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Wind turbine generator technologies

• Induction generator

• Doubly-fed induction generator

• Full-scale converter
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Local level impact of windpower

• Risk of island operation at distribution level
A ti i l d t ti– Anti-island protection

• Power quality
H i lt di– Harmonics, voltage dips

• New fault current situation
Fault current contribution– Fault current contribution

• New power flow situation (Ingmar Leiße)
Overvoltage may limit connected capacity– Overvoltage may limit connected capacity

– Losses
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System level impact of windpower
• Variable generationVariable generation

– Balancing
• Non-synchronous generators displace synchronous generatorsNon synchronous generators displace synchronous generators
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Fault behavior of windpower

• SG instability related to critical clearing angle
I d ti t i t bilit l t d t iti l l i d• Induction generator instability related to critical clearing speed

– Notion of ”Rotor speed stability” proposed

• Calculation of fault currents from DFIG
(Francesco Sulla)( )
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Voltage: Generic network with tap changer

• 130/10 kV substation 
with OLTC

• 3 feeders• 3 feeders
• 16 nodes
• Load: 5 MW
• Generation: 7 2 MWGeneration: 7.2 MW
• Length: 28 km
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Voltage profile along a feeder

Voltage limits
L d lLoad only 
Generation only 
Load and generation
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Voltage-constrained windpower capacity

• Worst cases with tap changer control
M i ti t i i l d– Maximum generation at minimum load

– Minimum generation at maximum load
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Change in voltage magnitude along line

QXPR
V

QXPRIXIRV rlinerline
qlineplineline




• At transmission level reactive power controls voltage
• At distribution level Q normally required to be zero
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Medium Voltage lines
Line type R

[Ω/km]
L

[mH/km]
C

[μF/km]
X/R

Cable  AXCEL 95mm2 0.320 0.35 0.21 0.34

Cable AXCEL 150mm2 0.206 0.32 0.24 0.49

OHL FeAl 99 0.336 1.085 0.0061 1.01

OHL F Al 157 0 214 1 036 0 0061 1 52OHL FeAl 157 0.214 1.036 0.0061 1.52

AXCEL 95mm2 8km FeAl 99mm2 8km
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Network losses

AXCEL 95mm2 8km FeAl 99mm2 8kmAXCEL 95mm2 8km FeAl 99mm2 8km
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How frequent is maximum generation?

• Some curtailment of active power is reasonable
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Use all actuators in a coordinated way

• On-load Tap Changer
± 9 t 1 67 % h ±15 % i ti t k• ± 9 steps 1.67 % each → ±15 % in entire network

• Reactive Power
• Local effect• Local effect
• But increases line currents and thus losses
• PF=0 89 or variable• PF=0.89 or variable

• Active Power Curtailment
• Root cause – always worksRoot cause always works
• But reduces income to generator owner
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Voltage requirements

• EN 50160
V lt lit t t id– Voltage quality at customer side

– +/- 10 % for 95 % of a week with 10 min RMS values
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New electricity meters can report voltage

• Remote reading of energy once a month since July 2009
U b PLC Zi B– Urban: PLC, ZigBee

– Rural: GPRS
Additi l f t• Additional features

– Voltage limit violation alarms
Operate main breaker– Operate main breaker

– Control output
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Proposed control structure

130 kV line
20 kV line
0 4 kV li0.4 kV line
Control and communication
Distributed Generation
LoadLoad
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Heuristic algorithm uses incremental controlHeuristic algorithm uses incremental control
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Result indicators

• Installed MW windpower
D li d d t il d MWh i d• Delivered and curtailed MWh windpower

• Tap operations
• Losses in MWh• Losses in MWh
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E.ON test case

Feeder Load
[MW]

Existing WT
[MW]

New WT
[MW]

1 5.8 0.7 0.0

2 0.0 9.0 0.0

3 5.1 0.0 0.0

4 1.7 0.9 6.0

5 4.0 0 0.0

6 1 9 0 3 06 1.9 0 3.0

7 5.3 1.4 13.0

8 4.2 0.8 3.0

∑ 28.0 12.8 25.0
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E.ON test case

• 130/20 kV E.ON substation
8 f d• 8 feeders

• 3 substations 20/10 kV
• ~250 Medium Voltage nodes• ~250 Medium Voltage nodes
• ~170 substations 20/0.4 kV
• Load between 5 MW and 28 MWLoad between 5 MW and 28 MW
• Windpower 13 MW installed and 25 MW to be added
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E.ON load and generation profiles

Total active power load (measured)
Total active power generation (measured values upscaled)
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E.ON test case voltages with only tap changer

Voltage at substation busbar with normal setpoint
Voltage at node with lowest voltage
Voltage at node with highest voltage
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Voltage at node with highest voltage



E.ON test case voltages with new control

Voltage at substation busbar
Voltage at node with lowest voltage
Voltage at node with highest voltage
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Voltage at node with highest voltage



E.ON test case results
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E.ON test case economic analysis

• Costs for tap operations
M i t t– Maintenance costs

• Costs for network losses
MWh i t N dP l– MWh price at NordPool

• Costs for active power curtailment
MWh price at NordPool– MWh price at NordPool

– Electricity certificates
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E.ON test case economic results
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Conclusions

• Increase of windpower capacity without reinforcement
12 8 MW 25 MW (14 3 MW) 37 8 MW (27 1 MW)• 12.8 MW + 25 MW (14.3 MW) = 37.8 MW (27.1 MW) 
→ increase of windpower 75 % additional, 40 % total
E i l b fit f di t d OLTC d i bl PF• Economical benefits from coordinated OLTC and variable PF

• Energy values critically depends on profiles

• Use of electricity meters feasible
• Alarms difficult and discrete control not optimum• Alarms difficult and discrete control not optimum
• Voltage magnitude and some continuous control better
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