

Voltage control in distribution networks with windpower

Olof Samuelsson

Div. of Industrial Electrical Engineering and Automation Lund University

Contents

- 1. Local and system level impact of windpower
- 2. Distribution feeder voltage profile
- 3. Voltage control actuators
- 4. Voltage control sensors
- 5. Control scheme
- 6. E.ON test case
- 7. Conclusions

Wind turbine generator technologies

Induction generator

Doubly-fed induction generator

Full-scale converter

Local level impact of windpower

- Risk of island operation at distribution level
 - Anti-island protection
- Power quality
 - Harmonics, voltage dips
- New fault current situation
 - Fault current contribution
- New power flow situation (Ingmar Leiße)
 - Overvoltage may limit connected capacity
 - Losses

System level impact of windpower

- Variable generation
 - Balancing
- Non-synchronous generators displace synchronous generators

Reduced inertia →(Johan Björnstedt)

Fault behavior of windpower

- SG instability related to critical clearing <u>angle</u>
- Induction generator instability related to critical clearing speed
 - Notion of "Rotor speed stability" proposed
- Calculation of fault currents from DFIG (Francesco Sulla)

(O. Samuelsson and S. Lindahl. "On Speed Stability," IEEE Transactions of Power Systems, Vol. 20, No. 2, pp 1179-1180, 2005)

Voltage: Generic network with tap changer

- 130/10 kV substation with OLTC
- 3 feeders
- 16 nodes
- Load: 5 MW
- Generation: 7.2 MW
- Length: 28 km

Voltage profile along a feeder

Voltage limits
Load only
Generation only
Load and generation

Voltage-constrained windpower capacity

Worst cases with tap changer control

Maximum generation at minimum load

Minimum generation at maximum load

Change in voltage magnitude along line

$$\Delta V_{line} \approx R_{line} I_p + X_{line} I_q \approx \frac{R_{line} P_r + X_{line} Q_r}{V}$$

- At transmission level reactive power controls voltage
- At distribution level Q normally required to be zero
- Draw Q should be possible with power electronics

Medium Voltage lines

Line type	R [Ω/km]	L [mH/km]	C [µF/km]	X/R
Cable AXCEL 95mm ²	0.320	0.35	0.21	0.34
Cable AXCEL 150mm ²	0.206	0.32	0.24	0.49
OHL FeAI 99	0.336	1.085	0.0061	1.01
OHL FeAI 157	0.214	1.036	0.0061	1.52

Network losses

How frequent is maximum generation?

Some curtailment of active power is reasonable

Use all actuators in a coordinated way

- On-load Tap Changer
 - ± 9 steps 1.67 % each → ±15 % in entire network
- Reactive Power
 - Local effect
 - But increases line currents and thus losses
 - PF=0.89 or variable
- Active Power Curtailment
 - Root cause always works
 - But reduces income to generator owner

Voltage requirements

- EN 50160
 - Voltage quality at <u>customer</u> side
 - +/- 10 % for 95 % of a week with 10 min RMS values

New electricity meters can report voltage

Remote reading of energy once a month since July 2009

- Urban: PLC, ZigBee

Rural: GPRS

Additional features

Voltage limit violation alarms

Operate main breaker

Control output

Proposed control structure

Heuristic algorithm uses incremental control

Result indicators

- Installed MW windpower
- Delivered and curtailed MWh windpower
- Tap operations
- Losses in MWh

E.ON test case

Feeder	Load [MW]	Existing WT [MW]	New WT [MW]
1	5.8	0.7	0.0
2	0.0	9.0	0.0
3	5.1	0.0	0.0
4	1.7	0.9	6.0
5	4.0	0	0.0
6	1.9	0	3.0
7	5.3	1.4	13.0
8	4.2	0.8	3.0
Σ	28.0	12.8	25.0

E.ON test case

- 130/20 kV E.ON substation
- 8 feeders
- 3 substations 20/10 kV
- ~250 Medium Voltage nodes
- ~170 substations 20/0.4 kV
- Load between 5 MW and 28 MW
- Windpower 13 MW installed and 25 MW to be added

E.ON load and generation profiles

Total active power load (measured)

Total active power generation (measured values upscaled)

E.ON test case voltages with only tap changer

Voltage at substation busbar with normal setpoint Voltage at node with lowest voltage Voltage at node with highest voltage

E.ON test case voltages with new control

Voltage at substation busbar Voltage at node with lowest voltage Voltage at node with highest voltage

E.ON test case results

E.ON test case economic analysis

- Costs for tap operations
 - Maintenance costs
- Costs for network losses
 - MWh price at NordPool
- Costs for active power curtailment
 - MWh price at NordPool
 - Electricity certificates

E.ON test case economic results

Conclusions

- Increase of windpower capacity without reinforcement
- 12.8 MW + 25 MW (14.3 MW) = 37.8 MW (27.1 MW)
 - → increase of windpower 75 % additional, 40 % total
- Economical benefits from coordinated OLTC and variable PF
- Energy values critically depends on profiles
- Use of electricity meters feasible
- Alarms difficult and discrete control not optimum
- Voltage magnitude and some continuous control better

