Supported by :

kL. Lewis, Dan Popa | NSF - Paul Werbos
Automation & Robotics Research Institute (ARRI)
The University of Texas at Arlington, USA ARO- Sam Stanton
y gron, AFOSR- Fariba Fahroo

Guido Herrmann
Bristol Robotics Lab, University of Bristol, UK

Reinforcement Methods for Autonomous
Online Learning of Optimal Robot Behaviors

The University of Texas Talk available online at
ARLINGTON. http://ARRI.uta.edu/acs

It is man’s obligation to explore the most difficult questions in
the clearest possible way and use reason and intellect to arrive
at the best answer.

Man’s task is to understand patterns in nature and society.
The first task is to understand the individual problem, then to

analyze symptoms and causes, and only then to design
treatment and controls.

lbn Sina 1002-1042
(Avicenna)

Importance of Feedback Control

Darwin- FB and natural selection

Volterra- FB and fish population balance
Adam Smith- FB and international economy
James Watt- FB and the steam engine

FB and cell homeostasis

The resources available to most species for their survival are meager and limited

Nature uses Optimal control

F.L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback
control,” IEEE Circuits & Systems Magazine, Invited Feature Article, pp. 32-50, Third Quarter 20009.

IEEE Control systems magazine, to appear.

Control Engineering Series

Neural Network

Robot y
Manipulator Control of Robot
Control e fus 0
Theory and Practice M&Hlpﬂlé}tOlS
Second Edition, Revised and Expanded alld NOI]llI’leaI‘

Systems

F. L. Lewis, S. Jagannathan
and A. Yesildirek

Frank L. Lewis
Darren M. Dawson
Chaouki T. Abdallah

Discrete-Time Optimal Control

system X = F(X)+9(X)u,
cost V, (%)= 77 r(x,u;) Example (X, ,U) =X Qx_ +U, Ru,
i=k

Difference eq. equivalent V, (X)) =r(X,U)+7 > 7 “r(x,u)
i=k+1
Control policy U, =h(X,) = the prescribed control input function

Example U, =—-Kx, Linear state variable feedback

Bellman equation Vi (X) = (X%, h(}))+ WV, (%) , V,(0)=0
Vi (%) = % Qx, + Uy Ru, + 2V, (%)

Bellman’s Principle gives Bellman opt. eq= DT HJB
V(X)) = ngin(l’(xk, U+ NV (X))

Optimal Control n* (%) =argmin(r(x,,u,) + N (%)
) _ oV’ (X,,)
u" (%) =-3R7g(x)’" PW “= Off-line solution
k+1

Dynamics must be known

DT Optimal Control — Linear Systems Quadratic cost (LQR)

system
X, = AX, + Bu,

cost v(x)=Y xQx +uRy,
i=k

Fact. The costis quadratic V(X,)= XI Px, for some symmetric matrix P

HJB = DT Riccati equation
0=A"PA-P+Q-A"PB(R+B'PB)'B'PA

Optimal Control U, =—LX,

L=(R+B"PB)"'B"PA

Off-line solution

Optimal Cost Dynamics must be known

V(X)) =X Px,

We want robot controllers that learn optimal control solutions online in real-time

Synthesis of
» Computational intelligence
» Control systems
» Neurobiology

Different methods of learning

Machine learning- the formal study of learning systems

Supervised learning
Unsupervised learning
Reinforcement learning

Different methods of learning

Reinforcement learning
lvan Pavlov 1890s

We want OPTIMAL performance
- ADP- Approximate Dynamic Programming

Actor-Critic Learning

Desired
performance
Reinforcement
signal
< Critic
Tune
actor
Control
Adaptive ‘Inputs System
Learnjng system
outputs

/ Actor

RL Policy Iterations to Solve Optimal Control Problem

system X = F(X)+9(X)u,
cost V, (X)) =D 77 r(x,u;)
i=k

Difference eq. equivalent V, (X)) =r(X,U)+7 > 7 “r(x,u)
i=k+1

Beliman equation | V(%) = (X, h(X))+ "V, (X,,) , V,(0)=0

Vi (%) = XIQXK + UI Ru, + ?/\/h(xl<+1)N

Bellman’s Principle gives Bellman opt. eq= DT HJB

V(%) = Irain(r(Xk, U)+ N (X))
‘ Focus on these two egs.

Optimal Control N (%) = argmin(r(x,,) + N (%) /
oV ' (Xk+1)

u(x.)=—+R'g(x)"
(k)) g(k) 8Xk+1

Bellman Equation
Vh (Xk) — r(Xk ” h(Xk)) + 7/Vh (Xk+1)

Can be interpreted as a consistency equation that must be satisfied
by the value function at each time stage.

Expresses a relation between the current value of being in state x
and the value(s) of being in next state x’ given that policy

1. Apply control action

Chserve the 1-step reward

43 Compute current estimate of future value of next state x,,

V(%) |

Compute predicted value of current state x,.

Vi(x)
{.

K K+1 time
2. Update predicted value to satisfy the Bellman equation
Vix)=n+yV" (x.,)

3. Improve control action

Captures the action, observation, evaluation, and improvement mechanisms of
reinforcement learning.

Temporal Difference Idea e, =—-V,(X)+r(x,h(x))+ W, (X.,)

Policy Evaluation and Policy Improvement
consider algorithms that repeatedly interleave the two procedures:

Policy Evaluation by Bellman Equation:

Vi (X)) = (X, h(X)) + WV, (X))

Policy Improvement:

| . oV (X,.,)
hv X) = __R 1 X T k+1
(%) ==7R79(x) ox.
Policy Improvement makes V,.(X) <V, (X)

(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).

the policy h'(x,) is said to be greedy with respect to value function V, (X)

At each step, one obtains a policy that is no worse than the previous policy.

Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.
One step is a contraction map.

There is a large family of algorithms that implement the
policy evaluation and policy improvement procedures in various ways

DT Policy lteration to solve HJB

Cost for any given control policy h(x,) satisfies the recursion

Vi (%) = P, M%) + N (%) Bellman eq

Recursive form

Recursive solution Consistency equation

Pick stabilizing initial control

Policy Evaluation — solve Bellman Equation
Vi (%) =rX,h (X)) + WV, (X,,) f(.)and g(.) do not appear

Policy Improvement
hj+1 (Xk+1) - arg nlljin(r(xk > uk) + 7Vj+1 (Xk+1))

Howard (1960) proved convergence for MDP
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).

the policy h,,(x,) is said to be greedy with respect to value function V;,,(X)

At each step, one obtains a policy that is no worse than the previous policy.

Can prove convergence under fairly mild conditions to the optimal value and optimal policy.
Most such proofs are based on the Banach Fixed Point Theorem.
One step is a contraction map.

Methods to implement Policy lteration
O Exact Computation- needs full system dynamics
O Temporal Difference- for robot trajectory following

O Montecarlo Learning- for learning episodic robot tasks

DT Policy Iteration — Linear Systems Quadratic Cost- LQR
X, = Ax, +Bu, =(A-BL)X, U =—Lx,

For any stabilizing policy, the cost is
V(Xk) = Z XiTQXi +u’ (Xi)RU(Xi)
i=k

LQR value is quadratic V (X) = X' PX

DT Policy iterations Solves Lyapunov eq. without knowing A and B

Vj+1(Xk) — XI ka + u-J!- (Xk)Ruj (Xk) +Vj+1(xk+1) \/
de+1(Xk+1)

1
uj+1(Xk+1) = _ER 1g(xk)T

k+1

Equivalent to an Underlying Problem- DT LQR:

(A-BL))' P, (A-BL)-P, =-Q-L;RL, DT Lyapunov eq.
L,,=(R+B'P_B)'B'P A

o Hewer proved convergence in 1971

Policy Iteration Solves Lyapunov equation WITHOUT knowing System Dynamics

DT Policy Iteration — How to implement online?
Linear Systems Quadratic Cost- LQR

X, = AXk + Buk V(xk):ﬁ;xiTQxi +U(x)Ru(x)

LQR cost is quadratic ~ V (X) = X' PX for some matrix P

DT Policy iterations Solves Lyapunov eq. without knowing A and B

Vj+1(xk) = XIQXK + U}- (Xk)Ruj (Xk)+vj+1(xk+l) v\/

X P X = Xt P X = X QX +U; Ru,

j+1 kK+1" j+1
Py Py || X P Py || X
Xl X2 11 12:| k . X1+ X2+ |: 11 12j||: k+1:|
% k][plz D, {XE} Xt X P P || %
(%) (Xeer)”
=[Py Pu Pu][2%% |-[P0 Pu Pl 2% % . .
<« Quadratic basis set
(le)z N (le+1)2]
WjT+1 [@(Xk) _¢(Xk+1)] = % QX + UJT (X RU; (%)
Then update control using Need to know AAND B

h.(x)=Lx =(R+ BT P B)'B' P. Ax, for control update

Implementation- DT Policy lteration

Nonlinear Case

Value Function Approximation (VFA)

V(x) =W " o(x)

LT

weights basis functions

LQR case- V(x) is quadratic
V(X)=Xx"Px=W"p(X)

2

2 2 !
P(X) = [mls"*131331115321'“1332931&:"':mn} :

w' :[pn P,]

Nonlinear system case- use Neural Network

Quadratic basis functions

Implementation- DT Policy lteration

Value function update for given control — Bellman Equation
Vi (X)) =X, hj (X)) + V0 Keir)
Assume measurements of x, and x,,, are available to compute u,,

VFA V(%) =W o(x,)

Then regression matrix Since x,.4 is measured,
. 7 do not need knowledge of f(x)
Wit [(D(Xk)— 7§D(Xk+1)] = (X, hj (X)) or g(x) for value fn. update

Solve for weights in real-time using RLS
or, batch LS- many trajectories with different initial conditions over a compact set

Then update control using

1 _ dV+ (X +) 1 -
uj+1(xk+1):__R 1g(xk)T bt =—-—R lg(xk)TngT (Xk+1)WjT+1
2 ka+1 2

Need to know g(x,) for control update

1. Select control policy Solves Lyapunov eq. without knowing dynamics

2. Find associated cost Vj+1(Xk) =T (X, hj (X)) + 7/Vj+1(xk+1) v\)
WjT+1 (%) = 70X] = T h; (X))

1 __ dV. (X.,)
3. Improve control uj+l(Xk+1):_5R lg(xk)T NS

k+1

observe x, Needs 10 lines of MATLAB code

apply Direct optimal adaptive control

>
observe cost r,

observe X4
ﬁ update V

k+1

o=

/
e

do until convergence to V., “

update control to uj,

Persistence of Excitation

Wi 000 = 7000 | = T Dy (%)

Regression vector must be PE

Adaptive Critics

Use RLS until convergence

The Adaptive Critic Architecture Value update

VJ'+1(Xk) - r(Xk ? hj (Xk)+ 7)‘/j+1(xk+1)

_ Policy Evaluation
Control policy update cost (Critic network)

hy, (%) = arg Hazn(r(xk U + N (X))

d
<

\ 4

Action network |€——

> System >

h; (%)

Control policy

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Adaptive Control

|dentify the

W
O

ptimal Adaptive

|dentify the

Indirect Adaptive

e

Controller-

Direct Adaptive

V(x) =W ' p(x)

control

A\ 4

Plant

v

output

Greedy Value Fn. Update- Approximate Dynamic Programming

Value Iteration= Heuristic Dynamic Programming (HDP)

Paul Werbos
Policy lteration

Vﬂ(xk) = r(Xkahj(Xk)) + Wﬂ(xkﬂ)

th(Xk) = arg nl}kin(r(xk U+ Vi (X))

Lyapunov eq.

For LQR (A—BL,-)T Pj+1(A_BLj)_Pj+1 :—Q—tﬁ Hewer 1971
Underlying RE |_J_ =—(R+ BT |3j B)-l BT ij

Initial stabilizing control is needed

Value lteration Two occurrences of cost allows def. of greedy update

Via (X)) = 1%, 1 (X)) + V(X)
h;,(x)=arg nl}kin(r(xk,uk) + V0 (X)) / Simple recursion

—(A=BL.YP. (A-BL. "RL.
E?]Z:Iléﬁ;ang RE Pj“_(A BLJ) PJ (A BLJ)+Q+LJRLJ Lancaster & Rodman

L =—(R+ B’ P B)'B' P. A proved convergence
Initial stabilizing control is NOT needed

Estimate for the future stage cost-to-go
Compare Value lteration

Via (0 =2 7%, U)Z P | Ri + 2V, (X)) |
To Dynamic Programming
V7 (X) =D (%, u)z P | Ree + V() |

one can interpret V;(X")

as an approximation or estimate for the future stage cost-to-go from the future state x’

1. Apply contral action

Observe the 1-step reward

?1, Compute current estimate of future value of next state x,.,
a

Wix.,)

Compute predicted value of current state x,

V(x.)

K k+1 time

2. Update predicted value to satisfy the Bellman equation
Vilx)=nr+yV(x_,)

3. Improve control action

A problem with DT Policy Iteration and VI
Policy Evaluation

Assume measurements of x, and x,,, are available to compute u,,

V(X)) =W, (%)

Then Since x,.4 is measured,
T do not need knowledge of f(x)
Wit [(D(Xk)— 7¢(Xk+1)] = (X, hj (X)) or g(x) for value fn. update

Policy Improvement
de+1 (Xk+1)
ka+l

1
uj+1(xk+1) = _ER 1g(xk)T

LQR case

for control update

Easy to fix — use 2 NN

Standard Neural Network VFA for On-Line Implementation Asma Al-Tamimi & F. Lewis

NNAfor Value - CrTItIC NN for control action (can use 2-layer NN)
Vi (Xk W,) =W, ¢(Xk) u; (X%, W) =WJ o (%)
HDP
V(%)= XT QX +UTRU+V (X)) X = F(X)+g(X)u(X,)

u; (%) = argmin(x, Qx, +u'Ru+V,(X,,,))

Define target cost function (PN) = X% QX+ (6)RT (%) +V] (X,..,)
= XI Qx, + ljiT (Xk)lei (%) +WvTi P(X.1)
Explicit equation for cost — use LS for Critic NN update or RLS

Wi, = argmin{ W, 406) —d (@)W o} —— WVi+l=(j¢(xk>¢<xk)de] [0T (P05) Weg W, el

OF Wi,y =Whauil, 887 (kO ~Wepo|| 060 + (%, u) Wi (X,))

Implicit equation for DT control- use gradient descent for action update

T AT A
W (X, QX, +ui(j)Rui(j)
u(jh) — &

ow

ui()

W _ +vi(xk+1)
> uij+) —

A

W, =argmin[
Vi (T (%) + 9(x)a(x,W))

ul W

X! QX + 0" (X ,W)RG(X W) +j

Q T
W, =W - o (%2R, , + g (%) 2Ky

i
k+1

Backpropagation- P. Werbos

Interesting Fact for HDP for Nonlinear systems

Linear Case hj(x)=Ljx =~(1+B'P;B)"'B'P;Ax,
must know system A and B matrices

NN for control action
»T/\ Information about A is stored in NN
u; (X ,W,;) =W, o(X,)

Implicit equation for DT control- use gradient descent for action update

T AT ~ i
o(X, Qx, +ui(j)Rui(j) +V, (%)

aWui(i)

. ui(j+h
W, =argmin

u
a

~

{szxk +0" (X, a)RU(X, cx) +]
Vi(f (%) +g(x)u(x,,a))

o
W, =W, —ao(x, J(2RU; ;) + 9 (X,)’ %Ww)

K+1

g(.) is needed

Note that state drift dynamics f(x,) is NOT needed since:
1. NN Approximation for action is used

2. X1 1S measured in training phase

Discrete-time nonlinear HIB solution using Approximate
dynamic programming

« Simulation Example 1

- Linear system — Aircraft longitudinal dynamics

[1.0722 0.0954 0 -0.0541 -0.0153
4.1534 1.1175 0 -0.8000 -0.1010

A=| 0.1359 0.0071 1.0 0.0039 0.0097

0 0 0 0.1353 0

0 0 0 0 0.1353 |

[-0.0453 -0.0175]
-1.0042 -0.1131
B=| 0.0075 0.0134
0.8647 0
0 0.8647 |

Unstable, Two-input system
0=A"PA-P+Q-A"PB(R+B'PB)'B'PA
« The HJB, i.e. ARE, Solution

[55.8348 7.6670 16.0470 -4.6754 -0.7265 |

76670 23168 14987 -0.8309 -0.1215 I_{-4.1136 -0.7170 -0.3847 0.5277 0.0707}
P=| 16.0470 1.4987 25.3586 -0.6709 0.0464 -0.6315 -0.1003 0.1236 0.0653 0.0798
4.6754 -0.8309 -0.6709 1.5394 0.0782
-0.7265 -0.1215 0.0464 0.0782 1.0240 |

Discrete-time nonlinear HIB solution using Approximate
dynamic programming

« Simulation
» The Cost function approximation — quadratic basis set

\7i+1 (Xk ’WVi+1) = WV1i-+1¢(Xk)

T 2 2 2 2 2
;zﬁ(x):[x1 XX, XX XX, XXs XXX XX XoXs Xp o XX, X Xg X XX X]

2

WO =W, Wy Whp W, Whs Wog Wor Wog Who Whpo Wi W Wo3 W W]

* The Policy approximation — linear basis set
l',ji :WUTO-(XK)

o (X)=[X % X X X]

u22 Wu 23 u24 Wu 25

Discrete-time nonlinear HIB solution using Approximate
dynamic programming

« Simulation
The convergence of the cost

W, =[55.5411 15.2789 31.3032 -9.3255 -1.4536 2.3142 2.9234 -1.6594 -0.2430

24.8262 -1.3076 0.0920 1.5388 0.1564 1.0240]

Fow,, 05w, 05w, 0.5w,, 0.5W |
05w, W, 05w, 05w, 0.5w,
05%3 05%7 VVVIO O'S\N\/ll 0'S\NVIZ
0.5W,, 0.5W5 0.5W,, W13 0.5, 4
_O'S\NVS OS\NV9 0'5%12 O'5\N\114 W/lS _

]
w
'S
w

S}
%)
pN
W

[\S]
'
&
O

4O [0 JO U U

;0 O .0 S0 U

;O [0 0 0 U

;0 S0 S0 S0 T

;0 0 .0 0 T
[

]
@
4;
[

55.8348 7.6670 16.0470 -4.6754 -0.7265 |
Actual ARE soiln: 7.6670 23168 1.4987 -0.8309 -0.1215

P=| 160470 14987 253586 -0.6709 0.0464
4.6754 -0.8309 -0.6709 1.5394 0.0782
0.7265 -0.1215 0.0464 0.0782 1.0240

Discrete-time nonlinear HIB solution using Approximate
dynamic programming

« Simulation
The convergence of the control policy

u

4.1068 0.7164 0.3756 -0.5274 -0.0707
0.6330 0.1005 -0.1216 -0.0653 -0.0798

L11 L12 L13 L14 L15 —_ Wull Wu12 Wu13 Wu14 Wu15
L L L L L W W

21 22 23 24 25 u21 u22 u23 u24 u2s

-4.1136 -0.7170 -0.3847 0.5277 0.0707}

Actual optimal ctrl. L=
-0.6315 -0.1003 0.1236 0.0653 0.0798

0=A"PA-P+Q-A"PB(R+B'PB)"'B'PA

Note- In this example, drift dynamics matrix Ais NOT Needed.
Riccati equation solved online without knowing A matrix

Issues with Nonlinear ADP

LS solution for Critic NN update Selection of NN Training Set

W, = [[x080x)" dx} [A06d™ (B06). W W, Yol Wil =Weaor], + BT 06 (~Wept| 05+ 10 u) +Wiig(x,..))

Xzp O X,
4
X
o—
© /=1

€ X1

time
> , time
Integral over a region of state-space
Approximate using a set of points

Batch LS Recursive Least-Squares RLS

Take sample points along a single trajectory

Set of points over a region vs. points along a trajectory

For Linear systems- these are the same under PE condition

Exploitation (optimal regulation) vs Exploration

PE allows local smooth solution of Bellman eq.

Adaptive Critics

The Adaptive Critic Architecture

Control policy update

hy, (%) = arg Hazn(r(xk U + N (X))

cost

Value update

VJ'+1(Xk) - r(Xk ? hj (Xk)+ Wj+1(xk+1)

Policy Evaluation

\ 4

Action network

REAL-TIME CONTROL LOOP

(Critic network)

Use RLS until convergence

d
<

SLOWER EVALUATION LOOP

44—

e

h; (%)

System

Control policy

Leads to ONLINE FORWARD-IN-TIME implementation of optimal control

Optimal Adaptive Control

Oscillation is a fundamental property of neural tissue

Brain has multiple adaptive clocks with different timescales

gamma rhythms 30-100 Hz, hippocampus and neocortex
high cognitive activity.
* consolidation of memory
« spatial mapping of the environment — place cells

The high frequency processing is due to the large amounts of sensorial data to be processed

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement.

Spinal cord

v

Motor control 200 Hz

D. Vrabie, F. Lewis, and Dr. Dan Levine- RL for Continuous-Time Systems

Il Hong Suh-
Gregory
Popper
Skinner

Darwin

Limbic system

(Unsupervised Learning A
—oupur_»
L A
r" Ty
Reinforcement Learning
| Reward
Y
Basal 5
L —oupu_ >
L S
(" ™
Supervised Learning Target
+

{ Error
| InEut b Output
b v,

Figure 1. Leaming-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex [1], [2]. The cerebellum is specialized for supervised learning based on the error signal
encaded in the climbing fibers from the inferior olive. The basal gangha are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cervebral cortex is specialized for unsupervised learning based on the statistical
properties of the input signal.

Doya, Kimura, Kawato 2001

Long term

Memory
functions

Short term

picture by E. Stingu

Summary of Motor Control in the Human Nervous System D Vrabie

Cerebral cortex
Motor areas

gamma rhythms 30-100 Hz,

Unsupervised

A 4

Basal

A\ 4

~ gangtia_|

Reinforcement
Learning- dopamine

A A

A 4

Thalamus Limbic|System | Hippocampus

learning

thetalrhythms 4-10 Hz

» Cerebellum [*

Supervised Brainstem
learning 5
(eye movement)
vV VY
inf. Spinal cord
olive
A A
Motor control 200 Hz
reflex
A 4
Exteroceptive Interoceptive Muscle contraction
receptors receptors and movement

A

A

Hierarchy of multiple parallel loops

Adaptive Critic structure

Reinforcement learning

Theta waves 4-8 Hz

I Critic
(cost approximation/«
/ policy evaluation)
II
Desired beha\.flor/ . Actor,f. Cpntrol s System
Reference trajectory (control pthy) signal
v

Output/State

Motor control 200 Hz

Cerebral cortex
Motor areas

gamma rhythms 30-100 Hz

Intense processing due to the
amounts of information data to

, be processed
Hippocampus

Cognitive map of the environment
- place cells -

theta rhythms 4-10 Hz

Behavior reference Information
sent to the lower processing
levels

“~——~_ Motor control 200 Hz

A
v
. v
Basal ganglia
o Thalamus
Y y'y
v
theta rhythms 4-10 Hz Cerebellum |«
\ 4
Brainstem
7y
A A 4
inf. Spinal cord
olive
7' /'Y
v
Exteroceptive Interoceptive Muscle contraction and
receptors receptors movement

Cerebral cortex
Motor areas

A
' | Critic |
Basal ganglia I A 2 I
o Thalamus I Hippocampus
g I
Y r'y l_ __ |_ ______ 1
________ L . Cognitive map of the environment
| Cerebellum « — ———)—— | I - pIace cells -
I Ll
I
| ! I theta rhythms 4-10 Hz
: I
I Act Brainstem I Behavior reference Information
I ctor Critic information sent to the Actor
I y'y I
I
| v v
I inf. Spinal cord I
olive I
I
A A I
L]] —
7~ Motor control 200 Hz
v Control signal
Exteroceptive Interoceptive Muscle contraction and
receptors receptors movement

Synthesis of
» Computational intelligence
» Control systems
» Neurobiology

Different methods of learning

Machine learning- the formal study of learning systems

Supervised learning
Unsupervised learning
Reinforcement learning

SHde

: ..vﬁﬂ'
&

L
e

=,

Adaptive (Approximate) Dynamic Programming
Four ADP Methods proposed by Paul Werbos

Critic NN to approximate:

Heuristic dynamic programming AD Heuris’.tic dynamic _programming
Value lteration (Watkins Q Learning)
Value V(X) Q function Q(X,U,)
Dual heuristic programming AD Dual heuristic programming
oV 0 0
Gradient - costate — Gradients 9) 9
OX oX ou

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)

Q Learning- Watkins Action Dependent ADP — Paul Werbos

Value function recursion for given policy h(x,)
Vi (%) = (%, h(%,)) + My (X))

Uy
Xy =Xy

I
k k+1

v

v

Define Q function

Qu (X y) = POl + PV, (%) { Uy arbitrary

policy h(.) used after time k
Note Q. (X, h(x)) =V, (X,)

Bellmaneq forQ Q, (X,,U,) =r(X.,U,)+ Q. (X, (X))

Simple expression of Bellman’s principle

\% *(Xk) = Hlljin(Q*(Xk» u,)) h*(x,) = arg Hain(Q*(Xkﬂuk))

Optimal Adaptive Control for completely unknown DT systems

Q Function Definition
Specify a control policy u; =h(x;); J=kk+L..

Define Q function

Qi (X, U) =r(X,u,)+ N, (X)) <||: U arbitrary

policy h(.) used after time k
Note Qy, (X, N(X)) =V, (%)

Bellman equation for Q Q. (X, ,U.)=r(X,u.)+ 7 (X, (X))

Optimal Q function Q (X, U) =r(X,u)+ W (X))

Q™ (X, U) = (X, U) + Q7 Xy, ™ (Xy,1))
Optimal control solution
V(%) = Q" (%, " (%)) = min(Q, (¥, h(x,))) n* (%) = argmin(Q, (X, (%))

Simple expression of Bellman’s principle

\% *(Xk) = nazn(Q*(Xka u,)) h* (%)= argnain(Q*(Xk?uk))

Q Learning does not need to know f(x,) or g(x,)

For LQR V(x) =W " o(x) = x" Px V is quadratic in x

X.., = AX, +Bu,

Qn (X, Uy) = (X, Uy)+ Vi (X 1)

= X, QX +U, Ru, +(Ax, +Bu,)" P(Ax, +Buy)

— Xk ! Q+ATPA ATPB Xk _ Xk TH Xk _ Xk ! Hxx qu Xy
U] | B'PA R+B'PBJU] [Uy U | (U] [Hue Huu]l
Q is quadratic in x and u

Control update is found by o= S—Q = 2[BTPAX, +(R+B"PB)u,]1=2[H X, +H U]
Uy

SO U, =—(R+B"PB)'B'PAX, =—HyHuX =L X

Control found only from Q function
A and B not needed

Q Learning— Action Dependent HDP — Paul Werbos

Q function for any given control policy h(x,) satisfies the Bellman equation

Qp (X> Uy) = (%, Uy) + 7Qp (Kieiy> N(% 1))

Policy Iteration Using Q Function- Recursive solution to HJB
Pick stabilizing initial control policy
Find Q function

Qi (X, U) =T (X, Uy)+ 7Q; (%15 0y (X ,1)

Update control

hi., (%) = arg nain(QjH(Xk ,Uy))
\ Now f(x,,u,) not needed

Bradtke & Barto (1994) proved convergence for LQR

Implementation- DT Q Function Policy lteration

Bradtke and Barto
For LQR

Q function update for control u, =L;X, is given by
Qi1 (X Ui) = r(Xi, Uy) + 7Q 1y Kiegrs LX)
Assume measurements of u,, x, and x,,, are available to compute u,,

QFA — Q Fn. Approximation
Q(X,u) ZWT(D(X,U) Now u is an input to the NN- Werbos- Action dependent NN

Then regression matrix
T / Since Xx,,, is measured in
Wj+1 [(P(Xk » Uy) _ 7/¢(Xk+1 > LJ Xk+1)] — r(Xk s LJ Xk) training phase,

do not need knowledge of
f(x) or g(x) for value fn.
update

Solve for weights using RLS or backprop.

For LQR case

2 2 !
P(X) = [9311"'7313371)5521"*1932337”"'Jm’n] :

Model-free policy iteration
Q Policy lteration

Qi1 (X, U) = (X, Uy) + 7Q 11 (Kiep> L Xiear) grarfltke, Ydstie,
o - arto

WjT+1 [(D(Xk ,Ui) = 70X L Xk+1)] = (X, LjXc)

Control policy update Stable initial control needed

hj+1(Xk) = argnakin(Qjﬂ(Xk’ Uk)) Uy = _Hu_ulHuxXk - I‘J'+1X|<

Greedy Q Fn. Update - Approximate Dynamic Programming
ADP Method 3. Q Learning
Action-Dependent Heuristic Dynamic Programming (ADHDP)

Paul Werbos
Greedy Q Update Model-free HDP Stable initial control NOT needed

Qi (X U) = 10,8+ 7Q) (X (%)

WjT+1(0(Xk U) = (X, LX) +WjTJ/(0(Xk+1, LX) = target .,

Update weights by RLS or backprop.

Q learning actually solves the Riccati Equation
WITHOUT knowing the plant dynamics

Model-free ADP
Direct OPTIMAL ADAPTIVE CONTROL

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?

A Q-Learning Based Adaptive Optimal
Controller Implementation for a Humanoid
Robot Arm

Said Ghani Khan!, Guido Herrmann!, Frank L. Lewis?, Tony Pipe!,
Chris Melhuish!

1: Bristol Robotics Laboratory, University of Bristol and University of the West of England,
Bristol, UK

2: ARRI, Texas University at Arlington, USA

Conference on Decision and Control (CDC) 2011, Orlando
11 December 2011

[T7]
=% The University of Texas g University of the l ! I E L ' .—.-E?: “
a A R L] N G TO N) SRISTOL West of England EHCICH:"E'I'dTIVF HUM®N Robot INteraction Sustems

BRL BERT Il
ARM

Elbow
flexion Joint

,JO Mo
" Elbow Flaxion Joint
o .
, { |

!. ‘Wrist Abduction
Wrist Rotation Jaint Limit

-20°

Wrist Flaxion |

The mechanical design and manufacturing for the BERT Il torso
including hand and arm has been conducted by Elumotion
(www.elumotion.com), a Bristol Based company

ADP Actor-Critic Scheme

Critic
Evaluates the current

Policy :
Update Control Policy Reward
Control)
Implements the * \ed
Control Policy

/

System states

Stingue et al. 2010

Algorithm

The cost of control 1s modeled via an NN

Output layer

Input layer Intermediate layer

Algorithm

The function Z, (Xk U, ,d k) is a vector, linear in the control and control error and system states,
e.g.
Ukl
U Selected elements of the
K Kronecker product of z,
X, —dy. will be used as functions
Z, (X, U0 ,) = E of a polynomial neural
network ¢(e
X — dkn o(°)
Xy, (greater detail later)
an

Note that the control signals U, are at most quadratic in (D(‘) This again IS a praCtical assumption.

Introducing Constraints

The cost function is modified to include
constraints

fu..-n:(qi x Z) ifllgl] < g x A

C(q) = { L 0<A<1

tan?(=-x 5), ifllgll = g x A

q>0 s the joint limit.

The new cost function....
r(xp, up, di) = ep Qeer + (Uprr —)" S(upgr — ug) + (up)” R(ug) + AC(q)

where, A is a positive constant.

Introducing Constraints - Modelling Q

The NN nodes are obtained by the Kronecker product of :

2 2 .2 2 3 3 4 4, T T
Ze(Ty ey up) = (U4, €1, 69,67, 65,77, T, Ty, Th - -+ + ;tf-l,:rg,te:;:n..(q X 3)]
L r4

Additional neurons are added to deal with the extra nonlinearity due to constraints

Constrained Case-Experiment

20

58 =

== raference
===actual

=]
—

Joint Limit

elbow (degrees)
=

1 1
-l -l
in =
=
=
-_

-

e,

=20
o 10 20 30 40 50 60
time(sec)
« 10° Qhat vs Cost function
2

= Qhat
== sgast function

Qhat,cost function

o 10 20 30 40 50 &0
time (sec)

R

Reinforcement Learning Approach for
Tele-Robotic Interaction Interface

Jartuwat Rajruangrabin and Dan Popa

Automation & Robotics Research Institute
The University of Texas at Arlington

Experiment Platform

Simulated 7-degrees of freedom robotic
manipulator used as a system to be
controlled

' (H)=[xt) yit) z2(t) o) o) wO)]

6-degrees of freedom robotic
manipulator mounted on a differential
drive mobile robot platform

Haptic Device used as t
Input Interface U()

Past Work / Challenges

Robot-Interface System

Challenges Xp (t) N Apo (t) T BpU (t)

et of input / output pairs have to be specified.

 Desired trajectory is known

What if we cannot specify the desired output trajectory directly”

» Use Reinforcement Learning

Interface Mapping

x» »X

f(x)

What can we do to get f(x)?

The simplest way is to obtain a set of inputs and a set of outputs and
calculate the relationship (Curve Fitting)

— Curve Fitting *
Algorithm - f (X)

Static Mapping Approach

[N uts

-

E|1 7 El2 Relationship E|1 - E|3 Relakicnship

g st .

: it e : "4'].__..
E""'ﬂ.;ﬁ_- e R : a0 e

9 L.

Reinforcement Learning

Curve Fitting
Algorithm

What if we cannot specify the desired output
trajectory directly ?

With RL we do not have to specify a desire trajectory.

Instead, a reward function is used

NN Training

Input Hidden Layer Output Layer
N A
al ai=y
LW, | e Y
Ixnd n- 74
3 a1
o}
3x1 3
J J
OE
oW
Log sigmoid function is used as a neuron 1

activation function

1+e™

RL Implementation Haptic/Robot Arm on a Mobile Robot

Objective:

-Expl : Implement RL with reward function
that allow the user to control movement of
the mobile platform

-Exp2 : Reverse the direction mapping of y — f. (X X)
mobile platform based on Expl Z k+1 w\Zk’—

Step 1 (Initialization): Train the NN so
that the weights are optimal according to
the desired trajectory

Sten 2. Ontine Leamning) o 1Y = Vs, T AX) Y, > (Y, —AX)
Cp_<: (Online Learning) Implement

the TD(A) learning algorithm rVL = —y(yx - yxmin - AX) Yy < (yxmin T AX)
0, otherwise

\§

(15 =Y +AXY Y, > (Vs —AX)

0, otherwise

Experiment Result — Online TD(A) Learning

Experiment Result — Contour Shaping

E|1 3 Ei2 Relationship Old E|1 - E|2 Relationship MHew

B, - B, Relationship MNew

B, avwa T R LS

e e
i 5
E'3 El2

Reverse and Scale Y - Mapping Update Through TD(A) Learning Algorithm

NEW ROBOTIC TREATMENT
SYSTEMS FOR CHILDHOOD
CEREBRAL PALSY and AUTISM

D. O. Popa?, |I. Ranatunga®, D. HansonB, F. Makedon®

ADepartment of Electrical Engineering, University of Texas at Arlington,USA
BHanson Robotics Inc., Plano, TX, USA
CDepartment of Computer Science & Engineering Department,
University of Texas at Arlington, USA

This work was supported by:

US National Science Foundation Grants #CPS 1035913, and #CNS
0923494.

TxMed consortium grant: “Human-Robot Interaction System for Early
Diagnosis and Treatment of Childhood Autism Spectrum Disorders
(RoDiCA)”

Introd

O Two assistive robotic systems aimed at the
treatment of children with certain motor and
cognitive impairments.

O In the Neptune project [1]

— Mobile manipulator for children suffering from
Cerebral-Palsy.
— Mobile robot base and a 6DOF robotic arm,
interfaced via:
* Wii Remote, iPad, Neuroheadset, the Kinect, and
Force sensing robotic skin
— Therapeutic outcomes
+ Hand and head gesture recognition and reward.

* Hand motion excercises using IPAD Games
(CPlay, CPMaze, ProlloquoToGo) held by the
robot.

U The RoDiCA project [2]

— focuses on treating cognitive impairments in
children suffering from ASD
— Zeno is a robotic platform developed by Hanson
Robotics, based on a patented realistic skin.
— Therapeutic outcomes
* Real time subject tracking/joint attention
* Advanced head-eye and hand coordination
* Facial gesture recognition and synthesis
» Data logging and analysis.

uction

Neptune Mobile manipulator with iPad
attached.

Zeno (by Hanson RoboKind Inc.) generating
facial expressions and maintaining eye
contact.

4/22/2012 Multiscale Robots and Systems
Lab University of Texas Arlington

73

Advanced Control for Human
Robot Interaction

' Physical HRI | Visual HRI

Robot Touch HRI

Realistic &
Intuitive
Human-Robot
— Interaction
Neptune Control through~~ | _ .
Neural Headband / e " Recognize &
I' Adaptive _ | Synthesize
. Interfaces . poses and
¢ . gestures
M ,f'/ \\\u/ .
o Zeno Video
4/22/2012 Multiscale Robots and Systems 74

Lab University of Texas Arlington

Adaptive

O The supervisory control of multi-DOF
robots is a demanding application.

Q If a single operator is tasked with direct
control, performing coordinated tasks
becomes non-intuitive.

O We use Reinforcement Learning
TD(lambda) scheme in order to
adaptively change the mapping of
DOF’s from the operator user interface
to the robot.

' I'w Robot System

input i I ',.-P""_ ‘ ! : OU‘.-P"-'!
.1-1_:.!-"4 | | : ‘,,..-‘/ System [_.

Performance Evaluation -

Policy
Actor
TD
Critic error
state Valule action
Function
Update
Reward
reward function
State Propagatior:
\NI+1 :\Nt +ﬂ [‘t(Wt)
Interface input Interface ilapping System

y(u) _’ivviq)i[ivvijuij

Metrics
Evaluation

4/22/2012 Multiscale Robots and Systems
Lab University of Texas Arlington

Our revels now are ended. These our actors,
As | foretold you, were all spirits, and
Are melted into air, into thin air.

The cloud-capped towers, the gorgeous palaces,
The solemn temples, the great globe itself,

Yea, all which it inherit, shall dissolve,

And, like this insubstantial pageant faded,

Leave not a rack behind.

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

Prospero, in The Tempest, act 4, sc. 1, . 152-6, Shakespeare

.l r-\“- s = _— . ; — — . 1.-.‘ oy

Automation & Robotics Research Institute
ARRI University of Texas at Arlington A
An Approximate Dynamic Programming Based Controller

for an Underactuated 6DoF Quadrotor

Emanuel Stingu Frank Lewis

Supported by
ARO grant W91NF-05-1-0314
NSF grant ECCS-0801330

3 control loops

The quadrotor has 17 states and only 4 control inputs, thus it is very under-actuated.
Three control loops with dynamic inversion are used to generate the 4 control signals.

-~ X

-
direction , .
X . of tilt R
_I}__i./h ‘“\.J“" _’______...-" ; “J T — | |
o g : amount |
o 7 o \\‘\ of tilt |
A Y
y
Altitude control: thrust force Momentum theory
Position , ! applied to the propeller
Reference and velocity ,” Desired Desired I
trajecto Translation attitude) forces Motor and
JEETOTY errors > . Attitude .
"/ "I and yaw "\ > Propeller
Y yy Controller
Controller Controller
Dynamic inversion Dynamic inversion Dynamic inversion
accelerations to attitude rotation accelerations to forces thrust forces to motor voltages

Approximate Dynamic Programming

m

. T
The actor is u, = h(Xk_l, Zk—l) where U= [qad a, . Qad V ot ad]

and

i
h(x.z) =" (x.z) hT(x.z) hT(x.z)]

- j—k \ Subsets of the state and
Vh(Xk?Zk) = Zy r(Xjazjauj) tracking error vectors
j=k

The critic is

State vector and
references

Actor tuning

Global Critic

e o e o = = —— =

Position

Desired

and velocity :
Translation attitude) Motor an
. Attitude otor and
"I and yaw Controller Propeller
Controller Controller
J Local Actor /ﬁocal Actor -~)/ocal Actor

| - Motor
\m commands

Approximate Dynamic Programming

Once the value of the Q function at (X,_;»Z,_;>U,_;) is known, a backup of it is made into the RBF neural network by
adjusting the weights W and/or by adding more neurons and by reconfiguring their other parameters. This is a separate
process that just needs to know the

(x,z,u) coordinates and the new value to store.

I (Xk—1 Ly 15 h(xk—z » Ly)) +

Q(X_,Z ,u) W ¢() ,U_)-I—CZ
k—12 “k-1 k1> Zk—1o YUy +7/\/\/T¢(xk,zk,uk) -W ¢(k12 klﬂuk—l)

The update of the Q value is not made completely towards the new value. This slows down the learning, but adds

b :
robustness Qstored — Qold +a (Qnew — Qold), O<ax<l

The policy update step is done by simply solving

after the new Q value was stored. The value for h is stored into the actor RBF neural network using the same
mechanism as before:

0
a—uQ(xk,zk,u):O

h(xk,zk):UTa(xk,zk)+,B[u—UTa(xk,zk)]

The Curse of Dimensionality

The actor acts as a nonlinear function approximator. Normally we have

uk+1 - h(xk)
In the quadrotor case, because the reference is not zero and the system is nonlinear, we need

U = h(Xk9 Zk)

For each of the position, attitude and motor/propeller loops the state vector includes the local states and the external
states that have a big coupling effect on the loop performance.

It is easy to see that this way the input space can easily have h=14 or more dimensions.

A RBF neural network with the neurons placed on a grid with N elements in each dimension would require
neurons. For N=5 and n=14, N" arerequired. g.1(°

Placing neurons on a grid is no better than a look-up

table. The solutions to reducing the number of neurons

are the following:

* preprocess the states to provide signals 20
with physical significance as inputs

« combine multiple states into a lower
dimension signal

* map multiple equivalent regions from the
state-space into only one.

w H

