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It is man’s obligation to explore the most difficult questions in
the clearest possible way and use reason and intellect to arrive
at the best answer.

Man’s task is to understand patterns in nature and society.

The first task is to understand the individual problem, then to
analyze symptoms and causes, and only then to design
treatment and controls.

Ibn Sina 1002-1042
(Avicenna)



Importance of Feedback Control

Darwin- FB and natural selection
Volterra- FB and fish population balance
Adam Smith- FB and international economy
James Watt- FB and the steam engine
FB and cell homeostasis

The resources available to most species for their survival are meager and limited

Nature uses Optimal control



F.L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback
control,” IEEE Circuits & Systems Magazine, Invited Feature Article, pp. 32-50, Third Quarter 2009.

IEEE Control systems magazine, to appear.
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Discrete-Time Optimal Control
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DT Optimal Control – Linear Systems Quadratic cost (LQR)
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Optimal Control
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Different methods of learning

Supervised learning
Unsupervised learning
Reinforcement learning

Machine learning- the formal study of learning systems

Synthesis of 
 Computational intelligence
 Control systems
 Neurobiology

We want robot controllers that learn optimal control solutions online in real-time



Different methods of learning

SystemAdaptive
Learning system

Control
Inputs

outputs

environmentTune
actor

Reinforcement
signal

Actor

Critic

Desired
performance

Reinforcement learning
Ivan Pavlov 1890s

Actor-Critic Learning

We want OPTIMAL performance
- ADP- Approximate Dynamic Programming
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Focus on these two eqs.

RL Policy Iterations to Solve Optimal Control Problem



Can be interpreted as a consistency equation that must be satisfied 
by the value function at each time stage. 

Expresses a relation between the current value of being in state x
and the value(s) of being in next state x’ given that policy 

Captures the action, observation, evaluation, and improvement mechanisms of 
reinforcement learning.

Bellman Equation

Temporal Difference Idea
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Policy Evaluation and Policy Improvement

Policy Evaluation by Bellman Equation:

Policy Improvement:

consider algorithms that repeatedly interleave the two procedures:

' ( ) ( )h hV x V x

( )hV xthe policy is said to be greedy with respect to value function'( )kh x

At each step, one obtains a policy that is no worse than the previous policy.  
Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.  
One step is a contraction map.

There is a large family of algorithms that implement the 
policy evaluation and policy improvement procedures in various ways 

Policy Improvement makes

(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).
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DT Policy Iteration to solve HJB

)())(,()( 111   kjkjkkj xVxhxrxV 

1 1 1 1( ) arg min( ( , ) ( ))
k

j k k k j ku
h x r x u V x    

Howard (1960) proved convergence for MDP
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Cost for any given control policy h(xk) satisfies the recursion

Recursive solution

Pick stabilizing initial control

Policy Evaluation – solve Bellman Equation

Policy Improvement

f(.) and g(.) do not appear

Bellman eq.

Recursive form
Consistency equation

1( )jV xthe policy is said to be greedy with respect to value function1( )j kh x

At each step, one obtains a policy that is no worse than the previous policy.  
Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.  
One step is a contraction map.

(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).



Methods to implement Policy Iteration

 Exact Computation- needs full system dynamics

 Temporal Difference- for robot trajectory following

Montecarlo Learning- for learning episodic robot tasks
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DT Policy Iteration – Linear Systems Quadratic Cost- LQR

Solves Lyapunov eq. without knowing A and B

( ) TV x x Px

For any stabilizing policy, the cost is

DT Policy iterations

Hewer proved convergence in 1971

DT Lyapunov eq.1 1

1
1 1 1

( ) ( )

( )

T T
j j j j j j

T T
j j j

A BL P A BL P Q L RL

L R B P B B P A
 


  

     

 

Policy Iteration Solves Lyapunov equation WITHOUT knowing System Dynamics

Equivalent to an Underlying Problem- DT LQR:

1 ( ) ,k k k kx Ax Bu A BL x    

LQR value is quadratic
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DT Policy Iteration – How to implement online?
Linear Systems Quadratic Cost- LQR

Solves Lyapunov eq. without knowing A and B

( ) TV x x Px

DT Policy iterations
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LQR cost is quadratic
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for some matrix P

Then update control using
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for control update
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Implementation- DT Policy Iteration
Nonlinear Case

Value Function Approximation (VFA)

)()( xWxV T

basis functionsweights

LQR case- V(x) is quadratic

( ) ( )T TV x x Px W x 

Quadratic basis functions

Nonlinear system case- use Neural Network
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Value function update for given control – Bellman Equation

Assume measurements of xk and xk+1 are available to compute uk+1

Then
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Solve for weights in real-time using RLS
or, batch LS- many trajectories with different initial conditions over a compact set

Then update control using

Need to know g(xk) for control update

Since xk+1 is measured, 
do not need knowledge of f(x) 
or g(x) for value fn. update

regression matrix

Implementation- DT Policy Iteration
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1.  Select control policy

2.  Find associated cost

3.  Improve control

Needs 10 lines of MATLAB code

Direct optimal adaptive control

Solves Lyapunov eq. without knowing dynamics

k k+1

observe xk

observe xk+1

apply uk

observe cost rk

update V

do until convergence to Vj+1 update control to uj+1

  ))(,()()( 11 kjkkk
T
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Persistence of Excitation

Regression vector must be PE
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System

Action network

Policy Evaluation
(Critic network)

( )j kh x

cost

The Adaptive Critic Architecture

Control policy
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Adaptive Critics
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Value update

Control policy update

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Use RLS until convergence



Adaptive Control

Plant
control output

Identify the 
Controller-
Direct Adaptive

Identify the 
system model-
Indirect Adaptive

Identify the 
performance value-
Optimal Adaptive
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Greedy Value Fn. Update- Approximate Dynamic Programming 
Value Iteration= Heuristic Dynamic Programming (HDP)

Paul Werbos
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Policy Iteration
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Hewer 1971
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For LQR
Underlying RE Lancaster & Rodman 

proved convergence

Two occurrences of cost allows def. of greedy update

Initial stabilizing control is needed

Lyapunov eq.

Simple recursion

Initial stabilizing control is NOT needed
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Compare Value Iteration

To Dynamic Programming

( ')jV xone can interpret 

as an approximation or estimate for the future stage cost-to-go from the future state x’ 

Estimate for the future stage cost-to-go 



A problem with DT Policy Iteration and VI

Assume measurements of xk and xk+1 are available to compute uk+1

Then
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Since xk+1 is measured, 
do not need knowledge of f(x) 
or g(x) for value fn. update
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Policy Improvement
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for control update

Easy to fix – use 2 NN

LQR case
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Standard Neural Network VFA for On-Line Implementation

Define target cost function

NN for Value - Critic NN for control action

HDP

Backpropagation- P. Werbos

Implicit equation for DT control- use gradient descent for action update
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Explicit equation for cost – use LS for Critic NN update or RLS
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Asma Al-Tamimi & F. Lewis



Implicit equation for DT control- use gradient descent for action update
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NN for control action

Note that state drift dynamics f(xk) is NOT needed since: 

1. NN Approximation for action is used

2. xk+1 is measured in training phase

Interesting Fact for HDP for Nonlinear systems
kj

T
j

T
kjkj AxPBBPBIxLxh 1)()( Linear Case

must know system A and B matrices

g(.) is needed

Information about A is stored in NN



Discrete-time nonlinear HJB solution using Approximate 
dynamic programming

• Simulation Example 1
• Linear system – Aircraft longitudinal dynamics

• The HJB, i.e. ARE, Solution 

1.0722    0.0954        0    -0.0541    -0.0153
    4.1534    1.1175          0    -0.8000    -0.1010

A=     0.1359    0.0071      1.0     0.0039     0.0097
         0         0                 0     0.1353         0
         0         0                 0        0          0.1353

 
 
 
 
 
 
  

-0.0453   -0.0175
-1.0042   -0.1131

B=  0.0075    0.0134
  0.8647         0
      0       0.8647
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 
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 
 
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 55.8348    7.6670   16.0470   -4.6754  -0.7265
    7.6670    2.3168    1.4987   -0.8309   -0.1215
   16.0470    1.4987   25.3586   -0.6709    0.0464
   -4.6754   -0.8309   -0.6709    1.5394    0.0782

P 

   -0.7265   -0.1215    0.0464    0.0782    1.0240

 
 
 
 
 
 
  

-4.1136   -0.7170   -0.3847    0.5277   0.0707
-0.6315   -0.1003    0.1236    0.0653   0.0798

L  
  
 

Unstable, Two-input system
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Discrete-time nonlinear HJB solution using Approximate 
dynamic programming

• Simulation
• The Cost function approximation – quadratic basis set 

• The Policy approximation – linear basis set
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1 2

2 2 2 2 2
1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5( )T x x x x x x x x x x x x x x x x x x x x x x x x x x    

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T

V V V V V V V V V V V V V V V VW w w w w w w w w w w w w w w w



Discrete-time nonlinear HJB solution using Approximate 
dynamic programming 

• Simulation
The convergence of the cost  

[55.5411   15.2789   31.3032   -9.3255   -1.4536    2.3142    2.9234   -1.6594  -0.2430
 
   24.8262   -1.3076    0.0920    1.5388    0.1564    1.0240]

T
VW 

11 12 13 14 15 1 2 3 4 5

21 22 23 24 25 2 6 7 8 9

31 32 33 34 35 3 7 10 11 12

41 42 43 44 45 4 8 11 13

51 52 53 54 55

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0

V V V V V

V V V V V

V V V V V

V V V V

P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w w
P P P P P w w w w
P P P P P

 
 
 
  
 
 
  

14

5 9 12 14 15

.5
0.5 0.5 0.5 0.5

V

V V V V V

w
w w w w w

 
 
 
 
 
 
  

 55.8348    7.6670   16.0470   -4.6754   -0.7265
    7.6670    2.3168    1.4987   -0.8309   -0.1215
   16.0470    1.4987   25.3586   -0.6709    0.0464
   -4.6754   -0.8309   -0.6709    1.5394    0.0782

P 

   -0.7265   -0.1215    0.0464    0.0782    1.0240

 
 
 
 
 
 
  

Actual ARE soln:



Discrete-time nonlinear HJB solution using Approximate 
dynamic programming

• Simulation
The convergence of the control policy  

4.1068    0.7164    0.3756   -0.5274   -0.0707
 0.6330    0.1005   -0.1216   -0.0653   -0.0798uW
 

  
 

11 12 13 14 15 11 12 13 14 15

21 22 23 24 25 21 22 23 24 25

u u u u u

u u u u u

L L L L L w w w w w
L L L L L w w w w w
   

    
   

-4.1136   -0.7170   -0.3847    0.5277   0.0707
-0.6315   -0.1003    0.1236    0.0653   0.0798

L
 

  
 

Note- In this example, drift dynamics matrix A is NOT Needed.
Riccati equation solved online without knowing A matrix

Actual optimal ctrl.

10 ( )T T T TA PA P Q A PB R B PB B PA    



Batch LS

LS solution for Critic NN update

Issues with Nonlinear ADP

Integral over a region of state-space
Approximate using a set of points

time

x1

x2

1

1 ( ) ( ) ( ) ( ( ), , )T T T T
Vi k k k k Vi uiW x x dx x d x W W dx   




 

 
  
 
 

Set of points over a region vs. points along a trajectory

Exploitation (optimal regulation) vs Exploration

For Linear systems- these are the same under PE condition

Selection of NN Training Set

time

x1

x2

Take sample points along a single trajectory

Recursive Least-Squares RLS

 1 1 1 11
( ) ( ) ( , ) ( )T T T

Vi Vi k Vi k k k Vi km m m
W W x W x r x u W x   

     

PE allows local smooth solution of Bellman eq.





System

Action network

Policy Evaluation
(Critic network)

( )j kh x

cost

The Adaptive Critic Architecture

Control policy

)())(,()( 111   kjkjkkj xVxhxrxV 

Adaptive Critics

))(),((minarg)( 111   kjkkukj xVuxrxh
k



Value update

Control policy update

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Use RLS until convergence

REAL-TIME CONTROL LOOP

SLOWER EVALUATION LOOP



Motor control 200 Hz

Oscillation is a fundamental property of neural tissue 

Brain has multiple adaptive clocks with different timescales 

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement. 

gamma rhythms 30-100 Hz, hippocampus and neocortex 
high cognitive activity. 

• consolidation of memory
• spatial mapping of the environment – place cells

The high frequency processing is due to the large amounts of sensorial data to be processed

Spinal cord

D. Vrabie, F. Lewis, and Dr. Dan Levine- RL for Continuous-Time Systems



Doya, Kimura, Kawato 2001

Il Hong Suh-

Gregory

Popper

Skinner

Darwin

Limbic system



Cerebral cortex
Motor areas

ThalamusBasal 
ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction 
and movement

Summary of Motor Control in the Human Nervous System

reflex

Supervised
learning

Reinforcement
Learning- dopamine

(eye movement)
inf. 
olive

Hippocampus

Unsupervised
learning

Limbic System

Motor control 200 Hz

theta rhythms 4-10 Hz

picture by E. Stingu
D. Vrabie

Memory
functions

Long term

Short term

Hierarchy of multiple parallel loops 

gamma rhythms 30-100 Hz, 



Adaptive Critic structure 

Theta waves 4-8 Hz

Reinforcement learning

Motor control 200 Hz



Cerebral cortex
Motor areas

Thalamus
Basal ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction and 
movement

inf. 
olive

Hippocampus

gamma rhythms 30-100 Hz

Intense processing due to the 
amounts of information data to 
be processed

Cognitive map of the environment 
- place cells -

theta rhythms 4-10 Hz

Behavior reference Information
sent to the lower processing 
levels 

Motor control 200 Hz

theta rhythms 4-10 Hz



Cerebral cortex
Motor areas

Thalamus
Basal ganglia

Cerebellum

Brainstem

Spinal cord

Interoceptive
receptors

Exteroceptive
receptors

Muscle contraction and 
movement

inf. 
olive

Hippocampus

theta rhythms 4-10 Hz

Behavior reference Information
Critic information sent to the ActorActor

Cognitive map of the environment 
- place cells -

Critic

Motor control 200 Hz
Control signal



Different methods of learning

Supervised learning
Unsupervised learning
Reinforcement learning

Machine learning- the formal study of learning systems

Synthesis of 
 Computational intelligence
 Control systems
 Neurobiology





Four ADP Methods proposed by Paul Werbos

Heuristic dynamic programming

Dual heuristic programming

AD Heuristic dynamic programming

AD Dual heuristic programming

(Watkins Q Learning)

Critic NN to approximate:

Value 

Gradient - costate 
x
V



)( kxV Q function ),( kk uxQ

Gradients
u
Q

x
Q





 ,

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)

Adaptive (Approximate) Dynamic Programming

Value Iteration



Q Learning- Watkins

)(),(),( 1 khkkkkh xVuxruxQ 
policy h(.) used after time k

uk arbitrary

)())(,( khkkh xVxhxQ 

Define Q function

Note 

))(,(),(),( 11  kkhkkkkh xhxQuxruxQ Bellman eq  for Q

)),((min)( **
kkuk uxQxV

k



Simple expression of Bellman’s principle

)),((minarg)(* *
kkuk uxQxh

k



Action Dependent ADP – Paul Werbos

)())(,()( 1 khkkkh xVxhxrxV 
Value function recursion for given policy h(xk)

Optimal Adaptive Control for completely unknown DT systems

k k+1

xk xk+1
uk

h(x)



)(),(),( 1 khkkkkh xVuxruxQ 

Specify a control policy ,....1,);(  kkjxhu jj

policy h(.) used after time k

uk arbitrary

)())(,( khkkh xVxhxQ 

Define Q function

Note 

))(,(),(),( 11  kkhkkkkh xhxQuxruxQ Bellman equation  for Q

))(),(),( 1
**

 kkkkk xVuxruxQ 

))(,(),(),( 1
*

1
**

 kkkkkk xhxQuxruxQ 

Optimal Q function

)))(,((min))(,()( ***
kkhhkkk xhxQxhxQxV 

Optimal control solution

)),((min)( **
kkuk uxQxV

k



Simple expression of Bellman’s principle

)),((minarg)(* *
kkuk uxQxh

k



))(,((minarg)(* kkhhk xhxQxh 

Q Function Definition



Q Learning does not need to know f(xk) or g(xk)

)(),(),( 1 khkkkkh xVuxruxQ

)()( kk
T

kkk
T
kk

T
k BuAxPBuAxRuuQxx 

For LQR PxxxWxV TT  )()( 
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HH
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u
x

u
x

H
u
x

u
x

PBBRPAB
PBAPAAQ

u
x

Q is quadratic in x and u

Control update is found by ][2])([20 kuukuxk
T

k
T

k
uHxHuPBBRPAxB

u
Q







so
kjkuxuuk

TT
k xLxHHPAxBPBBRu 1

11)( 
 

Control found only from Q function
A and B not needed

V is quadratic in x

1k k kx Ax Bu  



Q Learning– Action Dependent HDP – Paul Werbos

Bradtke & Barto (1994) proved convergence for LQR

Q function for any given control policy h(xk) satisfies the Bellman equation

Policy Iteration Using Q Function- Recursive solution to HJB

Pick stabilizing initial control policy

Find Q function

Update control

))(,(),(),( 11  kkhkkkkh xhxQuxruxQ 

))(,(),(),( 111   kjkjkkkkj xhxQuxruxQ 

)),((minarg)( 11 kkjukj uxQxh
k

 

Now f(xk,uk) not needed



Q function update for control                   is given by

Assume measurements of uk, xk and xk+1 are available to compute uk+1

),(),( uxWuxQ T

Then

  ),(),(),( 111 kjkkjkkk
T
j xLxrxLxuxW   

Solve for weights using RLS or backprop.

Since xk+1 is measured in 
training phase, 
do not need knowledge of 
f(x) or g(x) for value fn. 
update

regression matrix

Implementation- DT Q Function Policy Iteration

),(),(),( 1111   kjkjkkkkj xLxQuxruxQ 

kjk xLu 

Now u is an input to the NN- Werbos- Action dependent NN

)(x

For LQR

For LQR case

QFA – Q Fn. Approximation

Bradtke and Barto



),(),(),( 1111   kjkjkkkkj xLxQuxruxQ 

Q Policy Iteration

)),((minarg)( 11 kkjukj uxQxh
k

 

Control policy update

  ),(),(),( 111 kjkkjkkk
T
j xLxrxLxuxW   

kjkuxuuk xLxHHu 1
1


 

Model-free policy iteration

Bradtke, Ydstie, 
Barto

Greedy Q Fn. Update - Approximate Dynamic Programming
ADP Method 3.  Q Learning

Action-Dependent Heuristic Dynamic Programming (ADHDP)

Paul Werbos
Model-free HDP

))(,(),(),( 111   kjkjkkkkj xhxQuxruxQ 

Greedy Q Update

1111 target),(),(),(   jkjk
T
jkjkkk

T
j xLxWxLxruxW 

Update weights by RLS or backprop.

Stable initial control needed

Stable initial control NOT needed



Direct OPTIMAL ADAPTIVE CONTROL

Q learning actually solves the Riccati Equation 
WITHOUT knowing the plant dynamics

Model-free ADP

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?





A Q-Learning Based Adaptive Optimal 
Controller Implementation for a Humanoid 

Robot Arm

Said Ghani Khan1, Guido Herrmann1, Frank L. Lewis2, Tony Pipe1, 
Chris Melhuish1

1: Bristol Robotics Laboratory, University of  Bristol and University of the West of England, 
Bristol, UK

2:  ARRI, Texas University at Arlington, USA

Conference on Decision and Control (CDC) 2011, Orlando
11 December 2011



BRL BERT II 
ARM

The mechanical design and manufacturing for the BERT II torso 
including hand and arm has been conducted by Elumotion  
(www.elumotion.com), a Bristol Based company



ADP Actor-Critic Scheme

Stingue et al. 2010



The cost of control is modeled via an NN

Algorithm



Algorithm
The function                                        is a vector, linear in the control and control error and system states, 
e.g.  
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


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11

1

),,(

),,( kkkk duxz

Selected elements of the
Kronecker product of zk
will  be used as functions 
of a polynomial neural 
network 

(greater detail later)

Note that the control signals uk are at most quadratic in This again is a practical assumption. 



The cost function is modified to include 
constraints

Introducing Constraints 



The new cost function....

qL is the joint limit.



The NN nodes  are obtained by the Kronecker product of :

Additional neurons are added to deal with the extra nonlinearity due to constraints

Introducing Constraints  - Modelling Q



Constrained Case-Experiment





Reinforcement Learning Approach for 
Tele-Robotic Interaction Interface

Jartuwat  Rajruangrabin and Dan Popa

Automation & Robotics Research Institute
The University of Texas at Arlington



Experiment Platform

              Te ttttztytxtq 

u t 
1

2

3

















1

2

3

Haptic Device used as 
Input Interface

Simulated 7-degrees of freedom robotic 
manipulator used as a system to be 
controlled

6-degrees of freedom robotic 
manipulator mounted on a differential 
drive mobile robot platform



Past Work / Challenges

Robot 
SystemOperator

Performance Evaluation

Robot-Interface System

Output
Interface System

input
u xp

     p p p px t A x t B u t 

Set of input / output pairs have to be specified.Set of input / output pairs have to be specified.

• Desired trajectory is known

What if we cannot specify the desired output trajectory directly? What if we cannot specify the desired output trajectory directly? 

• Use Reinforcement Learning

Challenges



Interface Mapping
What is it exactly?

x y

f x 
What can we do to get f(x)?

The simplest way is to obtain a set of inputs and a set of outputs and 
calculate the relationship (Curve Fitting)

x
y

Curve Fitting 
Algorithm f  x 



Static Mapping Approach

x

y

x
y

Curve Fitting 
Algorithm f  x 

f  x 



Reinforcement Learning

x
y

Curve Fitting 
Algorithm f  x 

What if we cannot specify the desired output 
trajectory directly ? 

“Learning by interacting with an environment”Reinforcement LearningReinforcement Learning

With RL we do not have to specify a desire trajectory.

Instead, a reward function is used



NN Training

Gradient steepest descent algorithm is 
used in conjunction with back 
propagation to train the feed forward 
network

Log sigmoid function is used as a neuron 
activation function  . 1

1 ex


 E
 w



RL Implementation Haptic/Robot Arm on a Mobile Robot

Mapping Model:  
- Use a non-linear dynamic model

Step 1(Initialization): Train the NN so 
that the weights are optimal according to 
the desired trajectory 

Step 2: (Online Learning) Implement 
the TD(λ) learning algorithm

rVR


 yx  yxmax
 x , yx  yxmax

x 
 yx  yxmin

x , yx  yxmin
 x 

0, otherwise









y
k1

 f
w

y
k
,x 

Objective:  
-Exp1 : Implement RL with reward function 
that allow the user to control movement of 
the mobile platform
-Exp2 : Reverse the direction mapping of 
mobile platform based on Exp1 

Reward function:  

rVL


 yx  yxmax
 x , yx  yxmax

x 
 yx  yxmin

x , yx  yxmin
 x 

0, otherwise











Experiment Result – Online TD(λ) Learning

Reward function is set so that the function is maximized when Y move along the 
opposite direction (with offset)



Experiment Result – Contour Shaping

Reverse and Scale Y - Mapping Update Through TD(λ) Learning Algorithm 



NEW ROBOTIC TREATMENT 
SYSTEMS FOR CHILDHOOD 

CEREBRAL PALSY and AUTISM

D. O. PopaA, I. RanatungaA, D. HansonB, F. MakedonC

ADepartment of Electrical Engineering, University of Texas at Arlington,USA
BHanson Robotics Inc., Plano, TX, USA

CDepartment of Computer Science & Engineering Department, 
University of Texas at Arlington, USA

This work was supported by:
US National Science Foundation Grants #CPS 1035913, and #CNS 
0923494.
TxMed consortium grant: “Human-Robot Interaction System for Early 
Diagnosis and Treatment of Childhood Autism Spectrum Disorders 
(RoDiCA)”



Introduction
 Two assistive robotic systems aimed at the 

treatment of children with certain motor and 
cognitive impairments.

 In the Neptune project [1]
– Mobile manipulator for children suffering from 

Cerebral-Palsy.
– Mobile robot base and a 6DOF robotic arm, 

interfaced via:
• Wii Remote, iPad, Neuroheadset, the Kinect, and 

Force sensing robotic skin
– Therapeutic outcomes

• Hand and head gesture recognition and reward.
• Hand motion excercises using IPAD Games 

(CPlay, CPMaze, ProlloquoToGo) held by the 
robot.

 The RoDiCA project [2]
– focuses on treating cognitive impairments in 

children suffering from ASD
– Zeno is a robotic platform developed by Hanson 

Robotics, based on a patented realistic skin.
– Therapeutic outcomes

• Real time subject tracking/joint attention
• Advanced head-eye and hand coordination
• Facial gesture recognition and synthesis
• Data logging and analysis.

4/22/2012 Multiscale Robots and Systems 
Lab University of Texas Arlington

73

Zeno (by Hanson RoboKind Inc.)  generating 
facial expressions and maintaining eye 

contact.

Neptune Mobile manipulator with iPad 
attached.



Advanced Control for Human 
Robot Interaction

4/22/2012 Multiscale Robots and Systems 
Lab University of Texas Arlington
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Zeno Video

Neptune Control through 
Neural Headband

Visual HRI

Realistic & 
Intuitive 

Human‐Robot 
Interaction

Physical HRI  

Recognize & 
Synthesize
poses and 
gestures

Adaptive 
Interfaces

Robot Touch HRI



Adaptive Interfaces
 The supervisory control of multi-DOF 

robots is a demanding application.
 If a single operator is tasked with direct 

control, performing coordinated tasks 
becomes non-intuitive.

 We use Reinforcement Learning 
TD(lambda) scheme in order to 
adaptively change the mapping of 
DOF’s from the operator user interface 
to the robot.

4/22/2012 Multiscale Robots and Systems 
Lab University of Texas Arlington
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State Propagation

Interface Mapping System

Metrics
Evaluation

state

Interface input

action

Update
Reward
functionreward

Critic

Actor

TD
error
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The cloud-capped towers, the gorgeous palaces,
The solemn temples, the great globe itself,
Yea, all which it inherit, shall dissolve,
And, like this insubstantial pageant faded,
Leave not a rack behind. 

We are such stuff as dreams are made on, 
and our little life is rounded with a sleep. 

Our revels now are ended. These our actors, 
As I foretold you, were all spirits, and 
Are melted into air, into thin air.

Prospero, in The Tempest, act 4, sc. 1, l. 152-6, Shakespeare





An Approximate Dynamic Programming Based Controller
for an Underactuated 6DoF Quadrotor

Emanuel Stingu Frank Lewis

™

Automation & Robotics Research Institute
University of Texas at ArlingtonARRI

Supported by
ARO grant W91NF-05-1-0314
NSF grant ECCS-0801330



3 control loops

The quadrotor has 17 states and only 4 control inputs, thus it is very under-actuated.
Three control loops with dynamic inversion are used to generate the 4 control signals.
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The actor is                                                           where

and

The critic is 
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Once the value of the Q function at                              is known, a backup of it is made into the RBF neural network by 
adjusting the weights W and/or by adding more neurons and by reconfiguring their other parameters. This is a separate 
process that just needs to know the

coordinates and the new value to store.

The update of the  Q value is not made completely towards the new value. This slows down the learning, but adds 
robustness.

The policy update step is done by simply solving

after the new Q value was stored. The value for h is stored into the actor RBF neural network using the same 
mechanism as before:

Approximate Dynamic Programming

1 1 1( , , )k k kx z u  

 , ,x z u

   
  

   
1 1 2 2

1 1 1 1 1 1
1 1 1

, , ,
, , , ,

, , , ,
k k k kT

k k k k k k T
k k

T
k k k k

r x z h x z
Q x z u W x z u

x z u W x z uW
 

  
   

     

  


 

 
 

  

  , 10   new olstored old dQQ QQ    

 , , 0k kQ x z u
u





     , , ,T T
k k k k k kh x z U x z u U x z      



The Curse of Dimensionality

The actor acts as a nonlinear function approximator. Normally we have

In the quadrotor case, because the reference is not zero and the system is nonlinear, we need

For each of the position, attitude and motor/propeller loops the state vector includes the local states and the external 
states that have a big coupling effect on the loop performance.
It is easy to see that this way the input space can easily have n=14 or more dimensions. 
A RBF neural network with the neurons placed on a grid with N elements in each dimension would require        
neurons. For N=5 and n=14,              are required.

1 ( )k ku h x 

1 ( , )k k ku h x z 

nN 96 10

Placing neurons on a grid is no better than a look-up 
table. The solutions to reducing the number of neurons 
are the following:
• preprocess the states to provide signals

with physical significance as inputs
• combine multiple states into a lower

dimension signal
• map multiple equivalent regions from the

state-space into only one.




