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Wave power: The heaving buoy

« ~1MW per meter of wave crest!
— Energy density ~800x wind

. Global potential ~10 TW? S—
— Exploitable > 2TW?3
— 20% world consumption*

Buoy /

* Floating buoy attached to generator

on seabed 0P
— Heaving motion = Electrical energy v)
— System dynamics= ~Second order SR §
Mi = F, — ks — bi — F, PR
Wave impact Mechanical m i \
System l — Spqng =

Survey of Energy Resources, WEC, 2007
Panicker, Power resource estimate of ocean surface waves (2003)

Thorpe, Wave Power: Moving towards Commercial Viability (1999)
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Wave farms are highly coupled

Combined cost function

— Maximize total energy

max Fiotal 1= E / power,
— Jt
1

Coupled dynamics
— Buoy causes a circular wave
— Perturbs motion of adjacent buoys

jji:f(xla'“axnaula"')un)
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Smart camera networks : Surveillance and motion capture

Goal: cooperatively detect and track human targets
— Unsupervised identification of camera network topology

— Distributed estimation of a relative mapping between adjacent
cameras' field of views

— Optimal coverage of monitored site to search for anomalous events

— Moving object tracking with PTZ cameras and target hand-off

IfA Vision Lab

* Pan-tilt-zoom Ulisse Compact Cameras

* Support of Videotec S.p.A. ot

co-design for networked control systems
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Micro-scale Race Cars

e 1:43 scale cars — 106mm

» Top speed: 5m/s
(774 km /h scale speed)

 Full differential steering

* DPosition-sensing: External vision
» Sampling rate: 60Hz

Project goals:
1. Beat all human opponents!
2. Demonstrate real-time MPC maximizing car performance
3. Plan optimal path online in dynamic race environment

Challenges:
Highly nonlinear dynamics
Multiple unpredictable opponents
High-speed planning and control




Optimal Race Planning

autonomic control of

dNano RC cars

[S. Colass, F. Engler, M. Osswald and C.N. Jones 2009]
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Price Control of Power Grids

« Current grid: @ T T
— Many loads, generators, transmission lines | . :I s TV éS

I— 16 ve—
— Strongly coupled but with own objectives Qb ] ’ IF No)
. LT T
« Market mechanisms break as renewables ' — K
e.g., wind power share increases: Lo f b % e

— Flow schedule violates line limits

— Failure to establish a clearing price

Goal: Minimize total generation cost, satisfy loads and line constraints
* Keep complex generation decisions localized:

— Cost function of operating point, penalties for output changes,
startup/shutdown events, capacity for ancillary services...

Idea: Distribute optimization and communicate via price signals

[J. Warrington and S. Mariethoz, 2009]
E-PRICE: Price-based Control of Electrical Power Systems



Price Control of Power Grids : Example

Distributed optimization and price negotiation

= Optimal electricity dispatch Q @

= Heterogeneous generators ~[400MVA
= 24h time horizon

‘ . _ Line limit: 14L  500MVA
= Satisfy load schedule and line constraints 600MVA | W Gen
3 I ' ' L 1Gen2
[ | Gen3
Price °* |
LURRRERRRRRRARRRRRRRRRR.
2000 é 1 0 5 10 Hour ahead 15 20 25
1500 <
z.
10006 Total power
500 - . (MW)
% 5 10 15 20 25 ,
Hour ahead [J. Warrington and S. Mariethoz, 2009]

E-PRICE: Price-based Control of Electrical Power Systems



Distributed MPC Challenges

Coupled...




Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

* Interior-point methods : Milli-seconds
» Fast gradient methods : Micro-seconds

* Explicit methods : Nano-seconds

Summary



High-speed Model Predictive Control

~

N-1
1 1 1
J(z) = min Vn(z,u) 2 Zz3 Pxy + Z ~x] Qz; + ~ui Ru;
u=[ug,...,u N _1] 2 s 2 2
s. t. X1 = Ax; + Bu; , linear nominal system
(xi,u;)) €XxU , polytopic constraints
TN e Xg , terminal set
Zo =T,
o J
Optimal MPC controller:

* Input and state constraints are satisfied
- Recursive feasibility

« J*(x) is a convex Lyapunov function
—> Stability of the closed-loop system

Goal: Feasibility/Stability/Tracking for suboptimal

MPC controller with real-time constraint
[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Optimal MPC scheme (Not Real-time!)

Ozb a:+ E= R\ &
Q <7
S 3
5 e — &
ég To =< $2 w‘?
ud = Kus 25 Optimal
o solution
x4
- Properties?
Warm-start Online optimization
Optimal MPC:

* Recursively feasible
 Stabilizing

* Unknown computation time...



Real-time MPC scheme

L1

wd=Kos/ 3 Suboptimal

solution
T4

- Properties?

Online optimization

Warm-start ] naat
+ Early termination

General approach for real-time MPC:
* Use of warm-start method
« Exploitation of structure inherent in MPC problems

« Early termination of the online optimization
[Ferreau et al., 2008], [Wang et al., 2008],...



Real-time MPC scheme - Current methods

g z1 &
5 s
.’(’7 et CEI
@ To == o @
ud= Kzs 23 Suboptimal
= solution
T4
Warm-start } Online optimization
+ Early termination

Suboptimal solution during online optimization steps
- can be infeasible

- can destabilize the system

- can cause steady-state offset



Real-time MPC
with stability and robustness guarantees

e Guarantees on

— Real-time € Early termination

— Feasibility
— Stability
— Steady-state tracking
* Implementation for large-scale systems

* Fast implementation

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Real-time MPC method
- Constraint satisfaction

Consider uncertain system: T = Az + Bu+w
where w € W is a bounded disturbance .

* Robust MPC: Initial feasible solution for all disturbances
e.g. [Limon et al., 2009] and references therein

*  Optimization maintains feasibility at all times

Here: Tube-based robust MPC: [Mayne et al., 2005]
N-1

_ 1 1 1
{g;i,f;} Vi (z, Zo, ) £ 55:%P:3N + ; 5:2‘}”@:7;@- + 5@?}2@@-
s.t. .3_3¢+1 214573Z—_|—B’L_LZ , _ _
(ZE‘Z',’L_LZ'> e XxU, X=X6Z,U=UsKZ
TN c Xy,
T EToDZ ,

—> Ellipsoidal invariant sets can be computed for all system sizes
- Resulting optimization problem is a convex QCOP



Real-time MPC
with stability and robustness guarantees

e Guarantees on

— Real-time € Early termination

— Feasibility € Robust MPC formulation

— Stability € Lyapunov constraint

— Steady-state tracking € Lyapunov constraint

* Implementation for large-scale systems € Convex QCQP

* Fast implementation

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Real-time MPC - Fast Implementation

» Tracking formulation and Lyapunov constraint significantly
modify structure of matrices in Newton step computation
compared to literature. [Rao et al., 1998, Wang et al., 2008]

e Matrices can be transformed into arrow structure, which can be
solved efficiently with same complexity as standard MPC problems
[Rao et al.,1998; Hansson, 2000; Wang et al.,2008]

—> Fast solution of the tracking problem with guaranteed stability

for all suboptimal iterates = for all time constraints!

* Custom solver in C++ was developed extending fast MPC solver
described in literature [Wang et al., 2008]

- Computation times that are faster or equal compared to

methods with no guarantees

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Numerical Examples

U3

Oscillating masses example F | 1
* Problem: 12 states, 3 inputs - Uz

e Fast MPC with guarantees: horizon N=10

- Computation of 5 Newton steps in 2 msec
Comparison: CPLEX 26.4 msec, SEDUMI 252.3msec

Closed loop performance loss in % for varying iteration numbers

bmax | 1| 2 | 3] 4] 5] 6| 7|8 >Optimal
AJa [1.39]1.32[1.10]0.88]0.70 [ 0.55 | 0.44 | 0.33 ~44 iterations

Random example
* Problem: 30 states, 8 inputs, horizon N=10

-2 QCQP with 410 optimization variables and 1002 constraints
- Computation of 5 Newton steps in 10 msec

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds

* Fast gradient methods : Micro-seconds

* Explicit methods : Nano-seconds

Summary



Structured Optimization: Input constrained MPC

 Linear system, input constraints only

* Gradient-based optimization

— Very simple
— Easy to parallelize
— Fast for large number of states

= Can pre-compute required number of online iterations

~
Require: Uy € UV, Vo = Uy

3. Vi=U; 4+ b;(U; — Us—1)
4: end for

o

\

2: U; = mys (Vi1 — 2V IN(Vie1; @)

[Y. Nesterov, 1983]
[S. Richter, C.N. Jones and M. Morari, CDC 2009]

* Work per iteration
* 1 matrix-vector product
* 2 vector sums
* 1 projection (more later)



Fast Gradient Method for MPC

Observe:
Input-constrained MPC problem has a “simple” feasible set

UY =UxUx...xU

[ 7y (o) |

Ty (_ﬂl)

- Projection can be separated: 7™y~ (U) = ,where U =

7y (TN —1)] UN_1

Missing Pieces

( ..
Require{ Uy € UV) Vo = Ug Intuition:
Lo for i =T T imax | Choice of initial iterate

3. | influences number of iterations

4: end for

Two Initialization Strategies < Two Different Lower Bounds on imax :
-~ Cold-Starting
- Warm-Starting



Main Complexity Results

Proposition (Cold-Starting) \_%V,,A\,(M
g 1
If in the fast gradient method .
—> the sequence Ucis the center of the feasible set UA,] and U,
U2
- the initial iterate is given by Up = myn <Uc — $VJIN(Ue; x)), R
. . . 1) |. .
an €-solution is obtained after imax > |(In2¢ — In LR?)/ In (1 — \/;) }ﬁeratlons.J
-
3 . . / \
Proposition (Warm-Starting) - Bound depends
4 . on set of initial states
Assu.me an €-solution U, = (ue,o, Ue 1y -+ U, N—l) was obt; N P p——
previous time-step. (Bilevel Problem)
If in the fast gradient method the initial iterate is defined by but can be recast as a
\Mixed Integer LP

Upg = <u671,...,u€,N_1,uN), uy €U, Y,

(Ine—=1In26§)/In (1 — \/gﬂ iterations,

_where 0 = max,cx, JN(Uw; z) — J3(2) .

an €-solution is obtained after imax >

[S. Richter, C.N. Jones and M. Morari, CDC 2009]



[llustrative Example

4 states/2 inputs system: =

0.7

+ _ |0.2

- Set of initial states Xg = {z | ||z||cc < 10}
- Set of feasible inputs U = {u | [Julcoc < 1}
- State disturbance w € W = {w | ||w||cc < 0.25}
- Weight matrices Q@ = In, R =0.11n,

Tmax
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Application to AC-DC Converter

Control of an AC-DC Converter

* Marginally stable system
in d-q coordinates: 6 states / 2 inputs /
2 disturbances / 2 controlled outputs

* Reference tracking MPC
Tie(q) == min 2llsan]13,, + le 16211 + ll6ur
2 M2
s.t. dxp, = xp, — Tss
dup, = up — Uss ,
Tp41 = Az + Bup + Byw
up € U(v, ¢ + kwgTs)

T ==

* Implementation Platform:
600 MHz DSP, 16-bit fixed point arithmetic

[S. Richter, S. Mariéthoz and M. Morari, ACC 2010]

Lig,1 171
19, Y f S1v

controlled inputs
outputs
w1

AN So U

Bound: 125 us
Measured: <50 us
Memory: <1KB
Relative accuracy: <1e-3
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A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds
» Fast gradient methods : Micro-seconds

* Explicit methods : Nano-seconds

Summary



Explicit MPC : Online => Offline Processing

* Optimization problem is function parameterized by state

 Control law piecewise affine for PWA systems/ constraints

* Pre-compute control law as function of state x

Result : Online computation
dramatically reduced

Vs

N-1
uw*(z) = argmin Vy(zy) + Z [(xi,u;)
i i=0
S.t. Li+1 = f(xz,uz)
(xi,u;) € X xU

N € Xn

o —x

-

~

[M.M. Seron, |].A. De Dond and G.C. Goodwin, 2000]
[T.A. Johansen, I. Peterson and O. Slupphaug, 2000]

[A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000]

-

-

u” ()




Online speed depends on number of control law regions

* Online evaluation reduced to:
o Point location
9 Evaluation of affine function
* Online complexity is governed by point location

— Function of number of regions in cell complex
— Milli- to microseconds possible only if small number of regions!!

G \




Real-time & synthesize control law of specified complexity

« Explicit MPC may not satisty given real-time constraint
— Complexity independent of available processing power

— Number of regions (complexity) is exponentially sensitive to
 State dimension
* Input dimension

 Small changes in system dynamics

Idea : Real-time explicit MPC with complexity as input

Algorithm properties:
« Tradeoff between complexity and optimality

— Real-time synthesis
—  Control extremely high-speed systems

* Process any convex MPC problem

 Synthesis of control law to software is verifiable
[C.N. Jones and M. Morari, TAC 2010]



Real-time explicit MPC : Offline processing

Optimal MPC | @ M-region lifting | @) Complex © Control law
value function
J*(x) P(z) — J"(x) <e€
==
[ N—1 )

Given optimal controller:
@ Compute convex polyhedral J*(0) = H,lem Vn(zn) + Z [, ui)

function of M facets =0
€) Define complex as projection s.b. Zit1 = f(@i, wi)
of lifting facets (z4,u;) € X x U

© Interpolate optimal control
law at vertices of complex -

Result : Piecewise polynomial controller of M regions
[C.N. Jones and M. Morari, TAC 2010]

N € XN p




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law

value function
T*(z) P(z) — J*(z) < %
]

Real-time explicit MPC:

— Is computable in micro- to nanoseconds
 Liftable complexes have log-time point location

* Design convex lifting => Log-time evaluation

— Satisfies constraints
— Stabilizes the system
— Complexity / performance tradeoff
[C.N. Jones and M. Morari, TAC 2010]



Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law

value function
@4‘
Real-time explicit MPC:

J*(x) P(z) — J"(x) <e€
— Is computable in micro- to nanoseconds <= Lifting function
— Satisfies constraints

— Stabilizes the system
— Complexity / performance tradeoff

[C.N. Jones and M. Morari, TAC 2010]



Barycentric interpolation satisfies convex constraints

u

Thm: i(z) =
is barycentric for conv(V)

* (y :area of facet v in dual
polytope (pre-computed)

* Valid for any polytope
* Low data storage
 Evaluation in us

[Schaefer et al, 2008]

Thm: Tensor-product expansion
of second-order
interpolants is barycentric

i(z) = Zv:u*(v) f[lmax {o, 2~ Zﬂ" 1 }

 Defined on hierarchical grid
« High data storage

e FEvaluation in ns

e w—

= N\

[Summers, Jones, Lygeros, Morari 2009]




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(z) — J"(x) <e€

Real-time explicit MPC:

Is computable in micro- to nanoseconds <= Lifting function
Satisfies constraints <= Barycentric interpolation

Stabilizes the system
Complexity / performance tradeoff

[C.N. Jones and M. Morari, TAC 2010]



€ -approx controller is stable if € <1

s N

J(w) == Vi (zn) + Nizm,ui) Ts};r;blif: )
J*(zg) = n%m J(u) - J (x) < J(u(x)) < J*(z) + €l(x,0)
s.ic. rir1 = f(x;,uy) \fore <1
(xi,u;)) € X xU J*(x) + €el(x,0) J(u(x))
i TN € Xn )

Sufficiently close to optimal
= Stabilizing

Idea:

 Find a lifting sufficiently

close to optimal and use it
to define @ ()

J*(2)




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(z) — J"(x) <e€

Real-time explicit MPC:
Is computable in micro- to nanoseconds <= Lifting function
Satisfies constraints <= Barycentric interpolation
Stabilizes the system <= Error less than one

Complexity/performance tradeoff

[C.N. Jones and M. Morari, TAC 2010]



M-region approximation => Double description method

-

~

N-1

J*(zg) = Il;lblzn Vn(zn) + Z Iz, u;)

i=0
s.b. 21 = f(@,u;)
(s, u;) € X xU

-

TN € XN
J

= Poly-time greedy-optimal algorithm

-

P(x)

~

Approximate convex parametric programming

Open problem in many areas:

— Vertex enumeration, Projection, Non-negative matrix factorization...

—  These problems are known to be NP-hard



Double description method : Algorithm properties

Lifting of M regions <= Iterate algorithm M times

Monotonic decrease in Hausdorff distance
— Complexity / performance tradeoff via M

There exists a minimum M for stability
— ¢-error in finite time = will find a Lyapunov function
— Once stable, always stable

) 4

Quadratic Geometric Second-order cone
programming programming programming

J J

[C.N. Jones and M. Morari, TAC 2010]




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(z) — J"(x) <e€

Real-time explicit MPC:

Is computable in micro- to nanoseconds <= Lifting function

Satisfies constraints <= Barycentric interpolation
Stabilizes the system <= Error less than one
Complexity / performance tradeoff <= M-region lifting

[C.N. Jones and M. Morari, TAC 2010]



Example :
Temperature Regulation of Multi-Core Processor

nnnnn

 Goals

— Track workload requests

Bank-}

— Minimize power usage
— Respect temperature limits
* Quadratic nonlinear dynamics

— Exact convex relaxation

 Stringent computational and Nt
storage requirements J*(zo,w) =min Y ¥ (w; — f;)

fmin S fz S fmax )

[F. Zanini, C.N. Jones, D. Atienza, and G. De Micheli, 2010] ~



Computational results for QCQP : >3,000x taster

08— T T T T T T T

" Linearised explicit |
| 89.6 KFLOPS
(1.3us)

Tracking error

Sub-opt Explicit CPLEX
1,234 FLOPS 4.12 MFLOPS

(18ns) (59us)
(Assuming 70 GFLOPS/sec —e.g., Intel Core i7 965 XE)

>3,000% / 72x faster than CPLEX / lin. explicit




Computational results for QCQP : 45% less storage

P

P I D L D

king erro

S . .

Tra

il .
5

10
Number of coefficients

Sub-opt Explicit Linearised explicit
26 KB 1.14 MB

45x% less storage
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Motivating examples

A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds
» Fast gradient methods : Micro-seconds

« Explicit methods : Nano-seconds




Summary

Vs

.

Formal specification
* YALMIP
- HYSDEL

* Linear + Hybrid models

Control law
 Explicit MPC
* Fixed-complexity solutions

—

= =

Vs

Verified controller

Software synthesis
* Real-time workshop

'« Bounded-time solvers

.

* Verifiable code generation

Multi-Parametric Toolbox (MPT)

(Non)-Convex Polytopic Manipulation

Multi-Parametric Programming

Control of PWA and LTI systems

> 22 000 downloads to date




