
Automation & Robotics Research Institute (ARRI)
The University of Texas at Arlington, USA

F.L. Lewis, Dan Popa

Talk available online at
http://ARRI.uta.edu/acs

Reinforcement Methods for Autonomous
Online Learning of Optimal Robot Behaviors

Supported by :
NSF - Paul Werbos
ARO- Sam Stanton
AFOSR- Fariba Fahroo

Bristol Robotics Lab, University of Bristol, UK
Guido Herrmann

 Optimal Control

 Reinforcement learning

 Policy Iteration

 Q Learning

 Humanoid Robot Learning Control Using RL

 Telerobotic Interface Learning Using RL

Invited by Rolf Johansson

It is man’s obligation to explore the most difficult questions in
the clearest possible way and use reason and intellect to arrive
at the best answer.

Man’s task is to understand patterns in nature and society.

The first task is to understand the individual problem, then to
analyze symptoms and causes, and only then to design
treatment and controls.

Ibn Sina 1002-1042
(Avicenna)

Importance of Feedback Control

Darwin- FB and natural selection
Volterra- FB and fish population balance
Adam Smith- FB and international economy
James Watt- FB and the steam engine
FB and cell homeostasis

The resources available to most species for their survival are meager and limited

Nature uses Optimal control

F.L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback
control,” IEEE Circuits & Systems Magazine, Invited Feature Article, pp. 32-50, Third Quarter 2009.

IEEE Control systems magazine, to appear.







ki

ii
ki

kh uxrxV),()(

Discrete-Time Optimal Control

cost

(1)

1
() (,) (,)i k

h k k k i i
i k

V x r x u r x u 


 

 

  

1 () ()k k k kx f x g x u  system

Example (,) T T
k k k k k kr x u x Qx u Ru 

1() (, ()) () , (0) 0h k k k h k hV x r x h x V x V   Bellman equation

)(kk xhu  = the prescribed control input functionControl policy

Example k ku Kx  Linear state variable feedback

1() ()T T
h k k k k k h kV x x Qx u Ru V x   

Difference eq. equivalent

))(),((min)(1
**

 kkkuk xVuxrxV
k


Bellman’s Principle gives Bellman opt. eq= DT HJB

))(),((minarg)(* 1
*

 kkkuk xVuxrxh
k

Optimal Control

1 11
2

1

()
() ()T k

k k
k

V x
u x R g x

x


  




 

 Off-line solution
Dynamics must be known

1()T TL R B PB B PA 

DT Optimal Control – Linear Systems Quadratic cost (LQR)

1k k kx Ax Bu  
system

cost

HJB = DT Riccati equation

Optimal Control

Optimal Cost
*() T

k k kV x x Px

10 ()T T T TA PA P Q A PB R B PB B PA    

k ku Lx 

Fact. The cost is quadratic

() T T
k i i i i

i k
V x x Qx u Ru





 

() T
k k kV x x Px for some symmetric matrix P

Off-line solution
Dynamics must be known

Different methods of learning

Supervised learning
Unsupervised learning
Reinforcement learning

Machine learning- the formal study of learning systems

Synthesis of
 Computational intelligence
 Control systems
 Neurobiology

We want robot controllers that learn optimal control solutions online in real-time

Different methods of learning

SystemAdaptive
Learning system

Control
Inputs

outputs

environmentTune
actor

Reinforcement
signal

Actor

Critic

Desired
performance

Reinforcement learning
Ivan Pavlov 1890s

Actor-Critic Learning

We want OPTIMAL performance
- ADP- Approximate Dynamic Programming







ki

ii
ki

kh uxrxV),()(cost

(1)

1
() (,) (,)i k

h k k k i i
i k

V x r x u r x u 


 

 

  

1 () ()k k k kx f x g x u  system

1() (, ()) () , (0) 0h k k k h k hV x r x h x V x V   Bellman equation

1() ()T T
h k k k k k h kV x x Qx u Ru V x   

Difference eq. equivalent

))(),((min)(1
**

 kkkuk xVuxrxV
k


Bellman’s Principle gives Bellman opt. eq= DT HJB

))(),((minarg)(* 1
*

 kkkuk xVuxrxh
k

Optimal Control

1 11
2

1

()
() ()T k

k k
k

V x
u x R g x

x


  




 



Focus on these two eqs.

RL Policy Iterations to Solve Optimal Control Problem

Can be interpreted as a consistency equation that must be satisfied
by the value function at each time stage.

Expresses a relation between the current value of being in state x
and the value(s) of being in next state x’ given that policy

Captures the action, observation, evaluation, and improvement mechanisms of
reinforcement learning.

Bellman Equation

Temporal Difference Idea

1() (, ()) ()h k k k h kV x r x h x V x  

1() (, ()) ()k h k k k h ke V x r x h x V x    

Policy Evaluation and Policy Improvement

Policy Evaluation by Bellman Equation:

Policy Improvement:

consider algorithms that repeatedly interleave the two procedures:

' () ()h hV x V x

()hV xthe policy is said to be greedy with respect to value function'()kh x

At each step, one obtains a policy that is no worse than the previous policy.
Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.
One step is a contraction map.

There is a large family of algorithms that implement the
policy evaluation and policy improvement procedures in various ways

Policy Improvement makes

(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).

1() (, ()) ()h k k k h kV x r x h x V x  

1 1

1

()1'() ()
2

T k
k k

k

V x
h x R g x

x
 




 



DT Policy Iteration to solve HJB

)())(,()(111   kjkjkkj xVxhxrxV 

1 1 1 1() arg min((,) ())
k

j k k k j ku
h x r x u V x    

Howard (1960) proved convergence for MDP

)())(,()(1 khkkkh xVxhxrxV 

Cost for any given control policy h(xk) satisfies the recursion

Recursive solution

Pick stabilizing initial control

Policy Evaluation – solve Bellman Equation

Policy Improvement

f(.) and g(.) do not appear

Bellman eq.

Recursive form
Consistency equation

1()jV xthe policy is said to be greedy with respect to value function1()j kh x

At each step, one obtains a policy that is no worse than the previous policy.
Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.
One step is a contraction map.

(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).

Methods to implement Policy Iteration

 Exact Computation- needs full system dynamics

 Temporal Difference- for robot trajectory following

Montecarlo Learning- for learning episodic robot tasks

1 1 1() () () ()T T
j k k k j k j k j kV x x Qx u x Ru x V x    

() () ()T T
k i i i i

i k
V x x Qx u x Ru x





 

1 11
1 1

1

()1() ()
2

j kT
j k k

k

dV x
u x R g x

dx
 

 


 

DT Policy Iteration – Linear Systems Quadratic Cost- LQR

Solves Lyapunov eq. without knowing A and B

() TV x x Px

For any stabilizing policy, the cost is

DT Policy iterations

Hewer proved convergence in 1971

DT Lyapunov eq.1 1

1
1 1 1

() ()

()

T T
j j j j j j

T T
j j j

A BL P A BL P Q L RL

L R B P B B P A
 


  

     

 

Policy Iteration Solves Lyapunov equation WITHOUT knowing System Dynamics

Equivalent to an Underlying Problem- DT LQR:

1 () ,k k k kx Ax Bu A BL x    

LQR value is quadratic

k ku Lx 

1 1 1 1
T T T T
k j k k j k k k j jx P x x P x x Qx u Ru     

1 1 1() () () ()T T
j k k k j k j k j kV x x Qx u x Ru x V x    

DT Policy Iteration – How to implement online?
Linear Systems Quadratic Cost- LQR

Solves Lyapunov eq. without knowing A and B

() TV x x Px

DT Policy iterations

1k k kx Ax Bu  

LQR cost is quadratic

   

1 1
11 12 11 121 2 1 2 1

1 12 2
12 22 12 22 1

1 2 1 2
1

1 2 1 2
11 12 22 11 12 22 1 1

2 2 2 2
1

() ()
2 2
() ()

k k
k k k k

k k

k k

k k k k

k k

p p p px x
x x x x

p p p px x

x x
p p p x x p p p x x

x x


 





 



      
            

      
   
       
      

Quadratic basis set

() () ()T
k i i i i

i k
V x x Qx u x Ru x





 

for some matrix P

Then update control using
1() ()T T

j k j k j j kh x L x R B P B B P Ax  
Need to know A AND B

for control update

 1 1() () () ()T T T
j k k k k j k j kW x x x Qx u x Ru x    

Implementation- DT Policy Iteration
Nonlinear Case

Value Function Approximation (VFA)

)()(xWxV T

basis functionsweights

LQR case- V(x) is quadratic

() ()T TV x x Px W x 

Quadratic basis functions

Nonlinear system case- use Neural Network

][1211 ppW T 

()x 

)())(,()(111   kjkjkkj xVxhxrxV 
Value function update for given control – Bellman Equation

Assume measurements of xk and xk+1 are available to compute uk+1

Then

 ))(,()()(11 kjkkk
T
j xhxrxxW   

Solve for weights in real-time using RLS
or, batch LS- many trajectories with different initial conditions over a compact set

Then update control using

Need to know g(xk) for control update

Since xk+1 is measured,
do not need knowledge of f(x)
or g(x) for value fn. update

regression matrix

Implementation- DT Policy Iteration

)()(k
T
jkj xWxV VFA

1 11 1
1 1 1 1

1

()1 1() () () ()
2 2

j kT T T T
j k k k k j

k

dV x
u x R g x R g x x W

dx
  

   


    

)())(,()(111   kjkjkkj xVxhxrxV 

11
1 1

1

()1() ()
2

j kT
j k k

k

dV x
u x R g x

dx


 


 

1. Select control policy

2. Find associated cost

3. Improve control

Needs 10 lines of MATLAB code

Direct optimal adaptive control

Solves Lyapunov eq. without knowing dynamics

k k+1

observe xk

observe xk+1

apply uk

observe cost rk

update V

do until convergence to Vj+1 update control to uj+1

 ))(,()()(11 kjkkk
T
j xhxrxxW   

Persistence of Excitation

Regression vector must be PE

 ))(,()()(11 kjkkk
T
j xhxrxxW   

System

Action network

Policy Evaluation
(Critic network)

()j kh x

cost

The Adaptive Critic Architecture

Control policy

)())(,()(111   kjkjkkj xVxhxrxV 

Adaptive Critics

))(),((minarg)(111   kjkkukj xVuxrxh
k



Value update

Control policy update

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Use RLS until convergence

Adaptive Control

Plant
control output

Identify the
Controller-
Direct Adaptive

Identify the
system model-
Indirect Adaptive

Identify the
performance value-
Optimal Adaptive

)()(xWxV T

Greedy Value Fn. Update- Approximate Dynamic Programming
Value Iteration= Heuristic Dynamic Programming (HDP)

Paul Werbos

)())(,()(111   kjkjkkj xVxhxrxV 

Policy Iteration

1 1

1

() ()

()

T T
j j j j j j

T T
j j j

A BL P A BL P Q L RL

L R B P B B P A
 



     

  

For LQR
Underlying RE

Hewer 1971

))(),((minarg)(111   kjkkukj xVuxrxh
k



)())(,()(11   kjkjkkj xVxhxrxV 

))(),((minarg)(111   kjkkukj xVuxrxh
k



Value Iteration

1

1

() ()

()

T T
j j j j j j

T T
j j j

P A BL P A BL Q L RL

L R B P B B P A




    

  

For LQR
Underlying RE Lancaster & Rodman

proved convergence

Two occurrences of cost allows def. of greedy update

Initial stabilizing control is needed

Lyapunov eq.

Simple recursion

Initial stabilizing control is NOT needed

1 ' '
'

() (,) (')u u
j j xx xx j

u x
V x x u P R V x      

' ' 1
'

() (,) (') .u u
k xx xx k

u x
V x x u P R V x       

Compare Value Iteration

To Dynamic Programming

(')jV xone can interpret

as an approximation or estimate for the future stage cost-to-go from the future state x’

Estimate for the future stage cost-to-go

A problem with DT Policy Iteration and VI

Assume measurements of xk and xk+1 are available to compute uk+1

Then

 ))(,()()(11 kjkkk
T
j xhxrxxW   

Since xk+1 is measured,
do not need knowledge of f(x)
or g(x) for value fn. update

)()(k
T
jkj xWxV 

Policy Evaluation

1 11
1 1

1

()1() ()
2

j kT
j k k

k

dV x
u x R g x

dx
 

 


 

Policy Improvement

1() ()T T
j k j k j j kh x L x R B P B B P Ax   Need to know f(xk) AND g(xk)

for control update

Easy to fix – use 2 NN

LQR case

ˆ (,) ()T
i k Vi Vi kV x W W x ˆ (,) ()T

i k ui ui ku x W W x

1

1

ˆˆ ˆ((),) () () ()
ˆ ˆ() () ()

T T T
k Vi k k i k i k i k

T T T
k k i k i k Vi k

d x W x Qx u x Ru x V x

x Qx u x Ru x W x








  

  

1() arg min(())T T
i k k k i ku

u x x Qx u Ru V x   

1 1() ()T T
i k k k i kV x x Qx u Ru V x   

Standard Neural Network VFA for On-Line Implementation

Define target cost function

NN for Value - Critic NN for control action

HDP

Backpropagation- P. Werbos

Implicit equation for DT control- use gradient descent for action update

() () 1
(1) ()

()

ˆˆ ˆ(()T T
k k i j i j i k

ui j ui j
ui j

x Qx u Ru V x
W W

W
 



  
 



1 1
()

1

()ˆ()(2 ())
T

j j T Tk
ui ui k i j k Vi

k

xW W x Ru g x W
x

 




  



ˆ ˆ(,) (,)
argmin

ˆ ˆ(() () (,))

T T
k k k k

ui W
i k k k

x Qx u x W Ru x W
W

V f x g x u x W


  
    

(can use 2-layer NN)

1

2
1 1arg min{ | () ((),) | }

Vi

T T
Vi Vi k k Vi kW

W W x d x W dx 


 


 

Explicit equation for cost – use LS for Critic NN update or RLS
1

1 () () () ((), ,)T T T T
Vi k k k k Vi uiW x x dx x d x W W dx   




 

 
  
 
 

 1 1 1 11
() () (,) ()T T T

Vi Vi k Vi k k k Vi km m m
W W x W x r x u W x   

     or

1 () () ()k k k kx f x g x u x  

Asma Al-Tamimi & F. Lewis

Implicit equation for DT control- use gradient descent for action update

() () 1
(1) ()

()

ˆˆ ˆ(()T T
k k i j i j i k

ui j ui j
ui j

x Qx u Ru V x
W W

W
 



  
 



1 1
()

1

()ˆ()(2 ())j j T Tk
ui ui k i j k Vi

k

xW W x Ru g x W
x

 




  



ˆ ˆ(,) (,)
argmin

ˆ ˆ(() () (,))

T T
k k k k

ui
i k k k

x Qx u x Ru x
W

V f x g x u x

 




  
    

ˆ (,) ()T
i k ui ui ku x W W x

NN for control action

Note that state drift dynamics f(xk) is NOT needed since:

1. NN Approximation for action is used

2. xk+1 is measured in training phase

Interesting Fact for HDP for Nonlinear systems
kj

T
j

T
kjkj AxPBBPBIxLxh 1)()(Linear Case

must know system A and B matrices

g(.) is needed

Information about A is stored in NN

Discrete-time nonlinear HJB solution using Approximate
dynamic programming

• Simulation Example 1
• Linear system – Aircraft longitudinal dynamics

• The HJB, i.e. ARE, Solution

1.0722 0.0954 0 -0.0541 -0.0153
 4.1534 1.1175 0 -0.8000 -0.1010

A= 0.1359 0.0071 1.0 0.0039 0.0097
 0 0 0 0.1353 0
 0 0 0 0 0.1353

 
 
 
 
 
 
  

-0.0453 -0.0175
-1.0042 -0.1131

B= 0.0075 0.0134
 0.8647 0
 0 0.8647

 
 
 
 
 
 
  

 55.8348 7.6670 16.0470 -4.6754 -0.7265
 7.6670 2.3168 1.4987 -0.8309 -0.1215
 16.0470 1.4987 25.3586 -0.6709 0.0464
 -4.6754 -0.8309 -0.6709 1.5394 0.0782

P 

 -0.7265 -0.1215 0.0464 0.0782 1.0240

 
 
 
 
 
 
  

-4.1136 -0.7170 -0.3847 0.5277 0.0707
-0.6315 -0.1003 0.1236 0.0653 0.0798

L  
  
 

Unstable, Two-input system
10 ()T T T TA PA P Q A PB R B PB B PA    

Discrete-time nonlinear HJB solution using Approximate
dynamic programming

• Simulation
• The Cost function approximation – quadratic basis set

• The Policy approximation – linear basis set

ˆ ()T
i ui ku W x

 1 2 3 4 5()T x x x x x x 

11 12 13 14 15

21 22 23 24 25

u u u u uT
u

u u u u u

w w w w w
W

w w w w w
 

  
 

1 1 1
ˆ (,) ()T
i k Vi Vi kV x W W x  

1 2

2 2 2 2 2
1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5()T x    

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T

V V V V V V V V V V V V V V V VW w w w w w w w w w w w w w w w

Discrete-time nonlinear HJB solution using Approximate
dynamic programming

• Simulation
The convergence of the cost

[55.5411 15.2789 31.3032 -9.3255 -1.4536 2.3142 2.9234 -1.6594 -0.2430

 24.8262 -1.3076 0.0920 1.5388 0.1564 1.0240]

T
VW 

11 12 13 14 15 1 2 3 4 5

21 22 23 24 25 2 6 7 8 9

31 32 33 34 35 3 7 10 11 12

41 42 43 44 45 4 8 11 13

51 52 53 54 55

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0

V V V V V

V V V V V

V V V V V

V V V V

P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w
P P P P P

 
 
 
  
 
 
  

14

5 9 12 14 15

.5
0.5 0.5 0.5 0.5

V

V V V V V

w
w w w w w

 
 
 
 
 
 
  

 55.8348 7.6670 16.0470 -4.6754 -0.7265
 7.6670 2.3168 1.4987 -0.8309 -0.1215
 16.0470 1.4987 25.3586 -0.6709 0.0464
 -4.6754 -0.8309 -0.6709 1.5394 0.0782

P 

 -0.7265 -0.1215 0.0464 0.0782 1.0240

 
 
 
 
 
 
  

Actual ARE soln:

Discrete-time nonlinear HJB solution using Approximate
dynamic programming

• Simulation
The convergence of the control policy

4.1068 0.7164 0.3756 -0.5274 -0.0707
 0.6330 0.1005 -0.1216 -0.0653 -0.0798uW
 

  
 

11 12 13 14 15 11 12 13 14 15

21 22 23 24 25 21 22 23 24 25

u u u u u

u u u u u

L L L L L w w w w w
L L L L L w w w w w
   

    
   

-4.1136 -0.7170 -0.3847 0.5277 0.0707
-0.6315 -0.1003 0.1236 0.0653 0.0798

L
 

  
 

Note- In this example, drift dynamics matrix A is NOT Needed.
Riccati equation solved online without knowing A matrix

Actual optimal ctrl.

10 ()T T T TA PA P Q A PB R B PB B PA    

Batch LS

LS solution for Critic NN update

Issues with Nonlinear ADP

Integral over a region of state-space
Approximate using a set of points

time

x1

x2

1

1 () () () ((), ,)T T T T
Vi k k k k Vi uiW x x dx x d x W W dx   




 

 
  
 
 

Set of points over a region vs. points along a trajectory

Exploitation (optimal regulation) vs Exploration

For Linear systems- these are the same under PE condition

Selection of NN Training Set

time

x1

x2

Take sample points along a single trajectory

Recursive Least-Squares RLS

 1 1 1 11
() () (,) ()T T T

Vi Vi k Vi k k k Vi km m m
W W x W x r x u W x   

     

PE allows local smooth solution of Bellman eq.

System

Action network

Policy Evaluation
(Critic network)

()j kh x

cost

The Adaptive Critic Architecture

Control policy

)())(,()(111   kjkjkkj xVxhxrxV 

Adaptive Critics

))(),((minarg)(111   kjkkukj xVuxrxh
k



Value update

Control policy update

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Use RLS until convergence

REAL-TIME CONTROL LOOP

SLOWER EVALUATION LOOP

Motor control 200 Hz

Oscillation is a fundamental property of neural tissue

Brain has multiple adaptive clocks with different timescales

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement.

gamma rhythms 30-100 Hz, hippocampus and neocortex
high cognitive activity.

• consolidation of memory
• spatial mapping of the environment – place cells

The high frequency processing is due to the large amounts of sensorial data to be processed

Spinal cord

D. Vrabie, F. Lewis, and Dr. Dan Levine- RL for Continuous-Time Systems

Doya, Kimura, Kawato 2001

Il Hong Suh-

Gregory

Popper

Skinner

Darwin

Limbic system

Cerebral cortex
Motor areas

ThalamusBasal
ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction
and movement

Summary of Motor Control in the Human Nervous System

reflex

Supervised
learning

Reinforcement
Learning- dopamine

(eye movement)
inf.
olive

Hippocampus

Unsupervised
learning

Limbic System

Motor control 200 Hz

theta rhythms 4-10 Hz

picture by E. Stingu
D. Vrabie

Memory
functions

Long term

Short term

Hierarchy of multiple parallel loops

gamma rhythms 30-100 Hz,

Adaptive Critic structure

Theta waves 4-8 Hz

Reinforcement learning

Motor control 200 Hz

Cerebral cortex
Motor areas

Thalamus
Basal ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction and
movement

inf.
olive

Hippocampus

gamma rhythms 30-100 Hz

Intense processing due to the
amounts of information data to
be processed

Cognitive map of the environment
- place cells -

theta rhythms 4-10 Hz

Behavior reference Information
sent to the lower processing
levels

Motor control 200 Hz

theta rhythms 4-10 Hz

Cerebral cortex
Motor areas

Thalamus
Basal ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction and
movement

inf.
olive

Hippocampus

theta rhythms 4-10 Hz

Behavior reference Information
Critic information sent to the ActorActor

Cognitive map of the environment
- place cells -

Critic

Motor control 200 Hz
Control signal

Different methods of learning

Supervised learning
Unsupervised learning
Reinforcement learning

Machine learning- the formal study of learning systems

Synthesis of
 Computational intelligence
 Control systems
 Neurobiology

Four ADP Methods proposed by Paul Werbos

Heuristic dynamic programming

Dual heuristic programming

AD Heuristic dynamic programming

AD Dual heuristic programming

(Watkins Q Learning)

Critic NN to approximate:

Value

Gradient - costate
x
V



)(kxV Q function),(kk uxQ

Gradients
u
Q

x
Q





 ,

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)

Adaptive (Approximate) Dynamic Programming

Value Iteration

Q Learning- Watkins

)(),(),(1 khkkkkh xVuxruxQ 
policy h(.) used after time k

uk arbitrary

)())(,(khkkh xVxhxQ 

Define Q function

Note

))(,(),(),(11  kkhkkkkh xhxQuxruxQ Bellman eq for Q

)),((min)(**
kkuk uxQxV

k



Simple expression of Bellman’s principle

)),((minarg)(* *
kkuk uxQxh

k



Action Dependent ADP – Paul Werbos

)())(,()(1 khkkkh xVxhxrxV 
Value function recursion for given policy h(xk)

Optimal Adaptive Control for completely unknown DT systems

k k+1

xk xk+1
uk

h(x)

)(),(),(1 khkkkkh xVuxruxQ 

Specify a control policy ,....1,);( kkjxhu jj

policy h(.) used after time k

uk arbitrary

)())(,(khkkh xVxhxQ 

Define Q function

Note

))(,(),(),(11  kkhkkkkh xhxQuxruxQ Bellman equation for Q

))(),(),(1
**

 kkkkk xVuxruxQ 

))(,(),(),(1
*

1
**

 kkkkkk xhxQuxruxQ 

Optimal Q function

)))(,((min))(,()(***
kkhhkkk xhxQxhxQxV 

Optimal control solution

)),((min)(**
kkuk uxQxV

k



Simple expression of Bellman’s principle

)),((minarg)(* *
kkuk uxQxh

k



))(,((minarg)(* kkhhk xhxQxh 

Q Function Definition

Q Learning does not need to know f(xk) or g(xk)

)(),(),(1 khkkkkh xVuxruxQ

)()(kk
T

kkk
T
kk

T
k BuAxPBuAxRuuQxx 

For LQR PxxxWxV TT )()(













































































k

k

uuux

xuxx
T

k

k

k

k
T

k

k

k

k
TT

TTT

k

k

u
x

HH
HH

u
x

u
x

H
u
x

u
x

PBBRPAB
PBAPAAQ

u
x

Q is quadratic in x and u

Control update is found by][2])([20 kuukuxk
T

k
T

k
uHxHuPBBRPAxB

u
Q







so
kjkuxuuk

TT
k xLxHHPAxBPBBRu 1

11)(
 

Control found only from Q function
A and B not needed

V is quadratic in x

1k k kx Ax Bu  

Q Learning– Action Dependent HDP – Paul Werbos

Bradtke & Barto (1994) proved convergence for LQR

Q function for any given control policy h(xk) satisfies the Bellman equation

Policy Iteration Using Q Function- Recursive solution to HJB

Pick stabilizing initial control policy

Find Q function

Update control

))(,(),(),(11  kkhkkkkh xhxQuxruxQ 

))(,(),(),(111   kjkjkkkkj xhxQuxruxQ 

)),((minarg)(11 kkjukj uxQxh
k

 

Now f(xk,uk) not needed

Q function update for control is given by

Assume measurements of uk, xk and xk+1 are available to compute uk+1

),(),(uxWuxQ T

Then

 ),(),(),(111 kjkkjkkk
T
j xLxrxLxuxW   

Solve for weights using RLS or backprop.

Since xk+1 is measured in
training phase,
do not need knowledge of
f(x) or g(x) for value fn.
update

regression matrix

Implementation- DT Q Function Policy Iteration

),(),(),(1111   kjkjkkkkj xLxQuxruxQ 

kjk xLu 

Now u is an input to the NN- Werbos- Action dependent NN

)(x

For LQR

For LQR case

QFA – Q Fn. Approximation

Bradtke and Barto

),(),(),(1111   kjkjkkkkj xLxQuxruxQ 

Q Policy Iteration

)),((minarg)(11 kkjukj uxQxh
k

 

Control policy update

 ),(),(),(111 kjkkjkkk
T
j xLxrxLxuxW   

kjkuxuuk xLxHHu 1
1


 

Model-free policy iteration

Bradtke, Ydstie,
Barto

Greedy Q Fn. Update - Approximate Dynamic Programming
ADP Method 3. Q Learning

Action-Dependent Heuristic Dynamic Programming (ADHDP)

Paul Werbos
Model-free HDP

))(,(),(),(111   kjkjkkkkj xhxQuxruxQ 

Greedy Q Update

1111 target),(),(),(  jkjk
T
jkjkkk

T
j xLxWxLxruxW 

Update weights by RLS or backprop.

Stable initial control needed

Stable initial control NOT needed

Direct OPTIMAL ADAPTIVE CONTROL

Q learning actually solves the Riccati Equation
WITHOUT knowing the plant dynamics

Model-free ADP

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?

A Q-Learning Based Adaptive Optimal
Controller Implementation for a Humanoid

Robot Arm

Said Ghani Khan1, Guido Herrmann1, Frank L. Lewis2, Tony Pipe1,
Chris Melhuish1

1: Bristol Robotics Laboratory, University of Bristol and University of the West of England,
Bristol, UK

2: ARRI, Texas University at Arlington, USA

Conference on Decision and Control (CDC) 2011, Orlando
11 December 2011

BRL BERT II
ARM

The mechanical design and manufacturing for the BERT II torso
including hand and arm has been conducted by Elumotion
(www.elumotion.com), a Bristol Based company

ADP Actor-Critic Scheme

Stingue et al. 2010

The cost of control is modeled via an NN

Algorithm

Algorithm
The function is a vector, linear in the control and control error and system states,
e.g.









































n

nn

m

k

k

kk

kk

k

k

kkkk

x

x
dx

dx
u

u

duxz







1

11

1

),,(

),,(kkkk duxz

Selected elements of the
Kronecker product of zk
will be used as functions
of a polynomial neural
network 

(greater detail later)

Note that the control signals uk are at most quadratic in This again is a practical assumption.

The cost function is modified to include
constraints

Introducing Constraints



The new cost function....

qL is the joint limit.

The NN nodes are obtained by the Kronecker product of :

Additional neurons are added to deal with the extra nonlinearity due to constraints

Introducing Constraints - Modelling Q

Constrained Case-Experiment

Reinforcement Learning Approach for
Tele-Robotic Interaction Interface

Jartuwat Rajruangrabin and Dan Popa

Automation & Robotics Research Institute
The University of Texas at Arlington

Experiment Platform

              Te ttttztytxtq 

u t 
1

2

3

















1

2

3

Haptic Device used as
Input Interface

Simulated 7-degrees of freedom robotic
manipulator used as a system to be
controlled

6-degrees of freedom robotic
manipulator mounted on a differential
drive mobile robot platform

Past Work / Challenges

Robot
SystemOperator

Performance Evaluation

Robot-Interface System

Output
Interface System

input
u xp

     p p p px t A x t B u t 

Set of input / output pairs have to be specified.Set of input / output pairs have to be specified.

• Desired trajectory is known

What if we cannot specify the desired output trajectory directly? What if we cannot specify the desired output trajectory directly?

• Use Reinforcement Learning

Challenges

Interface Mapping
What is it exactly?

x y

f x 
What can we do to get f(x)?

The simplest way is to obtain a set of inputs and a set of outputs and
calculate the relationship (Curve Fitting)

x
y

Curve Fitting
Algorithm f  x 

Static Mapping Approach

x

y

x
y

Curve Fitting
Algorithm f  x 

f  x 

Reinforcement Learning

x
y

Curve Fitting
Algorithm f  x 

What if we cannot specify the desired output
trajectory directly ?

“Learning by interacting with an environment”Reinforcement LearningReinforcement Learning

With RL we do not have to specify a desire trajectory.

Instead, a reward function is used

NN Training

Gradient steepest descent algorithm is
used in conjunction with back
propagation to train the feed forward
network

Log sigmoid function is used as a neuron
activation function  . 1

1 ex


 E
 w

RL Implementation Haptic/Robot Arm on a Mobile Robot

Mapping Model:
- Use a non-linear dynamic model

Step 1(Initialization): Train the NN so
that the weights are optimal according to
the desired trajectory

Step 2: (Online Learning) Implement
the TD(λ) learning algorithm

rVR


 yx  yxmax
 x , yx  yxmax

x 
 yx  yxmin

x , yx  yxmin
 x 

0, otherwise









y
k1

 f
w

y
k
,x 

Objective:
-Exp1 : Implement RL with reward function
that allow the user to control movement of
the mobile platform
-Exp2 : Reverse the direction mapping of
mobile platform based on Exp1

Reward function:

rVL


 yx  yxmax
 x , yx  yxmax

x 
 yx  yxmin

x , yx  yxmin
 x 

0, otherwise









Experiment Result – Online TD(λ) Learning

Reward function is set so that the function is maximized when Y move along the
opposite direction (with offset)

Experiment Result – Contour Shaping

Reverse and Scale Y - Mapping Update Through TD(λ) Learning Algorithm

NEW ROBOTIC TREATMENT
SYSTEMS FOR CHILDHOOD

CEREBRAL PALSY and AUTISM

D. O. PopaA, I. RanatungaA, D. HansonB, F. MakedonC

ADepartment of Electrical Engineering, University of Texas at Arlington,USA
BHanson Robotics Inc., Plano, TX, USA

CDepartment of Computer Science & Engineering Department,
University of Texas at Arlington, USA

This work was supported by:
US National Science Foundation Grants #CPS 1035913, and #CNS
0923494.
TxMed consortium grant: “Human-Robot Interaction System for Early
Diagnosis and Treatment of Childhood Autism Spectrum Disorders
(RoDiCA)”

Introduction
 Two assistive robotic systems aimed at the

treatment of children with certain motor and
cognitive impairments.

 In the Neptune project [1]
– Mobile manipulator for children suffering from

Cerebral-Palsy.
– Mobile robot base and a 6DOF robotic arm,

interfaced via:
• Wii Remote, iPad, Neuroheadset, the Kinect, and

Force sensing robotic skin
– Therapeutic outcomes

• Hand and head gesture recognition and reward.
• Hand motion excercises using IPAD Games

(CPlay, CPMaze, ProlloquoToGo) held by the
robot.

 The RoDiCA project [2]
– focuses on treating cognitive impairments in

children suffering from ASD
– Zeno is a robotic platform developed by Hanson

Robotics, based on a patented realistic skin.
– Therapeutic outcomes

• Real time subject tracking/joint attention
• Advanced head-eye and hand coordination
• Facial gesture recognition and synthesis
• Data logging and analysis.

4/22/2012 Multiscale Robots and Systems
Lab University of Texas Arlington

73

Zeno (by Hanson RoboKind Inc.) generating
facial expressions and maintaining eye

contact.

Neptune Mobile manipulator with iPad
attached.

Advanced Control for Human
Robot Interaction

4/22/2012 Multiscale Robots and Systems
Lab University of Texas Arlington

74

Zeno Video

Neptune Control through
Neural Headband

Visual HRI

Realistic &
Intuitive

Human‐Robot
Interaction

Physical HRI

Recognize &
Synthesize
poses and
gestures

Adaptive
Interfaces

Robot Touch HRI

Adaptive Interfaces
 The supervisory control of multi-DOF

robots is a demanding application.
 If a single operator is tasked with direct

control, performing coordinated tasks
becomes non-intuitive.

 We use Reinforcement Learning
TD(lambda) scheme in order to
adaptively change the mapping of
DOF’s from the operator user interface
to the robot.

4/22/2012 Multiscale Robots and Systems
Lab University of Texas Arlington

75

State Propagation

Interface Mapping System

Metrics
Evaluation

state

Interface input

action

Update
Reward
functionreward

Critic

Actor

TD
error

)(1 tttt wpww  

 
 











p

i

q

j
iijii uwwuy

0 0
)(

Value
Function

Policy

The cloud-capped towers, the gorgeous palaces,
The solemn temples, the great globe itself,
Yea, all which it inherit, shall dissolve,
And, like this insubstantial pageant faded,
Leave not a rack behind.

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

Our revels now are ended. These our actors,
As I foretold you, were all spirits, and
Are melted into air, into thin air.

Prospero, in The Tempest, act 4, sc. 1, l. 152-6, Shakespeare

An Approximate Dynamic Programming Based Controller
for an Underactuated 6DoF Quadrotor

Emanuel Stingu Frank Lewis

™

Automation & Robotics Research Institute
University of Texas at ArlingtonARRI

Supported by
ARO grant W91NF-05-1-0314
NSF grant ECCS-0801330

3 control loops

The quadrotor has 17 states and only 4 control inputs, thus it is very under-actuated.
Three control loops with dynamic inversion are used to generate the 4 control signals.

x

y

z
amount
of tilt

yaw

direction
of tilt

Momentum theory
applied to the propeller

Translation
and yaw

Controller

Attitude
Controller

Motor and
Propeller
Controller

Reference
trajectory

Position
and velocity
errors

Desired
attitude

Desired
forces

Motor
commands

Dynamic inversion
accelerations to attitude

Dynamic inversion
rotation accelerations to forces

Altitude control: thrust force

Dynamic inversion
thrust forces to motor voltages

The actor is where

and

The critic is

Approximate Dynamic Programming

Global Critic

State vector and
references

Actor tuning

Translation
and yaw

Controller

Attitude
Controller

Motor and
Propeller
Controller

Reference
trajectory

Position
and velocity
errors

Desired
attitude

Desired
forces

Motor
commands

Local Actor Local Actor Local Actor

1 1(,)k k ku h x z   
T

ad z ad ad mot adu a Ω Vq

1 1 1 2 2 2 3 3 3(,) (,) (,) (,)
TT T T

k k k k k k k kh x z h x z h x z h x z   
Subsets of the state and
tracking error vectors (,) , ,j k

h k k j j j
j k

V x z r x z u






 

Once the value of the Q function at is known, a backup of it is made into the RBF neural network by
adjusting the weights W and/or by adding more neurons and by reconfiguring their other parameters. This is a separate
process that just needs to know the

coordinates and the new value to store.

The update of the Q value is not made completely towards the new value. This slows down the learning, but adds
robustness.

The policy update step is done by simply solving

after the new Q value was stored. The value for h is stored into the actor RBF neural network using the same
mechanism as before:

Approximate Dynamic Programming

1 1 1(, ,)k k kx z u  

 , ,x z u

   
  

   
1 1 2 2

1 1 1 1 1 1
1 1 1

, , ,
, , , ,

, , , ,
k k k kT

k k k k k k T
k k

T
k k k k

r x z h x z
Q x z u W x z u

x z u W x z uW
 

  
   

     

  


 

 
 

  

  , 10 new olstored old dQQ QQ    

 , , 0k kQ x z u
u





     , , ,T T
k k k k k kh x z U x z u U x z      

The Curse of Dimensionality

The actor acts as a nonlinear function approximator. Normally we have

In the quadrotor case, because the reference is not zero and the system is nonlinear, we need

For each of the position, attitude and motor/propeller loops the state vector includes the local states and the external
states that have a big coupling effect on the loop performance.
It is easy to see that this way the input space can easily have n=14 or more dimensions.
A RBF neural network with the neurons placed on a grid with N elements in each dimension would require
neurons. For N=5 and n=14, are required.

1 ()k ku h x 

1 (,)k k ku h x z 

nN 96 10

Placing neurons on a grid is no better than a look-up
table. The solutions to reducing the number of neurons
are the following:
• preprocess the states to provide signals

with physical significance as inputs
• combine multiple states into a lower

dimension signal
• map multiple equivalent regions from the

state-space into only one.

