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Power Networks (TPS 11, IFAC 11, ACC 11, CDC 10, Allerton 10 ) 

 Nonlinearity of physical laws 
 

 Hard optimizations 
 

 Extensive literature since 1962 

Passivity simplifies optimization for practical power networks 
 

Generalizable to many problems in smart grids 
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Power Networks: Optimal Power Flow (OPF) 

Controllable Params: 
 Active power 
 Voltage magnitude 
 Transformer ratio  
 Shunt element… 

 
 Constraints: 

 KCL & KVL 
 Physical 
 Security 
 Stability… 

 
 

 Solved every 5-15 mins for market and operation planning. 
 

Importance: 
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Power Networks: Needs for New Algorithms 

 Linear programming 
 Interior point method 
 Nonlinear programming 
 Dynamic programming 
 Lagrangian relaxation 
 Genetic algorithms.... 

 

Previous Attempts Since 1962: 

 Multiple local solutions 
 Disconnected region 
 Convexification for trees  

Findings by OR and Power People: 

Existing algorithms lack: 
 Robustness 
 Performance guarantee 
 Global optimality guarantee 

 

Challenges for smart grid: 
 Scalability issue (100X) 
 Time-varying renewable 
 Pricing mechanism (LMP) 
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Power Networks: Summary of Results 

 
 

 Goal: Find a global solution in polynomial time  
 

 Idea: Physical structure on OPF 
 

 First result: A sufficient condition to solve OPF 
 

 Surprising result: Condition holds on IEEE benchmark systems 
 

 Important result: Condition holds widely in practice due to passivity 
 

 Promising result: Generalization to many optimizations in smart grids 
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Power Networks: Summary of Results 

 
 

 
 Other results: 

 Certificate for global optimality 

 Shape of feasibility region 

 Multiple solutions to power flow 

 Existence of competitive equilibrium points 

 Mechanism design 
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Power Networks: OPF Formulation 

OPF: 
 

Modeling: Lumped model with admittance Y 

 

 

 Define X based on voltages 
 Constraints of degrees 2 and 4 
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Power Networks: Weak Duality 

OPF BMI 

Weak 
Duality ? 

LMI 

Strong
Duality 

LMI 

Rank Relaxation 

 Replace           with W 
 Impose W to be PSD 

Lemma: Zero duality gap if SDP relaxation 
has a rank-one solution. 

IEEE Systems: Rank-two solutions. 
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Power Networks: Strong Duality 

OPF BMI 

Weak 
Duality ? 

LMI 

Strong
Duality 

LMI 

Rank Relaxation 

Important Constraint in Dual OPF: 

Theorem: Zero duality gap if rank A at optimality is at least 2n-2.  
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Power Networks: Zero Duality Gap 

Theorem (real case): Zero duality gap under normal condition. 

 Recall the constraint  

 We trade power based on  

 Normal condition: Non-negativity of                          (rigorous proof)   

 Sketch of proof: Use passivity and Perron-Frobenius Theorem. 
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Power Networks: Zero Duality Gap 

Local Theorem: Zero duality gap for a small power loss. 

 Lumped Model: Transmission lines, transformers and FACTS Devices are resistive + 
inductive. 
 
 Story of “normal condition” is much more complicated. 

 
 
 
 

 Another challenge: 

Global Theorem: Given Re(Y), zero duality gap independent of loads if Im(Y) 
belongs to an unbounded region. 
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Power Networks: More Advanced Problems 

More Constraints 
More Variables 

 OPF with variable shunt elements 
 OPF with variable transformer ratios 
 Dynamic OPF 
 Security-constrained OPF 
 Scheduling for renewable resources … 

Theorem: Zero duality gap for 
OPF implies zero duality gap for 
all these problems.  

Proof:  

 Good modeling:  
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Power Networks: Impacts 

 Fundamental study of optimizations in power networks 

 Potential to change optimization algorithms for grids  

 

Example 1: Global solution 15% better than local solution for modified 

IEEE 57-bus system 
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Example 2: 
 
 One generator and one load 
 
 Multiple solutions 

 
 Able to find them all by changing the cost function 



Economic Dispatch 
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 Various feasibility regions: 

 Economic Dispatch: 



Mechanism Design 
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Competitive Market 
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 Existence of CEP: 



Conclusions 
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 Laws of physics introduce nonlinearity. 

 OPF is NP-hard and has been studied for 50 years. 

 A large class of OPF problems can be convexified. 

 The main reason is the physical properties of the network. 

 This idea is useful to study many other related problems. 

  


