

A Modeling Framework for Future Energy Systems

Göran Andersson, ETH Zürich

Content

- Energy Hub
 - Multi energy-carrier systems
- Power Node
 - Incorporation of fluctuating power sources
 - Incorporation of demand side participation
 - Incorporation of storage

The Energy Hub $\mathbf{L} + \mathbf{M} = \mathbf{C} \begin{bmatrix} \mathbf{P} - \mathbf{Q} \end{bmatrix}$

- **L** = Loads (Output)
- **M** = Output side storage flows
- **C** = Coupling matrix
- **P** = Input power flows
- **Q** = Input storage flows

Hub

Hub Equations and Results

Power conversion ⇔ price conversion

Applications (so far)

- Long term energy planning of the city of Bern
- Energy planning of several Swiss municipalities
- Analysis of e-mobility
- Energy/Exergy analysis of city of Zürich

Status Quo in Power Systems Modelling

Traditional power system modeling is "fractional":

- Separate models are used for capturing information of
 - Transmission & distribution grid (topology, voltage & frequency dynamics, voltage & line limits)
 - Power generation (generator dynamics, ramp constraints, wind and PV in-feed predictions)
 - Load models (dynamics, load demand predictions)
 - Storage models (capacity, storage levels, dynamics)
- Modelled interaction between individual power system units and grid does not necessarily capture all relevant aspects
- No interaction with other energy carriers modeled (cf Energy Hub)

Status Quo in Power Systems Modelling

- Example: optimal power dispatch simulations do consider units that inject or absorb power from the grid.
 - Which of these units are storages (energy-constrained)?
 - Which of these units provide fluctuating power in-feed?
 - What controllability (full / partial / none) does the operator have over fluctuating generation and demand processes?

Status Quo in Power Systems Modelling

- Example: optimal power dispatch simulations do consider units that inject or absorb power from the grid.
 - Which of these units are storages (energy-constrained)?
 - Which of these units provide fluctuating power in-feed?
 - What controllability (full / partial / none) does the operator have over fluctuating generation and demand processes?

Motivation for Power Nodes Modeling Framework

- Create unified framework for modeling power system units (incl. relevant operation constraints, power supply and demand processes and the controllability)
 - Diverse storage units (battery, pumped hydro, ...)
 - Diverse generation units (fully dispatchable conventional generators, fluctuating in-feed of wind turbines and PV)
 - Diverse load units (conventional, interruptible, thermal, ...)
- Operation constraints: ramp rates, storage capacity, current storage level (SOC)
- Operation controllability over underlying process (="flexibility"): fully controllable, curtailable / sheddable, non-controllable

The Power Nodes Framework

Modeling of three domains and their interactions

One Power Node

Eidgenössische Technische Ho

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

One Power Node

One Power Node (including constraints)

$$C_i \dot{x}_i = \eta_{\text{load},i} u_{\text{load},i} - \eta_{\text{gen},i}^{-1} u_{\text{gen},i} + \xi_i - w_i - v_i,$$

- Power constraints defined by: min/max power, ramp rates, storage capacity
- Operation flexibility defined by: shedding term w_i , storage term $C_i x_i$, ξ_i

Power Node without storage (e.g. non-controllable load) $\xi_i - w_i = \eta_{\text{gen},i}^{-1} u_{\text{gen},i} - \eta_{\text{load},i} u_{\text{load},i}$

- Power node equation degenerates to lossesalgebraic equality constraint (for classical load: $u_{gen,i} = 0$)
- Power node's power in-feed / out-feed is
 - Partially controllable, if shedding term adjustable $(w_i(k) > 0)$
 - Non-controllable, if shedding term is zero $(w_i(k) = 0)$

Variety of Power Node modelling definitions

-	Unit type	$u_{\text{gen},i}, u_{\text{load},i}$	C_i	ξ_i	w_i
-	Buffered load w/controllable demand	$u_{\text{gen},i} = 0$	$C_i > 0$	$\xi_i \le 0$	$w_i = 0$
Load	Buffered load w/non-controllable demand	$u_{\mathrm{gen},i} = 0$	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	$w_i = 0$
	Buffered load w/curtailable demand	$u_{\text{gen},i} = 0$	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	—
	Non-buffered load w/controllable demand	$u_{\mathrm{gen},i} = 0$	$C_i = 0$	$\xi_i \leq 0$	$w_i = 0$
	Non-buffered load w/non-contr. demand	$u_{\mathrm{gen},i} = 0$	$C_i = 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	$w_i = 0$
	Non-buffered load w/curtailable demand	$u_{\mathrm{gen},i} = 0$	$C_i = 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	_
_	Buffered gen. w/controllable supply	$u_{\mathrm{load},i} = 0$	$C_i > 0$	$\xi_i \ge 0$	$w_i = 0$
Gener- ation	Buffered gen. w/non-controllable supply	$u_{\mathrm{load},i} = 0$	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	$w_i = 0$
	Buffered gen. w/curtailable supply	$u_{\mathrm{load},i} = 0$	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	_
	Non-buffered gen. w/controllable supply	$u_{\mathrm{load},i} = 0$	$C_i = 0$	$\xi_i \ge 0$	$w_i = 0$
	Non-buffered gen. w/non-contr. supply	$u_{\mathrm{load},i} = 0$	$C_i = 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	$w_i = 0$
_	Non-buffered gen. w/curtailable supply	$u_{\mathrm{load},i} = 0$	$C_i = 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	_
	Storage w/o external process	_	$C_i > 0$	$\xi_i = 0$	$w_i = 0$
	Storage w/controllable supply	_	$C_i > 0$	$\xi_i \ge 0$	$w_i = 0$
	Storage w/non-controllable supply	—	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	$w_i = 0$
O 1	Storage w/curtailable supply	—	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \ge 0$	—
	Storage w/controllable demand	—	$C_i > 0$	$\xi_i \leq 0$	$w_i = 0$
Storage	Storage w/non-controllable demand	_	$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	$w_i = 0$
-	Storage w/curtailable demand		$C_i > 0$	$\xi_i = \xi_{\mathrm{drv},i}(t) \le 0$	_

Power Node Modelling Examples

PV with local storage unit, no RES feed-in tariff

Power Node Modelling Examples

PV with local storage unit, RES feed-in tariff

Power Node Modelling Examples

Joint Provision of Load Frequency Control

Power Balance:

$$\Delta u_{\text{gen,Bat}} + \Delta u_{\text{gen,CG}} - \Delta u_{\text{load,Bat}} - \Delta u_{\text{load,CL}} = \Delta u_{\text{load,LFC}}$$

Swiss Federal Institute of Technology Zurich **Power Node Modelling Examples Demand response (driven by dynamic electricity tariff)** k = N - 1 $u^* = \min \sum_{i=1}^{n} elec.tariff(k) \cdot \left[u_{load_i}(k) + v_{losses_i}(k)\right]$ s.t. $C_i \dot{x}_i = \eta_{load_i} u_{load_i} + \xi_{demand_i} - v_{losses_i}(x_i),$ $0 \le x_i \le 1$ Vormalized Load/Tariff Level [max: 1.0] ատուսուն 0.8 $u_{load_i} \geq 0$, 0.6 mmimmi Room temperature -- constant tarif 0.4 Room temperature [°C] Room temperature --- var. tariff (regres Room temperature --- var. tariff (perfect 0.2 Evolution of variable electr Hourly energy use [Wh/m²] Electricity use -- constant ta Electricity use -- var. tariff (regn 0 Grid Loading (City of Zurich) **Building Sector Load (Constant Tariff)** Building Sector Load (Peak/Offpeak Tariff) Actuator usage [W/m²] -0.2 Building Sector Load (Dynamic Tariff) Peak/Offpeak Electricity Tariff Dvnamic Electricity Tariff -0.4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 1 8550 Time of Day

Swiss Federal Institute of Technology ²⁴ Power Node Modeling Example: Predictive power dispatch

- Conventional generation unit [6]
- Conventional (uncontrolled) load [1] + load predictions
- Pumped-hydro storage units [4+5] and flexible loads (DSM) [7]
- Wind/PV units (curtailable) [2-3] + Wind/PV power in-feed predictions

$$\begin{aligned} \xi_1 - w_1 &= -\eta_{load,1} \, u_{load,1} \\ \xi_2 - w_2 &= \eta_{gen,2}^{-1} \, u_{gen,2} \\ \xi_3 - w_3 &= \eta_{gen,3}^{-1} \, u_{gen,3} \\ C_4 \, \dot{x}_4 &= \eta_{load,4} \, u_{load,4} - \eta_{gen,4}^{-1} \, u_{gen,4} \\ C_5 \, \dot{x}_5 &= \eta_{load,5} \, u_{load,5} - \eta_{gen,5}^{-1} \, u_{gen,5} \\ \xi_6 &= \eta_{gen,6}^{-1} \, u_{gen,6} \\ C_7 \, \dot{x}_7 &= \eta_{load,7} \, u_{load,7} + \xi_7 - a_7 \, (x_7 - x_{ss,7}) \end{aligned}$$

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zu Power Node Modeling Example: **Predictive power dispatch**

$$\min J(k) = \sum_{l=k}^{l=k+N-1} (x(l) - x_{ref})^T \cdot Q_x \cdot (x(l) - x_{ref}) \\ + u(l)^T \cdot Q_u \cdot u(l) + R_u \cdot u(l) \\ + \delta u(l)^T \cdot \delta Q_u \cdot \delta u(l)$$
s.t. (a) $x(l+1) = A \cdot x(l) + B \cdot u(l)$
(b) $0 \le x^{min} \le x(l) \le x^{max} \le 1$
(c) $0 \le u^{min} \le u(l) \le u^{max}$
(d) $\delta u^{min} \le \delta u(l) \le \delta u^{max}$
(e) $\xi_1(l) = \xi_{drv,1}(l \cdot T)$
(f) $\xi_2(l) = \xi_{drv,2}(l \cdot T)$
(g) $\xi_3(l) = \xi_{drv,3}(l \cdot T)$
(h) $\xi_7(l) = \xi_{drv,7}(l \cdot T)$
(i) $u_{gen,4}(l) \cdot u_{load,4}(l) = 0$
(j) $u_{gen,5}(l) \cdot u_{load,5}(l) = 0$
(k) $\sum_{i=\{2,3,4,5,6\}} u_{gen,i}(l) - \sum_{i=\{1,4,5,7\}} u_{load,i}(l) = 0$
(a-k) $\forall l = \{k, \dots, k+N-1\}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

23

Optimal predictive power dispatch (Germany)

Simulation Period: May 2010 (30% Wind, 20% PV) – Calc < 4min.

E Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Optimal predictive power dispatch (Germany, high PV)
- $T_{pred.} = 72h, T_{upd.} = 4h, T_{sample} = 15min.$
- Simulation Period: May 2010 (30% Wind, 50% PV no DSM) 1.5 × 10^t

27

Power Nodes and Energy Hubs

- Partial transformation between Power Nodes and Energy Hubs is possible
 - Converter: natural gas \rightarrow electricity ($u_{load} = 0, M_{\beta} = 0$)

$$C^{gas}\dot{x} = \eta_{load}u^{el}_{load} - \eta^{-1}_{gen}u^{el}_{gen} + \xi^{gas}_{in} = -\eta^{-1}_{gen}u^{el}_{gen} + \xi^{gas}_{in}$$
$$u^{el}_{gen} = \eta_{gen}\left(\xi^{gas}_{in} - C^{gas}\dot{x}\right) \Leftrightarrow \underline{L_{\beta}} = c_{\alpha\beta}\left(P_{\alpha} - Q_{\alpha}\right)$$

Goals of Power Node Approach

- Goal is to better evaluate performance of power system operation and to improve performance
 - Storage utilisation (What is its best use?)
 - Integrating fluctuating power in-feed
 - Integrating demand-side management (DSM)
 - Reduce forced ramping of conventional generators for load following and balancing of fluctuating power in-feed
 - Examples of performance criteria
 - power system operation cost
 - curtailment of RES in-feed
 - Power system CO₂ emissions

Contributions from

Kai Heussen (DTU)

Andreas Ulbig

Gaudenz Koeppel

Florian Kienzle

Stephan Koch

Martin Geidl

Thilo Krause

.