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Definition of Skill Learning

Definition of “ Skill”

= A special ability to something well, especially as gained by learning and practice
< from dictionary of english language and culture, third edition >

= A learned capacity to carry out pre-determined results often with the minimum outlay

of time, energy, or both
< from wikipedia>

= |n Robotics

- a sensory interactive robot control
< J. S. Albus, “Mechanics of planning and problem solving the brain,” Math. Bioscience, 1979>

- appropriate goal-directed sequences of motor primitives

< W. Erlhagen et. al., “Goal-directed imitation for robots: a bio-inspired approach to action understanding
and skill learning,” Robotics and Autonomous Systems, vol. 54, no. 5, pp.353-360, 2006>

Skill Learning

= Representing emergent behaviors (i.e. motor primitives)

= Representing sequences of the behaviors
= Refining the behaviors or their sequences by repeated practices and exercises
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Skill Learning by Imitation

Imitation Learning

= Learning behaviors that are stimulated by the perception of similar behaviors

by another animal or person
<Albert Bandura; psychologist and philosopher (of action), 1925~>

= Atype of learning in which a naive student copies an expert

- It can acquire novel skills by user-friendly interaction easily and quickly
instead of programming new skills through machine commands.

- It can promote to understand events of various types in the world easily.
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Four Stages of Skill Learning by Imitation
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“Big Five”: five central questions in imitation

. Whom to Imitate II. When to Imitate 1. What to Imitate

ho'i her? The imitator has to decide States, Actions,
Who is good teacher? on a suitable time to imitate. Goals, Sequences?

V. How to map observed V. How to evaluate
to Imitated behavior the success of imitation

reproduction in the
same situation and
the same embodiment

- Success or failure by
Similarity an external estimator

| |
. ’

reproduction in the
different situation different embodiment

Jt A
©
K. Dautenhahn and C. L. Nehaniv, “The Agent-Based Perspective on Imitation,” Imitation in animals and artifacts, p'p.1-40, 2002, MIT Press



Conceptual Sketch
on Skill Learning by Imitation
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S. Schaal, “Is imitation learning the route to humanoid robots,” Trends in cognitive sciences, vol. 3, no. 6, pp.233-242, 1999.
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“Big Five” Problems Attached

to Schaal’s Conceptual Sketch
"v 3. REPRODUCTION

Motor Output 4. IMPROVEMENT

Recurrent Connections
(efference copy)

(Tool, Demonstrator,
Object etc.)

PRIMITIVE(BASIS) posture, force,

PRIMITIVE(BASIS) 1*° -y
;‘ SKILL gﬂ ) 3D infor.mation III. What to imitate
. \ of objects
: | PRIMITIVE(BASIS) ";ae'r‘r']%‘:":tt;‘lt'oﬁy St
: % SKILL #2 Information VISUAL &
DL AUDITORY &
>’ TACTILE &
" (R , N PROPRIOCEPTIVE
. Object Recognition INPUTS

SKILL #(n-1) and movement
LEARNING of demonstrator
SYSTEM PRIMITIVE(BASIS)
SKILL #n 1. DEMONSTRATION

I. Whom to imitate
V. How to evaluate 2. IMITATION

II. When to imitate

l J

Motor Perceptual
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State-of-the-Art in the Field
Ill Learning by Imitation

ADProa

a A.

LEARNING
SYSTEM

to imitate ,.s¥

v
PRIMITIVE(BASIS) *° :

SKILL #1

APDProa s
ADDIrosa s
DIrO38 s

PRIMITIVE(BASIS)
SKILL #(n-1)

PRIMITIVE(BASIS)
SKILL #n

V. How to evaluate

l

3. REPRODUCTION

Motor Output

Recurrent Connections

(efference copy)

3D information
of objects

manipulated by

demonstrator

posture, force,
and movement
of demonstrator

2. IMITATION

J1

4. IMPROVEMENT

III. What to imitate

Spatiotemporal
Information

Object Recognition
(Tool,
Demonstrator,
Object etc.)

VISUAL &
AUDITORY &
TACTILE &
PROPRIOCEPTIVE
INPUTS

|

1. DEMONSTRATION

I. Whom to imitate

II. When to imitate

J

Motor

Symbolic Approaches : S. Ekvall (KTH), M. Pardowitz (Kalsruhe Univ.), J. Saunders (Hertfordshire Univ.)
Dynamic Approaches: A. ljspeert (EPFL), S. Schaal (USC), C. G. Atkeson (GIT)

Stochastic Approaches: A. Billard (EPFL), D. H. Lee (TUM), S. Calinon (lIT)

Perceptual

Neural Approaches: E. Oztop (ATR), J. Ecety (Chicago Univ.), U. Demiris (South Kenshington)
IncoAL  |ntelligence and Control for Robots Laboratory



State-of-the-Art:
Dynamic Approaches [1/2]

o Skill Learning Based on Dynamic Approach by Imitation

University of Southern California Max Planck Institute

[00:02:26] [00:00:38]

32 dmp_motion_generation

[00:01:13] [00:02:05] [00:00:25]
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State-of-the-Art:
Dynamic Approaches [2/2]

o Skill Learning Based on Dynamic Approach by Imitation

Willow

g —

Willow Garage Italian Institute of Technology

<% poolshark

Ironing task
Kinesthetic demonstrations of the skill

by setting the robot in a gravity
compensation mode.

[00:01:51] [00:02:28]
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State-of-the-Art:
Stochastic Approaches [1/2]

o Skill Learning Based on Stochastic Approach by Imitation

P TUTI

ECOLE POLYTECHNIQUE ; D
FEDERALE DE LAUSANNE Technische Universitat Minchen

Ecole polytechnique fédérale
de Lausanne

- Based on GMM/GMR - - Based on HMM -

Mimetic Communication Model with
Compliant Physical Contact in Human-
Humanoid Interaction

D. Lee (TU Munich), Ch. Ott (DLR),

Demonstrations Y. Nakamura (Univ. Tokyo)

Multimedia Extension #1

International Journal of Robotics Research

[00:02:29] [00:02:40]
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State-of-the-Art:
Stochastic Approaches [2/2]

o Skill Learning Based on Stochastic Approach by Imitation

AT

Karlsruher Institut for Technologie

Karlsruhe Institute of Technology Italian Institute of Technology

- Based on HMM - - Based on HSMM, GMM/GMR -

ITALIAN INSTITUTE OF TECHNOLOGY - IIT

www.jit.it
Advanced Robotics Department

“Encoding the time and space constraints of a task

in explicit-duration hidden Markov model”

2011

Sylvain Calinon
Antonio Pistillo

Darwin G. Caldwell [000144]

ITALIAN INSTITUTE OF TECHNOLOGY - NT
wwwiit.it

Advanced Robotics Department

"Bilateral physical interaction with a robot

manipulator through a
weighted combination of flow fields"

2011

[00 :00: 55] Antonio Pistillo
Sylvain Calinon

Darwin G. Caldwell [00:01:27]
13
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State-of-the-Art:
Neural Approaches [1/1]

o Skill Learning Based on Neural approach by imitation

) A dvunced
ilelecommunications
Hdesearch Institute International
ECOLE POLYTECHNIQUE /—

) FEDERALE DE LAUSANNE Gl ENENAERRENHARM
Ecole polytechnique féderale

de Lausanne

-

Learning Algorithms and Systems Laboratory, EPFL
CH-1015 Lausanne (Swtizerland)
http://lasa.epfl.ch

Interferences in a Human-Robot
Interaction Game

Eric L. Sauser and Aude G. Billard.

[00:02:59] [00:01:56]

IncoAL  |ntelligence and Control for Robots Laboratory 14



State-of-the-Art:
Skill Improvement [1/1]

« Skill Improvement by Reinforcement Learning

Willow

T [

Max Planck Institute Italian Institute of Technology Willow Garage

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

[00:00:15]

Italian Institute of Technology

[00:01:42]

[00:00:07]

[00:02:07]
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State-of-the-Art:
Summary

o State-of-the-Art in the field of Skill Learning by Imitation

Skill Learning by Imitation

Approaches 1. Symbolic Approaches
2. Dynamical Approaches
3. Stochastic Approaches
4. Neural Approaches
Properties 1. Easy programming
2. Ability to generalize to new situations
3. Ability against perturbations
4. Skill Improvement by self-demonstration
Additionally
Required Improvement of Reusability
Properties
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Additionally Required Properties
for Improving Reusability of Skills Learned

PRIMITIVE(BASIS)
SKILL #1

PRIMITIVE(BASIS)
SKILL #2

PRIMITIVE(BASIS)
SKILL #(n-1)

PRIMITIVE(BASIS)
SKILL #n

Additionally Required Properties | - Autonomous Segmentation for Learning Primitives
for Reuse of Skills Learned - Reorganization of Primitive Skills for Alternative Solutions

by Imitation - Classification of Primitives

- Generalization of Primitives
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State-of-the-Art of Segmentation
Approaches

Researcher Affiliation Methods

Supervised Approaches
: how can we predefine the primitives?

Unsupervised Approaches
. how can we tune the values?

18




Motivation of
Autonomous Segmentation Framework

* Reorganization of New Sentences using Words

-

’ ‘h\ . [

\Jﬂ - ‘]
senences - HEISABOY™” “SHEISNOTAGIRL”
words HE IS A BOY SHE IS NOT || A GIRL

reorganization

New sentence “ﬁE TS N &\A GAIEL”
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Autonomous Segmentation Framework
. Conceptual Description [1/5]

= How many primitives are contained in this continuous trajectories?

< Joint Trajectories Extracted from a Humanoid Robot >

5 A=
‘\l
2 _—\/
U -
2+
4 1 1 I 1 [
0 100 200 300 400 500
T. 4~
- 2F " f
U -
2
4 I f
0 100 200 300 400 500
"';x ir o —
ok
D -
2F
4 1 I 1 1 I t
1] 100 200 300 400 500

changing local movement?
(e.g., velocities, directions, dynamics, relations etc.)

<S. H. Lee, I H. Suh, S. Calinon, and R. Johansson, "Autonomous Segmentation Framework for Alternative Solutions
in Manipulation Task,” submitted to an international journal, 2012 >
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Autonomous Segmentation Framework
. Conceptual Description [2/5]

= How many primitives are contained in this continuous trajectories?

< Joint Trajectories Extracted from a Humanoid Robot >

& - e ] .
: i :
i i i :
£ N 5 HE
Y, i t :
L H H s
'4: I HH 1: HE S
D 100 200 300 Ho 500 :
X, i H :
13 i S nw
2 H i :
oF i i :
2% i i :
v | ! H Ha
Qtennnnunnnnnnns® YEEnnns’ Cannnnnn® A nnnnnnnns’ vau E AT Ay sssnnnnnnnnnnns €00 *annnnnnnnns®

If a human intuitively divides this continuous trajectories
according to changing local directions of the trajectories...
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Autonomous Segmentation Framework
. Conceptual Description [3/5]

= How many primitives are contained in this continuous trajectories?

< Joint Trajectories Extracted from a Humanoid Robot >

5 A=
A
2_—\/
U_
2+
4 1 1 I 1 [
0 100 200 300 400 500
X 4T
- 2F “~ f
0_
2
4 I f
0 100 200 300 400 500
.1';3 ir
2_ -
D_
2F
A 1 t
0 100 200 300 400 500

Gaussian Mixture Model (GMM)

» Representing continuous trajectories as a GMM provides a way of encoding the local directions

and the local relations (i.e. correlation and variances) among the variables taking part in the

a change of the local directions and relations in the GMM domain
- a segmentation point
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Autonomous Segmentation Framework
. Conceptual Description [4/5]

= Then, how can the number of Gaussians be determined in the GMM?

= Bayesian information criterion (BIC) following ri i =Yoo a-Xo i =] (0%

. depend on dimension of variables

\l :‘ j
0_"_ and the number of Gaussians

o 0 0 awfl BIC Score Function

B
| Sgic = —2-logL+ np -log(N),

-\'1‘3 ¢ ——ee— = K{D+1]2[D+IJ+1)+(K_1]+[K[Dr+l”|

the estimated GMM by using the number of Gaussians
automatically determined by BIC

_ - _ Strategy of this framework
Lz el eraliies o vartsliss T ‘ . find as many meaningful primitives as possible
and by reducing the dimensionalities of variables

the number of Gaussians l 1 —_— _
Principal Component Analysis (PCA)
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Autonomous Segmentation Framework
. Conceptual Description [5/5]

< Joint Trajectories Extracted from a Humanoid Robot >

[motion trajectories in the dimensional space reduced by PCA]

X3

AN O N B A RN O N B
T T

CE - S
T 1

Il 1
0 100 200 300

I L I
0 100 200 300
____._—_' e

8
8L
g

< in original space >

=
4
2 /\
9 —"‘_““_‘-'-_..\__f—/
)| .
_“ 1 1 1 1 | 'r
0 100 200 300 400 500 1
#of
Gaussians
9

8

w 4+~ “h A

—

8
7 7 7 7 7 7 7
| 6 6
5
4 4
5
| I I dimensionality
1 2 3 4 5 6 7 8 AECA

o 10 11 12 13 ©

(original
dimension)

The number of Gaussians estimated according to
the dimensionality of PCA when using BIC
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Autonomous Segmentation Framework
. Conceptual Description [5/5]

[motion trajectories in the dimensional space reduced by PCA]

©4
A

Changes of the local directions

and relations in the GMM domain
(the set of segmentation point)

Temporally overlapping points
In-between two consecutive Gaussians
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Autonomous Segmentation Framework :

“Cooking Rice” Task [1/9]

< Joint trajectories extracted from a single demonstration in the task of cooking rice > Cooking Rice

o

ar [PROCEDURE]
\/ 1. The robot lifts the pot, which is attached to the
ar right hand toward kitchen board.
3 , , | \ , ot 2. The robot scoops some grains of rice from a rice
0 100 200 300 400 500 600 bowl using a spoon attached to its left hand.

2 :"j—l / 4. The robot pours the rice into the pot.
o 5. The robot stirs the rice in the pot using the

3. Therice is delivered from the bowl to the pot.

100 200 300 400 500 600 SRR

6. The potis put on the stove. 7

<Kinesthetic Teaching Process>

Kinesthetic Teaching
Process

INCOAL

Intelligence and Control for Robots Labon

[00:00:12]



Autonomous Segmentation Framework :
“Cooking Rice” Task [2/9]

< Motion trajectories in the dimensional space reduced by PCA > Cooking Rice

- [PROCEDURE]
”/\ 1. The robot lifts the pot, which is attached to the

T right hand toward kitchen board.

2. The robot scoops some grains of rice from a rice

0 100 200 300 400 500 bowl using a spoon attached to its left hand.

A N O N o
T T

3. Therice is delivered from the bowl to the pot.
4. The robot pours the rice into the pot.

5. The robot stirs the rice in the pot using the
spoon.

6. The potis put on the stove. 7
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Autonomous Segmentation Framework :
“Cooking Rice” Task [3/9]

< GMM that consists of eight Gaussians estimated by BIC and EM > Cooking Rice
[PROCEDURE]
/\ 1. The robot lifts the pot, which is attached to the
\.\,_,__/ right hand toward kitchen board.
. . ) t 2. The robot scoops some grains of rice from a rice
300 400 500 bowl using a spoon attached to its left hand.
3. Therice is delivered from the bowl to the pot.
K 4. The robot pours the rice into the pot.
P(¥) = E Wi~ N'[TM:,EE'L 5. The robot stirs the rice in the pot using the
i=1 spoon.
6.

< eigendecomposition >

¥ = UAUT

temporally
overlapping region

The pot is put on the stove. 7

Incc

= Geometrically, the it Gaussian N (¥ u;.X;) is identified
with the distribution in which the normal distribution
N(1.0) is scaled byAi.I -, rotated by U; , and translated

by Hi.

» The geometrical sizes of eigenvectors on the Guassian
are therefore calculated using square root of the
eigenvalue A,.

Einesthetic Teaching
Process

yoratory 28




Autonomous Segmentation Framework :
“Cooking Rice” Task [4/9]

< GMM that consists of eight Gaussians estimated by BIC and EM > Cooking Rice

ar [PROCEDURE]
1. The robot lifts the pot, which is attached to the
right hand toward kitchen board.

t 2. The robot scoops some grains of rice from a rice
) bowl using a spoon attached to its left hand.

3. Therice is delivered from the bowl to the pot.
4. The robot pours the rice into the pot.

5. The robot stirs the rice in the pot using the
spoon.

6. The potis put on the stove.
minimum length calcaulted L

by eigendecomposition
of covariance trajectory
in the temporally overlapping region

Einesthetic Teaching
Process

temporally
overlapping region

< Gaussian Mixture Regression>

K
Ty (t) = Eﬁ?{:f]{zﬂfﬁrf — X, 9,Z '), : covariance trajectory
i—1
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Autonomous Segmentation Framework :
“Cooking Rice” Task [5/9]

Cooking Rice

< Temporally overlapping regions estimated by geometrical interpretation
of the Gaussians >

v,

O S = N T

O e T R

P H P : L i
0 100 200 300 400 500

< Segmentation points estimated by weights along the time component
of the GMM >

[PROCEDURE]
1.

2.

The robot lifts the pot, which is attached to the
right hand toward kitchen board.

The robot scoops some grains of rice from a rice
bowl using a spoon attached to its left hand.

The rice is delivered from the bowl to the pot.
The robot pours the rice into the pot.

The robot stirs the rice in the pot using the
spoon.

The pot is put on the stove. 7

Einesthetic Teaching
Process
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Autonomous Segmentation Framework :
“Cooking Rice” Task [6/9]

< GMM that consists of eight Gaussians estimated by BIC and EM >

Cooking Rice

AN O N =

K
p('ql} = Z u«‘g-N{‘HﬂhEz‘}v
i=1

Other method

< Weights estimated along the time component of the GMM
and intersections by the weights >

h

AN O N B

I,

hs

.

ly

wilN (13 Wiz Eig)

hi(t)

B Ef=1 1""I:N'::“.}1I:.r-.zk.r]'.

[PROCEDURE]
1.

2.

The robot lifts the pot, which is attached to the
right hand toward kitchen board.

The robot scoops some grains of rice from a rice
bowl using a spoon attached to its left hand.

The rice is delivered from the bowl to the pot.
The robot pours the rice into the pot.

The robot stirs the rice in the pot using the
spoon.

The pot is put on the stove. 7

Einesthetic Teaching
Process
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Autonomous Segmentation Framework :
“Cooking Rice” Task [7/9]

< GMM that consists of eight Gaussians estimated by BIC and EM > Cooking Rice

- [PROCEDURE]

i /\ 1. The robot lifts the pot, which is attached to the

right hand toward kitchen board.

t 2. The robot scoops some grains of rice from a rice
] 100 200 300 400 500 ) bowl using a spoon attached to its left hand.

o
|

3. Therice is delivered from the bowl to the pot.
4. The robot pours the rice into the pot.

< Wei . .
Weights estimated along the time component of the GMM 5. The robot stirs the rice in the pot using the

and intersections by the weights > spoon.
hoo4 - . - 4 6. The potis put on the stove. 7
2t 4
0 = S 3 = == —
2k h h, h, h, I h . h, _
4 I ; i : 1 H 1 H i l Einesthetic Teaching
0 100 200 300 400 500 Process
< Centivliguth &iagertsises afexighdlGad ssiabMBndrocess
temporally whernagpgig pioatiis ongbeiviagreghtdBauteatmtssians >
ljlll 4 T T T T
(21 i Mw-\ﬁ:
2+ .
-4 1 1 1 ] !
0 100 200 300 400 500
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Autonomous Segmentation Framework :
“Cutting a Food Item” Task [8/9]

Segmentation Point Detection

Cutting a Food Item

/ Reorganization / GMR
< GMM that consists of four Gaussians and [PROCEDURE]
temporally overlapping points in-between consecutive Gaussians >

1. The robot cuts a food item on a cutting board

v once only using a knife attached to its left hand.
g o — 2. The robot pushes the cut items into the pot
S T T T R - T attached to its right hand.

Vidr

2k
2t
7 | , L | o \ . \ n I

20 40 60 0 100 120 140 160 180 20

< Weights estimated along the time component of the GMM Ki hetic Teaching P
and intersections by the weights > <Kinesthetic Teaching Process>

Kinesthetic Teaching
Process

I Iy h h,

oo
T T

L L L L L L L ] T
(] 2 ] 60 £] 100 20 140 60 180 0

< Continuous trajectories generalized by GMR process
when sequentially organizing eight Gaussians >

LA

S S DR S Or
20 0 ) &0 100 120 140 160 180 0 [0000 15]

TS




Segmentation Results Acquired by
Autonomous Segmentation Framework [9/9]

 Two Cooking Tasks : 1. cooking rice and 2. cutting a food item

Segmentation Results

[ Task of Cooking Rice ] [ Task of Cutting a Food Item ]

< 1lst basis skill >
label: [LiftingPot]

< lst basis skill >

lakel: [LiftingKnife]

Eights Segments : [LiftingPot], [LiftingSpoon], [00:00:19] Four Segments : [LiftingKnife], [CuttingFoodItem], [00:00:08]
[ApproachingRiceBowl], [ScoopingRice], [PositioningForPushing], [PushingFoodltem]
[DeliveringRice], [PouringRice],
[StirringRice], and [PuttingOnStove]. 34



Quantitative Evaluation of Autonomous
Segmentation Framework [1/5]

< Four episodes opened from TUM Kitchen dataset >
episode [ID0-0] episode [ID0-2]

Labels of Nine Primitives
Segmented by A. Yao

Left Arm & Right Arm Trunk

CarryingWhileLocomoting Standingstill

(CWL) (Standing)
Reaching HumanWalkingProcess
(Walking)
[00:01:06] [00:00:54] TakingSomething
(Taking)

episode [IDO-11] episode [ID0-12]

OpeningADoor
(Opening)

LoweringAnObject
(Lowering)

ClosingADoor
(Closing)

ReleasingGraspofSomething
(Releasing)

[00:01:35] | [00:01:03]

A Gw
S—{FBL]

28 body parts x 3 (X, Y, 2)
= 84-dimensional motion capture data
recorded at 25Hz
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Quantitative Evaluation of Autonomous
Segmentation Framework [2/5]

Labels of Nine Primitives
Segmented by A. Yao

Labels of Sixteen Basis Primitives
Segmented by Our Method

TakingSomething
(Taking)

OpeningADoor
(Opening)

LoweringAnObject
(Lowering)

ClosingADoor
(Closing)

incdL |Intelligence and Control for Robots Laboratory

HumanWalkingProcess
(Walking)

Left Arm & Right Arm Trunk Left Arm & Right Arm Trunk
CarryingWhileLocomoting StandingsStill Meaningless Movment Standing
(CWL) (Standing) (M_M)

GraspingObjects
(Grasping)

StretchingToOpenDoor
(O_Stretching)

FoldingToOpenDoor
(O_Folding)

StretchingToRelease
(R_Stretching)

StretchingToCloseDoor
(C_Stretching)

FoldingToCloseDoor
(C_Folding)

WalkingForward
(F_Walking)

WalkingBackward
(CRWEUNI )

WalkingSideways
(S_Walking)

TurningUsingLeftFoot
(L_Turning)

TurningUsingRightFoot
(R_Turning)

36



Quantitative Evaluation of Autonomous
Segmentation Framework [3/5]

Autonomous Segmentation Process using TUM episode [ID0-2]

[Gaussian Mixture Model in the dimensional space reduced by PCA]

Sl
mw
0 1 I 1 1 | I Il | 1 Iy
; [1] 100 200 300 400 500 600 700 800 900 1
.\‘:m_
H_—\_f —
2000
0 1 1 1 1 1 1 1 L 1 J f
[1) 100 200 300 400 500 600 700 800 900 1000
)
oot |
m'_’__N__"/\
) 1 1 1 1 1 1 1 1 1 1 1
o 100 200 300 400 500 600 700 800 900 1000
[Gaussian Mixture Model in the dimensional space reduced by PCA]
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[Gaussian Mixture Model in the dimensional space reduced by PCA]
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Quantitative Evaluation of Autonomous

Segmentation

~ramework [4/5]

M_M

No. A. Yao’s method Our proposed method
Left Hand Right Hand Trunk Time # of Left Hand Right Hand Trunk Time # of
segments segments

1 CwL CWL STANDING 001 ~ 010 01 M_M M_M STANDING 001 ~ 015 01

2 CWL CWL WALKING 011 ~ 028 02 G_STRETCHING M_M F_WARKING 016 ~ 040 02
REACHING REACHING WALKING 029 ~ 042 03

3] REACHING TAKING . . - ANDING 041 ~ 057 03
e | T when timing differences ANDING | 058~075 | 04

4 | TAKING | TAKING between the starting and ending points RN EURCANES
CWL CWL .

— — - In the segments are allowed t0 010 10 gy wemmy

WALKING 099 ~ 123 07

6 CWL LOWERING O = ~ WALKING 124 ~ 142 08

7 CWL LOWERING STANDING 137 ~ 167 10 M_M R_STRETCHING STANDING 143 ~ 156 09
CWL RELEASING STANDING 168 ~ 175 11 M_M RELEASING STANDING 157 ~ 177 10

8 CwL LOWERING STANDING 176 ~ 203 12 | R_STRETCHING STANDING 178 ~ 210 11

35 LOWERING CWL STANDING 826 ~ 828 50 R_STRETCHING M_M STANDING 828 ~ 850 47
LOWERING LOWERING STANDING 829 ~ 833 51 R_STRETCHING R_STRETCHING STANDING 815 ~ 873 48
RELEASING LOWERING STANDING 834 ~ 889 52 RELEASING R_STRETCHING STANDING 874 ~ 910 49
CWL LOWERING STANDING 890 ~ 899 53 M_M RELEASING STANDING 911 ~918 40
CWL RELEASING STANDING 900 ~ 919 54

36 CWL RELEASING WALKING 920 ~ 931 55 M_M RELEASING B _WALKING 919 ~ 934 51
CWL CwWL WALKING 932 ~ 957 M_M F_WALKING 935 ~ 957




Ive Evaluation of Autonomous

entation

~ramework [5/5]

method Our proposed method
runk Left Hand Right Hand Trunk Time # of
segmetns
WALKING G_STRETCHING M_M F_WARKING | 016 ~ 040 02
WALKING \ /_
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Quantitative Evaluation of Autonomous

Segmentation

~ramework [5/5]

No. A. Yao’s method Our proposed method
1] &
LeftH Time # of Left Hand : Time # of
segments segments
5 /WL CWL WALKING 085 ~ 125\l 08 M M M M R TURNING 088 ~ 098 06
M M M M F WALKING | 099 ~ 123 07
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Quantitative Evaluation of Autonomous
~ramework [5/5]

Segmentation

No. A. Yao’s method Our proposed method
Left Hand Right Hand Trunk Time # of Left Hand Right Hand Trunk Time # of
segments segments
36 CWL/ RELEASING WALKING 920 ~ 931 \ 55 M_M RELEASING B_WALKING | 919~934 \| 51
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Quantitative Evaluation of Autonomous
Segmentation Framework [5/5]

N : ‘I b | ‘ _“.‘ : .‘ \*

‘episode [ID0-0] episode [ID0-2] episode [ID0-11] episode [ID0-12]
ID0-0 ID0-2 ID0-11 ID0-12 # of segments
. . with 1~5frames
# of dimension reduced by PCA 2 1 3 1
- - # of segments which
segmented by our method
# of Segments manually 99 (38) 56 (13) 97 (23) 55 (10) when timing differences between

the starting and ending points
in the segments are allowed
37 (7) fsr:CT 0 to 10frames (i.e. 0.0~0.4

segmented by A. Yao -
60 (7) 37 (5) 58 (18)
Similarity of Segments 88.24% 71.15% 69.88% 78.72%

# of similar segments

Similarity of Segments 98.53% 90.38% 91.57% 93.62% when identically considering

the segments that have the
*Dissimilar primitives can be easily explained by the difference of segmentation granularity IR R Lol

that can be considered in motions such as opening, closing, and walking. granularities and eliminating
the segments with 1~5frames

. (it is difficult to find physical
incoiL - [ntelligence and Control for Robots Laboratory meaning)



Reminding:
How can we reuse primitives well?

* Reorganization of New Sentences using Words

L
v %
{ ‘h b [
senences - HEISABOY™” “SHEISNOTAGIRL”
words HE IS A BOY SHE IS NOT || A GIRL

reorganization

T~ T 4 «—
New sentence - [H £ |S NOT A G IRL” Pre- and Post-
- Primitives conditions
Reusability — (Words)

incoiL - |ntelligence and Control for Robots Laboratory



Reorganization of Primitives Learned
from a Single Task

Reuse of Primitives Learned

by Imitation

< GMM that consists of eight Gaussians
and temporally overlapping points
in-between consecutive Gaussians >

\

1
600 1000 1200 1400

[Gaussian Mixture Model in the dimensional space reduced by PCA]

s i
LA

W,vr\ [ the task of three scooping, three delivering,
) and two stirring rice ]

2

- . \ s , s . |t
o 200 400 600 800 1000 1200 1400

[Gaussian Mixture Model in the dimensional space reduced by PCA]
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Grammaticalization of Primitives

planning using

primitives G o A
— L

Primitive #i

Primitive #j umiives

Crucial Requirements

Categorization and Generalization

incdL |Intelligence and Control for Robots Laboratory
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Grammaticalization of Primitives

Simple Approach for Categorization

= Categorization : Hidden Markov Model

New trajectories by imitation

v
Autonomous Segmentation
Classifiers Framework
for Categorization \
v v v
HMM HMM Threshold
astprimiive) | (n'" Primitive) Model
y
Improvement of Improvement of
Primitives Primitives

New Primitive

IncorL  Intelligence and Control for Robots Laboratory 46



Grammaticalization of Primitives

Simple Approach for Categorization

= Categorization : Hidden Markov Model

< HMM Representation of Primitives > < Threshold Model >
(2)
1st Primitive - =
‘ ...... UproniveSkil 2PrinitiveSkill  3%PrinitiveSkil == 4*PumitiveSkill /S PrinitiveSkill i G PrunitiveSkil __ T*PrumiveSkill  §*PrunitveSkil
ANgrA ] : TN N ~~
OrO T A A
el o L O N S e e
I N———" N——" N——" n
“h “h Qi
o { \%/ )

ergodic HMM using HMM states
of existing HMMs

IncAL  |ntelligence and Control for Robots Laboratory 47



Grammaticalization of Primitives

Simple Approach for Categorization

= Categorization : Hidden Markov Model

< The Same Category > < Threshold Model >

[CuttingFoodltem]

~ [PositioningForPushing]

[LiftingSpoon] [LiftingKnife]

[PushingFoodltem]

Eights Segments : [LiftingPot], [LiftingSpoon],

(cooking rice) [ApproachingRiceBowl], [ScoopingRice],
[DeliveringRice], [PouringRice],
[StirringRice], and [PuttingOnStove].

incdL |Intelligence and Control for Robots Laboratory
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Reorganization of Primitives Learned
from Multiple Tasks

Reuse of Primitives Learned

from two tasks of cooking rice and cutting a food item

original sequence in the cooking rice

[ the task of two cutting, one pushing, two stirring,
and one putting on the stove ]

49




Can the segmentation points be used
for gramaticalization?

 When segmenting spatial information of surrounding objects using the

segmentation points

< Segmentation results
< A demonstration of preparing tea > by autonomous segmentation framework >

= [ position of robot's end-effector
3 © position of cup
4 : position of tea
» position of human's hand

RO0
A00 1. Approaching Cup

200
]

#*
-200

400 2 e
-R00
500

400 A
0 200
0
i -200
-A00 i
[00:00:26] [00:00:48]

6-D robot arm developed by Neuronics (i.e. Katana)
12 motion capture cameras developed by Optitrack (i.e. V100:R2)

.aboratory



Can the segmentation points be used
for gramaticalization?

» lllustrations captured in the nine segmentation points

—~
)
=

—~
o
=

§u§§’s;§§§
g'_§§ﬁ=§§§

"

> s "0
T2
500 00 400

200

0
-
o < o 5

— >
500 500" gy 0

[InitialPositions] [DeliveringCup] [ApproachingTeaBag]

~
(=}
=

gvﬁiﬁaﬁiﬁ

888 .888

—~— 600

L
0

~ 20

[GraspingTeaBag] [InsertingTeaBag] [GraspingCup] [DeliveringCup] [ComingBack]

The segmentation points can be sufficiently used to determine

pre- and post-conditions to activate primitives



Future Works

* Rich Representation for Proto-language to Categorize and
Generalize Primitives

— Affordances
— Object Action Complexes

— Motion Algebra

» Key guestion remaining
— “Whom to imitate”, “When to imitate”, and “What to imitate”

— How can we evaluate the learning performance?

incoiL - Intelligence and Control for Robots Laboratory
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Thank you !

incoiL - Intelligence and Control for Robots Laboratory
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Challenge

. Grammaticalization of Primitives [5/6]

Grammaticalization (including Categorization)

* |n linguistics,
- a process by which words representing objects and actions (i.e. nouns and verbs) transform to become
grammatical objects (e.g., affixes and prepositions etc.)

» |[n Robotics (especially, behavior),
- a process in which information representing objects and actions (i.e. conditions and behaviors (or primitives))
transforms (categorizes and relates) to become grammatical objects for planning

. Affordances
AelelE oy ek or Object Action Complexes (OACSs)

. Efficient Method to Categorize Primitives : Method to Categorize and Grammaticalize
Primitives, simultaneously

[Papers]
[1] N. Kruger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Worgotter, A. Ude, T. Asfour, D. Kraft, D. Omercen, A. Agostini, and R. Dillmann,,
“Object-Action Complexes: Grounded abstractions of sensory-motor processes,” RAS, 59(10), pp.740-757, 2011.
[2] F. Worgotter, A. Agostini, N. Kruger, N. Shylo, B. Porr, “Cognitive agents-a procedural perspective relying on the predictability of Object-
Action-Complexes (OACs),” Robotics and Autonomous Systems, 2008.
[3] E. Sahin, M. Cakmak, M. Dogar, E. Ugur, and G. Ucoluk, “To afford or not to afford: A new formalization of affordances toward affordance
-based robot control,” Adaptive Behavior, pp.447-472, 2007.
[4] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning object affordances: From sensory-motor coordination to imitation,” IEEE Trans. on Robotics, 2008.

[Projects]
1. PACO-Plus Project (2006 ~ 2010) : FP 6
2. Xperience (2011 ~ 2015) : FP 7




Challenge

. Grammaticalization of Primitives [5/6]

Classical Plan Operator Affordance :
: ) OACs Representation
Representation Representation
(behavior, (pre-conditions, effect) )

(effect, (entity, behavior ) ) execute (E, T, M) 2 (sq, Sp, S;)

OAC

e.g., STRIPS operators e.g., Affordance relations E: an identifier for an execution specification

T: a prediction function of how the world will

change after executing E
ex1l) (index :swim ex1l) (index : traversed M: iztiﬂigzzls%??ﬁ g rg Artca:p;resentlng
action : swim effect : traversed . :
L L S S, : the state of the world before performing
precondition: river, (‘entity: river, behavior : swim ) OAC
ex2) (index: S\Z\Tlft' IEMEEEE) (eI DERE, Elenet £ uelly S, - the state of the world that T predicted from
action : walk . LR .
precondition: road S, : the observed state from actually performing
effect: traversed) E

ex1l) Name : ObjGrasp
Attribute space/T : Object model,

gripper status
M : long term probability of
successful grasp

incdL |Intelligence and Control for Robots Laboratory



Appendix — Example of OACs

Clas:

(behav

eqg.,

exl)

ex2)

Different Category of the ,Peeling-OAC“
Example

What can be

peeled with Action
what? + Para-

meterization

/

/

. <
Action \)"
Para- > +e°
meterization Q’

\"‘

CJd Lo
ENL N
Y

X

———
W‘f‘\ - =

SO’ Sp’ Sr)

pecification
e world will

lting
erforming
edicted from

lly performing

Ctor’'s pose
bject location
e

ediction

N

incdL |Intelligence and Control for Robots Laboratory



Appendix — Example of OACs

For Example asking the robot:
What can be cut with what?

(without having seen any of the objects beforel)

Algorithm: Generalize, starting with the
sentence:

“Cut the salami with a knife”

use the Internet to replace nouns in this
sentence and then attach images to the i=1 2 ..
new nouns (again from the internet) .

=1| sSalami | Bread

Store a verb-labeled “Picture Bod/ 2

of what can be cut with what.

Knife |Peeler

 x. [T |




Challenge

. Grammaticalization of Primitives [5/6]

Classical Plan Operator

Representation

(behavior, (pre-conditions, effect) )

e.g., STRIPS operators

ex1l) (index :swim
action : swim
precondition: river,

effect: traversed )
ex2) (iindex : walk

action : walk
precondition: road,
effect: traversed)

Affordance

Representation

(effect, (entity, behavior) )

e.g., Affordance relations

ex1l) (index : traversed
effect : traversed
(entity: river, behavior : swim)

( entity: road, behavior : walk)

OACs Representation

execute (E, T, M) 2 (sq, Sp, S;)

E: an identifier for an execution specification
T: a prediction function of how the world will
change after executing E
M: a statistical measure representing
the success of the OACs

S, : the state of the world before performing
OAC

S, - the state of the world that T predicted from
OAC

S, : the observed state from actually performing
E

ex1l) Name : AgnoPush
Attribute space/T : end effector’'s pose
space, object location
and shape
M : average deviation of prediction
from actual final position

incdL |Intelligence and Control for Robots Laboratory



Challenge

. Grammaticalization of Primitives [6/6]

» The Potential Possibility in which the Segmentation Points can be used to
Determine Pre- and Post-conditions

< Segmentation results
< A demonstration of preparing tea > by autonomous segmentation framework >

—
= [0 " position of robat’s end-effector
3 © position of cup
4  position of tea
. position of human's hand

RO0
A00 1. Approaching Cup

200
0

*
-200

-400 2 e
-600
500

400 A
0 200
0
i
-500 500
[00:00:26] [00:00:48]
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Challenge

. Grammaticalization of Primitives [6/6]

» The Potential Possibility in which the Segmentation Points can be used to
Determine Pre- and Post-conditions

(@) human’s (b) human’s (c) human’s (d) human’s (©) human’s
hand hand hand hand hand
= .. teabag o . teabag o . teabag 0 .. teabag ol .. teabag
+ + * * end- *
o 0 0| o end- e { effector I
24 end- ™ end- 0 end- = effector [, m]
04 leffector O effector DE) & effector [l o
m ciip 2 cup
4 -400 40
w0l 500 500 ol
500 _ 500 = ~s0 50 —a 500 —~ _w . ,»(Eé"\sm
T 28 % < 2 e ~ — Zd N - P = ~ a0 =
P o> P e R S s>
[InitialPositions] [ApproachingCup] [GraspingCup] [DeliveringCup] [ApproachingTeaBag]
® human’s Q) human’s (h) human’s () § tea bag ) tea bag
hand hand hand ena- 4 *
- o tea bag - % tei)ag % ® tea bag w0 . effector Eb(cup =y o cup
- - kS
2 eff:cr:(ojr o * - effector 0 end- o« human’s 40 ] human’s
m m m effector O m hand 20 hand  end-
] 0 0 cup ] o] effector
400 00 00 400 -400 ]
0. 00 a0l a0l a0 L.\
LN e 600 = 50 =L 5w a0 60 e _—gm
ﬂ <~ o - <~ 4w » T am 4 e . <~
500 '*'i;}';/m 20 500 m‘w 20 20 m;;uu A 000 = 0™ "’&;(W o

[GraspingTeaBag] [InsertingTeaBag] [GraspingCup] [DeliveringCup] [ComingBack]

IncAL  |ntelligence and Control for Robots Laboratory 60



Challenge

. Grammaticalization of Primitives [5/6]

Classical Plan Operator

Affordance
Representation

Representation

OACs Representation

(behavior, (pre-conditions, effect) ) (effect, (entity, behavior ) ) execute (E, T, M) 2 (sq, Sp, S;)

Our Primitives
e.g., STRIPS operators e.g., Affordance\telation

. c ier for an execution specification
Using surrounding  § N et

) : on function of how the world will
information Hfter executing E
ex1l) (index :swim ex1l) (index : traversed in Segmentation points 2V MSEEUIE ST
EEHDT) 3 Sl el EVEIEse S, - the satee Z? t?]fet r\:\?oﬁdA E:fore erformin
precondition: river, (entity: river, behavior : swim) o OAC P g
effect: traversed ) (entity: road, behavior : walk)
ex2) (iindex : walk

S, - the state of the world that T predicted from
action : walk OAC
precondition: road,

effect: traversed)

S, : the observed state from actually performing
E

Extension of Affordance and OACs

ex1l) Name : AgnoPush
Attribute space/T : end effector’'s pose

space, object location
and shape
M : average deviation of prediction
from actual final position

. (effect, (entity, behavior ), M)

incdL |Intelligence and Control for Robots Laboratory



Challenge

. Grammaticalization of Primitives [1/6]

planning using
primitives

Crucial
Primitive #i Requirements

For Categorization and
Generalization

set of
primitives

: Grammaticalization

Primitive #

Examples In “Xperience” Project — FP 7

* |In Language domain,
- knowing the grammar of English and the category and meaning of the surrounding words in a sentence
allows identification of the category and semantic type of an unknown word.

* In Robotics (sensorimotor) domain,
- knowing how to peel potatoes with a knife, significantly aids one in learning how to use a potato-peeler. A single
demonstration enables understanding in terms of an existing theory of potato peeling, and makes the peeler
available for generalization to other plans (other potatoes and other vegetables).

IncorL  Intelligence and Control for Robots Laboratory 62



APPENDIX |
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Challenge

. Grammaticalization of Primitives [6/13]

affordance
environment agent

entity < > behavior

A

effect

(effect, (entity, behavior ) )

Definition of “Affordance”

= An acquired relation between a behavior (i.e. a primitive skill) of an agent and an
entity in the environment such that the application of the behavior on the entity

generates a certain effect.

< E. Sahin, M. Cakmak, M. R. Dogar and E. Ugur, “To Afford or Not to Afford: A new formalization of Affordances toward
Affordance-based Robot Control,” Adaptive Behavior, December, 2007>

64
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Challenge

. Grammaticalization of Primitives [7/13]
« Example of Affordance in Robotics

Lift-ability

environment agent

> lift

'
\

can

elevated

(elevated, (can, lift) )

“Lift-ability”

» The robot applied its lift behavior on the can and obtained the elevated effect.
Can: the perceptual representation of the can as seen by the robot

Lift : the behavior executed by the robot

Elevated : the effect of the behavior on the environment as perceived by the robot

65

< E. Sahin, M. Cakmak, M’ R. Dogar and E. Ugur, “To Afford or Not to Afford: A new formalization of Affordances toward Affordance-based Robot Control,” Adaptive
Behavior, December, 2007>



Challenge

. Grammaticalization of Primitives [8/13]

Classical Plan Operator Affordance Representation
Representation

(behavior, (pre-conditions, effect ) ) (effect, (entity, behavior ) )

e.g., STRIPS operators e.g., Affordance relations

ex1l) (index:swim ex1l) (index :traversed

action : swim effect : traversed
precondition: river,

( entity: river, behavior : swim)
effect: traversed )

( entity: road, behavior : walk)
ex2) (index : walk
action : walk

precondition: road,
effect: traversed)

< E. Sahin, M. Cakmak, M. R. Dogar and E. Ugur, “To Afford or Not to Afford: A new formalization of Affordances toward Affordance-based Robot Control,” Adaptive
Behavior, December, 2007>
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Challenge

. Grammaticalization of Primitives [9/13]

o Strategy of Categorization : Effect Equivalence

Entity Equivalence - Behavior Equivalence
( , (<entity>, behavior)) ( , (entity, <behavior=))

> Effect Equivalence

Affordance Equivalence
( , <(entity, behavior)>)
INCOAL

6
I< E. Sahin, M. Cakmak, M. R. Dogar and E. Ugur, “To Afford or Not to Afford: A new formalization of Affordances toward Affordance-based Robot Control,” Adaptive
Behavior, December, 2007>



Challenge

. Grammaticalization of Primitives [10/13]

* Are there affordances or effect equivalence in the task of
preparing Tea?

< Segmentation results

< A demonstration of preparing tea > by autonomous segmentation framework >
“::-_-_-—__FDI: position of robot's end-effect
3 © position of cup
4  position of tea
. position of human's hand

RO0
A00 1. Approaching Cup
200

0

*

-200
-400 2 Q
-600

S00

00
400
0 200
0
\/K
-500 500
[00:00:26] [00:00:48]
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Challenge

. Grammaticalization of Primitives [11/13]

* In Task of Preparing Tea : a naive example

Using Feat

1. relative distan|
2. relative distan|
< x-axis, y-axis,

pre

1.<-296.35,

2.<-15.58, 6

Symbolizat

1.<-296.35,
entity: <-1,-

2.<-15.58, 6
entity: <-1, +

Effect Equivalence using Symbolization of Effects

affordance # |

( index: pattern < +1, -1, -1 >
effect: pattern <+1, -1 -1 >

entity: pattern <-1, +1, +1 >, behavior: primitive #1)
entity: pattern <-1, +1, +1 >, behavior: primitive #4 )

Categorization
by Effect Equivalence

Grammaticalization
for Planning

|
A uj

[ 4

o] s —

:

=
(=}
-

H a )
aﬁ"i)

Behavior Equivalence
, (entity, <behavior>))
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Challenge

. Grammaticalization of Primitives [12/13]

Extending Affordance Representation for a Robot

affordance # |

( index: pattern < +1, -1, -1 >
effect: pattern <+1,-1-1>
entity: pattern < -1, +1, +1 >, behavior: primitive #1)
entity: pattern <-1, +1, +1 >, behavior: primitive #4 )

Probabilistic Representation using Real Values

(entity: <+1, -1, -1 >, (entity: < -1, +1, +1 >, behavior: primitive #1 ) )

H > <-296.35, 45.99, 143.2016 >, primitive #1 , < -2.26, 30.99, 1.75 >
(entity: <+1, -1, -1 >, (entity: < -1, +1, +1 >, behavior: primitive #4 ) )
[ Bayesian Network ] 2> <-15.58, 69.52, 81.08 >, primitive #4, <-13.13, 55.07, 23.96 >

: e.g., Naive Bayes Classifier

incdL |Intelligence and Control for Robots Laboratory
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Challenge

. Grammaticalization of Primitives [13/13]

Original Affordance Representation

(effect, (entity, behavior ) )

( index: pattern< +1, -1, -1 >
effect: pattern <+1, -1 -1 >
entity: pattern < -1, +1, +1 >, behavior: primitive #1 )
entity: pattern <-1, +1, +1 >, behavior: primitive #4 )

Extended Affordance Representation

(effect, (entity, behavior ), BN)

( index: pattern< +1, -1, -1 >
effect: pattern <+1, -1 -1 >
entity: pattern < -1, +1, +1 >, behavior: primitive #1, prob._model: BN #1 )
entity: pattern <-1, +1, +1 >, behavior: primitive #4, prob._model: BN #4 )
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Object Action Complexes (OACS)

OACs are proposed as a universal representation enabling efficient planning and execution

of purposeful action at all levels of a cognitive architecture.

OACs combine the representational and computational efficiency for purposes of search

(the frame problem) of STRIPS rules and the object- and situation-oriented concept of
affordance with the logical clarity of the event calculus.

While affordances have mostly been analyzed in their purely perceptual aspect, the OACs

concept defines them more generally as state transition functions suited to prediction.

Such functions can be used for efficient forward planning, learning, and execution of actions

represented simultaneously at multiple levels in an embodied agent architecture.

(1]
[2]
[3]

[4]
[5]

PACO+ proejct , FP6 (2006~2010), Xperience project ,FP7 (2011~2015)

Objects and Actions are inseparably intertwined in cognitive processing; that is “Object-Action Complexes” (OACS) are the
building blocks of cognition.

Cognition is based on reflective learning, contextualizing and then reinterpreting OACs to learn more abstract OACs,
through a grounded sensing and action cycle.

The core measure of effectiveness for all learned cognitive structures is: Do they increase situation reproducibility and/or
reduce situational uncertainty in ways that allow the agent to achieve its goals?

Kriger, N., Piater, J., Worgétter,F., Geib, Ch., Petrick, R., Steedman, M.; Ude, A., Asfour, T., Kraft, D., Omrcen, D., Hommel, B., Agostino, A., Kragic, D., Eklundh, J., Kruger, V. and
Dillmann, R.(2009). A Formal Definition of Object Action Complexes and Examples at different Levels of the Process Hierarchy.

Worgbtter, F., Agostini, A., Kriiger, N., Shylo, N. and Porr, B. Cognitive agents - a procedural perspective relying on the predictability of Object-Action-Complexes (OACs). Robotics and
Autonomous Systems, 2008.

Geib, Ch., Mourao, K., Petrick, R., Pugeault, N., Steedman, M., Kriiger, N. and Worgotter, F. Object Action Complexes as an Interface for Planning and Robot Control. IEEE-RAS
International Conference on Humanoid Robots (Humanoids 2006).

Justus Piater, Mark Steedman, Florentin Wérgétter. Learning in PACO-PLUS.
Retrieved from “http://en.wikipedia.org/w/index.php?tittle=Object_Action_Complex&oldid=478584468"
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Xperience: Problem and Approach

» State of the Art (developmental approach): Exploration of
the world allows acquiring grounded and robust cognitive

representations. This is an “outside-in”, data-driven
process.

* Human cognitive ability: We are able to also use
generative mechanisms based on (e)Xperience for
knowledge extension.

— Advantage: This is an “inside-out”, model-driven process and
much faster!

Approach: XPERIENCE will implement a complete robot

system combining developmental with generative

mechanisms for automating introspective, predictive, and
interactive understanding of actions and dynamic situations.
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Structural Bootstrapping

* The process of structural bootstrapping compares a
newly observed entity to a model of experienced
entities to understand the novel situation and predict
conseguences of actions.

 The concept is taken from human language
acquisition
— Example: Knowledge of “Fill a bottle with water”, allows
you to infer the role of xxx as something that can be filled

with water when hearing the sentence “Fill the xxx with
water”.

* Xperience transfers this concept to the full spectrum
of cognitive robotics problem:s.

Cognitive Systems




Examples for Structural Bootstrapping

1.

Language domain: Knowing the grammar of English and the
category and meaning of the surrounding words in a
sentence allows identification of the category and semantic
type of an unknown word.

Sensorimotor domain: Knowing how to peel potatoes with a
knife, significantly aids one in learning how to use a
potato-peeler. A single demonstration enables
understanding in terms of an existing theory of potato
peeling, and makes the peeler available for generalization to
other plans (other potatoes and other vegetables).

E=E
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Major Scientific Questions

How to improve exploration based knowledge
acquisition (“outside-in” stage)?

How to implement the generative process of structural
bootstrapping (“inside-out” stage)?

How to combine these two mechanisms in a dynamically
stable process?

How to predict other agents, leading to advanced
abilities to cooperate, interact and communicate?

How to integrate a complete embodied cognitive
system?

E-=
CogSys
Cegnilive Systems



OACs as representations in Xperience

* Object-Action Complex (OACs, pronounced “oaks”)

— Grounded abstractions of sensorimotor processes
— Describes how an object is affected by an action

— Can be executed to actually do it

— Allows reasoning based on experience

— Combines notions of
* affordances (perception)

* prediction (action, state transitions)
* reasoning (~STRIPS)

* OACs as basis for symbolic representations of
sensorimotor experience and behavior.

Kriiger et al. 2011. Object—Action Complexes: Grounded abstractions of sensory—motor processes,
RAS, 59(10):740-757, 2011
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Figure 3: Graphical representation of the OAC learning problems: (1) Translation,
(2) Control, (3) Prediction, and (4) Reliability.

(E,T, M) (1) execute : (K, T, M) = (50, 5p. 5;). (2)
where: where:
e E is an identifier for an ezecution specification, e 50 £ &8 is the state of the world before performing the OAC’s execution
J specification,

o T : 8 —+ & is a prediction function defined on an attribute space & _ ) _
Encoding a model of how the world (and the aggni) wnll Ch,ange z'f the L ] S:D = S 15 ihE state Gf ﬂi‘.E wm‘ld ﬁh-ﬂ.ﬁ T jDT“-Bd‘Z-CiS i‘.L'?H T‘ES‘U.R ﬁ“ﬂﬂl pE?‘fGT‘J’H~
execution specification is evecuted, and ing the OAC"s execution specification in sy, t.e., s, = T'(sg), and

e M is a statistical measure representing the success of the OAC in a e s, £ & is the observed state resulting from actually performing E in
window over the past. state sg.
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The XPERIENCE Cognitive Architecture

Core Knowledge Transferrable

(Dev. Psych.) Structural/Syntactic
Model

INTERNAL

GENERATIVE P SIMULATION:
@ -
MODELLING Planning,
(Linguistic/Syntactic) Prediction,
Action Selection

@ Expected:
Ijlll XPERIENCE @@

Object-Action Complex
OAC

CATEGORIZATION
(affordances,
sensorimotor
contingencies)

ENACTED
GROUNDING




OACs on all levels

© e

c “Sentence” of OACs

Semantic Object-
Action Graphs

b

Iy
L

' _ Object-Action
%# Goal-directed Graphs
actions = prediction

_____‘.r——-

Reflexes (grasping, Motion
pushing) Graphs
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Learning hierarchical and probabilistic sensory-motor spaces:
Early Cognitive Vision (ECV) x Probabilistic Grasp Functions (PMFs)

ECV provides

— a deep hierachical, view point
invariant, rich, explicit visual
representation

PMFs

— provide a probabilisitc, complete
and structured action
representation

OACs

— provide the required framework
for generating, storing and
utilizing sensory-motor data

Structural booststrapping on a
sensory-motor |evel

— searches in the cross space ECV x
MD for relevant structures

— to refine existing and create new
OACs

N
abstract track
epreseniation)

concrete track
[sensarimotor behaviour)

Number of behaviours

Age (spanning approx. 2 years)
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Generalizing Objects by Analyzing Language (“GOAL")

Different
Example

What can be
peeled with
what?

Category of the , Peeling-OAC”

Action
Para-

. Mmeterization




Generalizing Objects by Analyzing Language (“GOAL”)

For Example asking the robot:
What can be cut with what?

(without having seen any of the objects beforel!)

Algorithm: Generalize, starting with the
sentence:

“Cut the salami with a knife”

use the Internet to replace nouns in this
sentence and then attach images to the isq 2 ..
new nouns (again from the internet) .

=1| Salami | Bread

Store a verb-labeled “Picture Bodf/ 5

of what can be cut with what.

Knife |Peeler

[ x 11 _




