IIT and IRI, UPC, Barcelona, Spain]
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Pancake with 4 markers
(more robust to occlusions)

[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IR0S’2010]



Learning from
trial-and-error rollouts

[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IR0S’2010]
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[Petar Kormushev, Sylvain Calinon and Darwin Caldwell, IR0S’2010]



Mi-based Reinforcem

ent Learning

Episodic reward of policy ®;. :
arccos(VoV'')

r(@r) = oy + agexp(— X —x|) + az X3




EM-based Reinforcem

ent Learning

Episodic reward of policy O :
arccos(VoV'')

s

EM-based RL algorithm:
PoWER (Policy learning by Weighting Exploration with the Returns)

r(@r) = ay

+ ag exp(— X —x|) + a3 X3

For an ordered set of policies {©®} 71—, , with (@) >7(03)>. ..,
the update rule at each iteration n is defined as:

K
> (@) | O — 00|
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[J. Kober and J. Peters, IEEE RAM 17(2), 2010]



daptive reseolution in the peolicy

Dynamical systems encoding with fixed resolution:

n=100, K=8
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Dynamical systems encoding with adaptive resolution:
n=2,K=1 n=15, K=2 n=>50, K =4 n=100, K =8
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Passive
Compliance

COMAN humanoid
robot developed

at ADVR-IIT
Fixed CoM height
- >

[P. Kormushev, B. Ugurlu, S. Calinon, N.G. Tsagarakis and D.G. Caldwell, IR0S’2011]



resolution in the policy
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[P. Kormushev, B. Ugurlu, S. Calinon, N.G. Tsagarakis and D.G. Caldwell, IR0S’2011]



dimensional rewards in EM

PoWER: [Kober and Peters, RAM 17(2), 2010]
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In some tasks, the desired outcome (maximum
reward) is known, which can be exploited in the
RL process:

3D parameter space

[P. Kormushev, S. Calinon, R. Saegusa and G. Metta, Humanoids’2010]
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[P. Kormushev, S. Calinon, R. Saegusa and G. Metta, Humanoids’2010]




Consideration of tim
in the weighting m

e and space constraints
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scalar weight linear subsystem
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me and space constraints
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Task-dependent recovery strategies after perturbation:
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[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IR0S’2011]

Correct model



Gaussian Mixture Model (GMM)
o™ = N(z: pui, E5)

(2

Time-based weighting mechanism “\ -
<
O};IME — N(ta MZ? ZZ') o & / 200
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[Sylvain Calinon, Antonio Plstlllo and Darw1n Caldwell IROS 2®11]
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[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IR0S’2011]
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Spatial constraints <€—» Temporal constraints

DMP
GMM HMM (decay term)
*
HSMM

[Sylvain Calinon, Antonio Pistillo and Darwin Caldwell, IR0S’2011]
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[De Tommaso, Calinon and Caldwell, Intl Journal of Social Robotics (in press)]



Conclusion

The development of new actuators and control architectures is
bringing a new focus on passive and active compliance, energy
optimization, human-robot collaboration and safety.

Existing machine learning tools need to be re-thought and
adapted to these new developments, with systems that can:

* simultaneously learn motion and impedance behaviors.

* exploit the statistical information contained in multiple
demonstrations of the same task.

* be modulated with respect to task input parameters.

* be used in imitation and reinforcement learning settings.

* reproduce natural movements and reactive behaviors in a
smooth and continuous way.

* be analyzed and visualized during the training process. 7
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