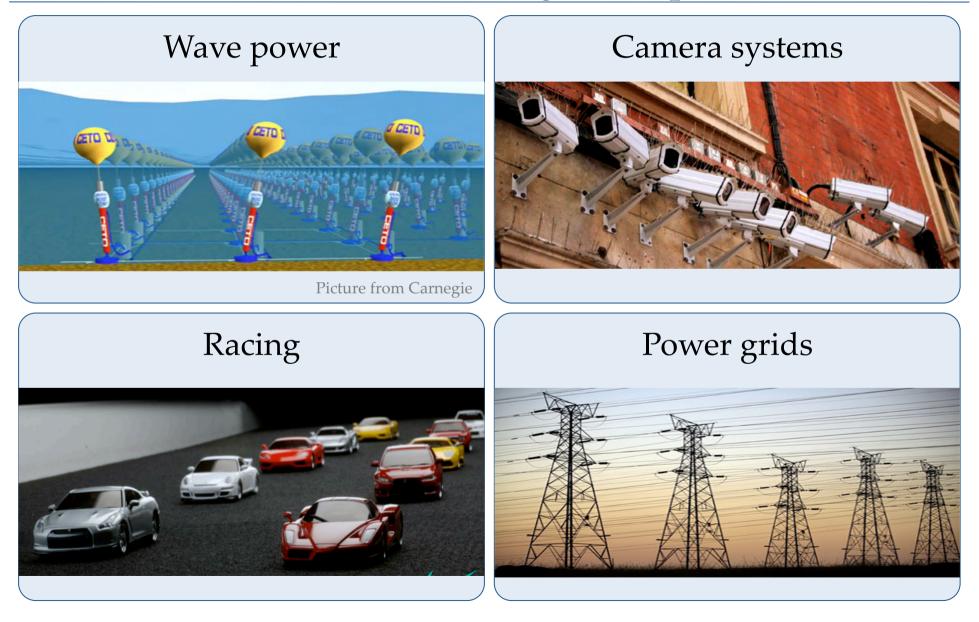
Real-time Optimization for Distributed Model Predictive Control

Manfred Morari & Colin Jones

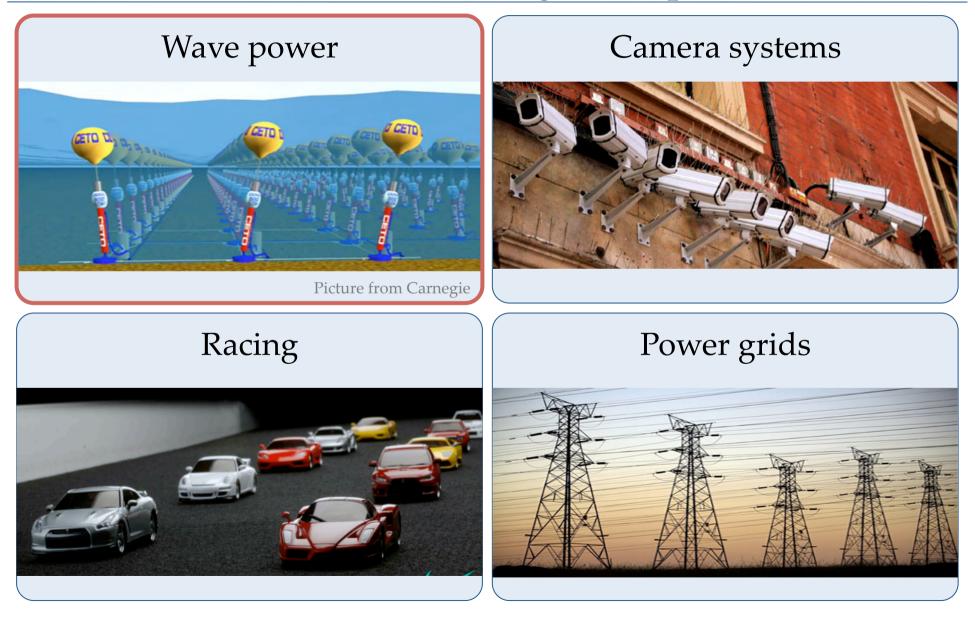
Christian Conte, Davide Raimondo, Stefan Richter, Sean Summers, Joe Warrington, Melanie Zeilinger

Automatic Control Laboratory, ETH Zürich

Distributed MPC : Motivating Examples

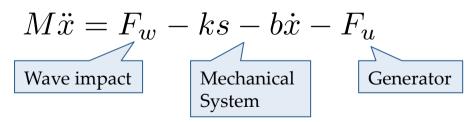


Distributed MPC : Motivating Examples

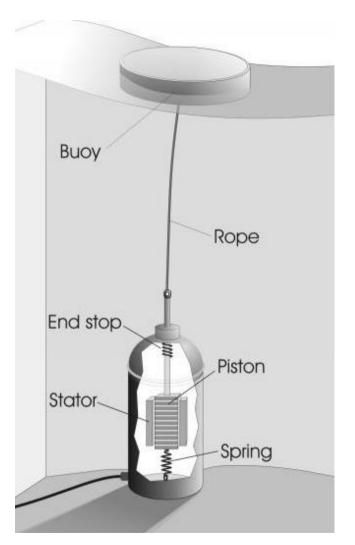


Wave power: The heaving buoy

- ~1MW per meter of wave crest¹
 - Energy density ~800x wind
- Global potential ~10 TW²
 - Exploitable $> 2TW^3$
 - 20% world consumption⁴
- Floating buoy attached to generator on seabed
 - Heaving motion \Rightarrow Electrical energy
 - System dynamics \Rightarrow ~Second order



- 1. Survey of Energy Resources, WEC, 2007
- 2. Panicker, Power resource estimate of ocean surface waves (2003)
- 3. Thorpe, Wave Power: Moving towards Commercial Viability (1999)
- 4. BP statistical review of world energy (2008)



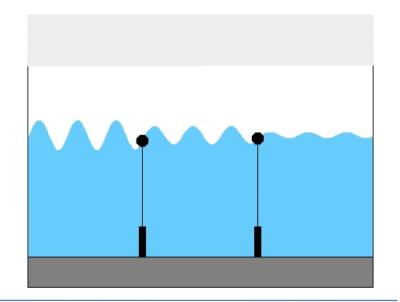
Picture courtesy of Uppsala University

Wave farms are highly coupled

Combined cost function

– Maximize total energy

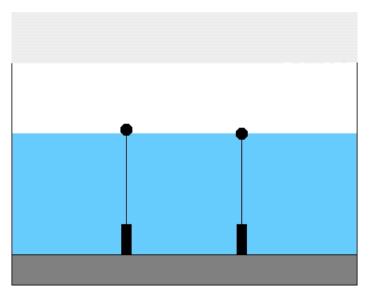
$$\max E_{\text{total}} := \sum_{i} \int_{t} \text{power}_{i}$$



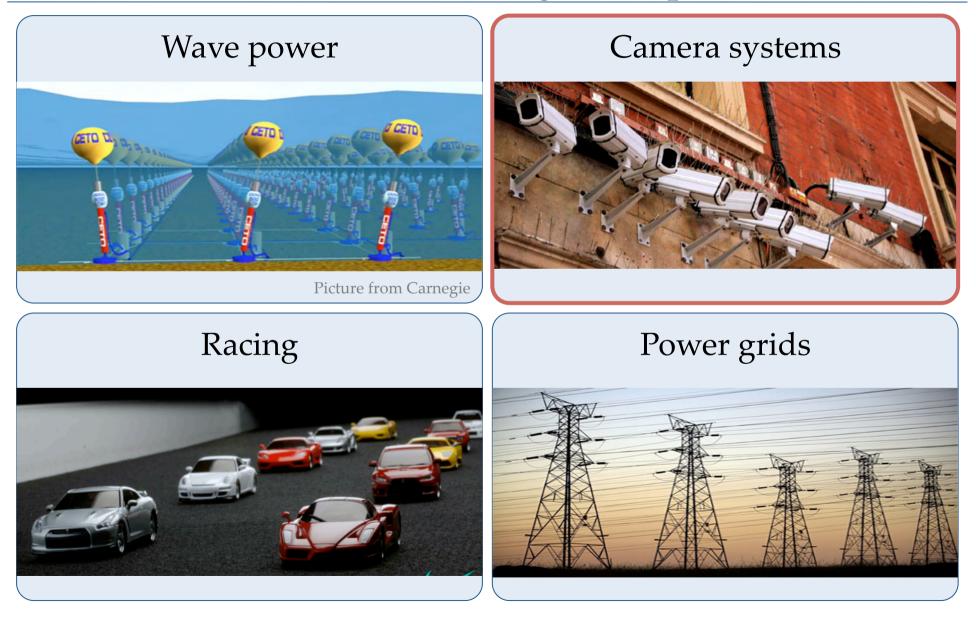
Coupled dynamics

- Buoy causes a circular wave
- Perturbs motion of adjacent buoys

$$\dot{x}_i = f(x_1, \dots, x_n, u_1, \dots, u_n)$$



Distributed MPC : Motivating Examples



Smart camera networks : Surveillance and motion capture

Goal: cooperatively detect and track human targets

- Unsupervised identification of camera network topology
- Distributed estimation of a relative mapping between adjacent cameras' field of views
- Optimal coverage of monitored site to search for anomalous events
- Moving object tracking with PTZ cameras and target hand-off

IfA Vision Lab

- Pan-tilt-zoom Ulisse Compact Cameras
- Support of Videotec S.p.A.

Distributed MPC : Motivating Examples



Micro-scale Race Cars

- 1:43 scale cars 106mm
 - Top speed: 5 m/s (774 km/h scale speed)
- Full differential steering
- Position-sensing: External vision
- Sampling rate: 60Hz

Project goals:

- 1. Beat all human opponents!
- 2. Demonstrate real-time MPC maximizing car performance
- 3. Plan optimal path online in dynamic race environment

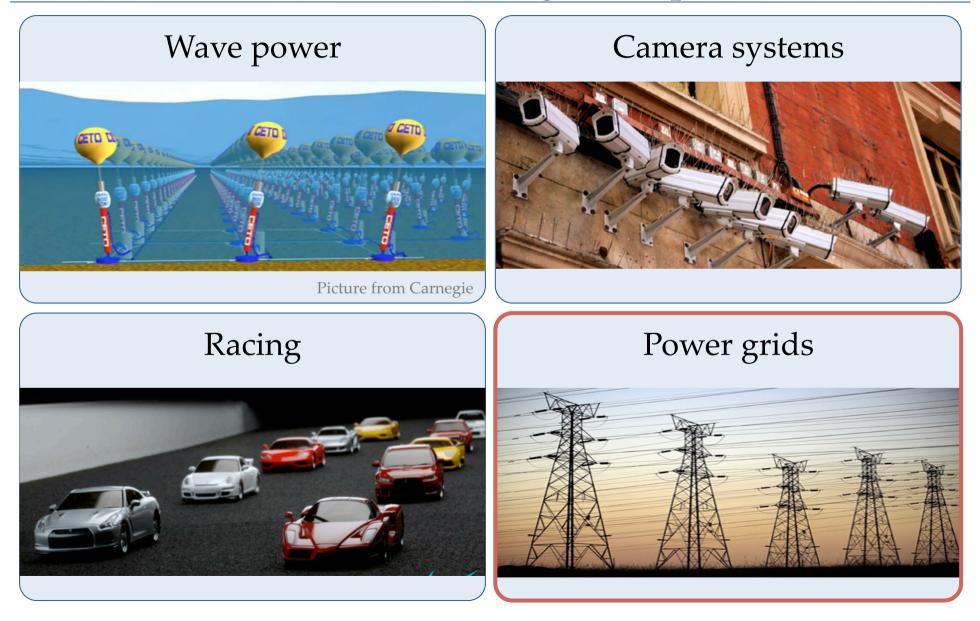
Challenges: Highly nonlinear dynamics Multiple unpredictable opponents High-speed planning and control

Optimal Race Planning

autonomic control of dNano RC cars

[S. Colass, F. Engler, M. Osswald and C.N. Jones 2009]

Distributed MPC : Motivating Examples



Price Control of Power Grids

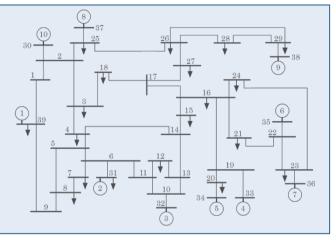
- Current grid:
 - Many loads, generators, transmission lines
 - Strongly coupled but with own objectives
- Market mechanisms break as renewables e.g., wind power share increases:
 - Flow schedule violates line limits
 - Failure to establish a clearing price

Goal: Minimize total generation cost, satisfy loads and line constraints

- Keep complex generation decisions *localized*:
 - Cost function of operating point, penalties for output changes, startup/shutdown events, capacity for ancillary services...

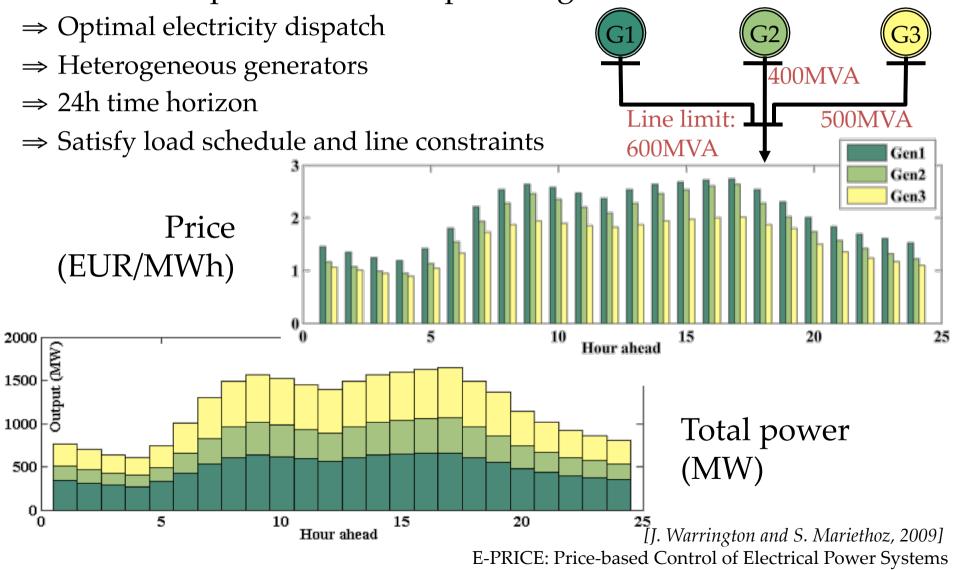
Idea: Distribute optimization and communicate via price signals

[J. Warrington and S. Mariethoz, 2009] E-PRICE: Price-based Control of Electrical Power Systems

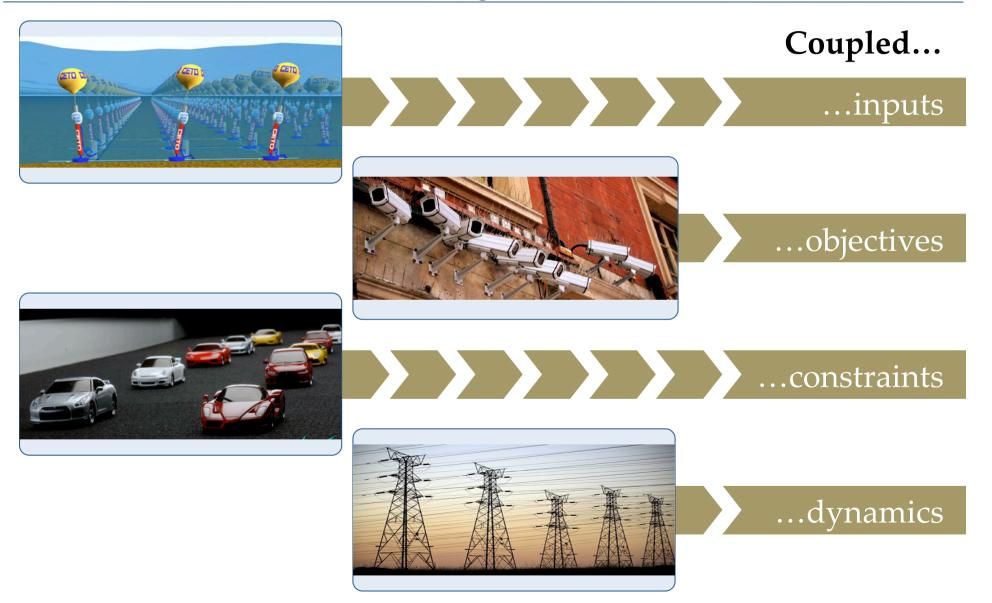


Price Control of Power Grids : Example

Distributed optimization and price negotiation



Distributed MPC Challenges



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods : Nano-seconds

Summary

High-speed Model Predictive Control

$$J^{*}(x) = \min_{\mathbf{u} = [u_{0}, \dots, u_{N-1}]} V_{N}(x, \mathbf{u}) \triangleq \frac{1}{2} x_{N}^{T} P x_{N} + \sum_{i=0}^{N-1} \frac{1}{2} x_{i}^{T} Q x_{i} + \frac{1}{2} u_{i}^{T} R u_{i}$$

s. t. $x_{i+1} = A x_{i} + B u_{i}$, linear nominal system
 $(x_{i}, u_{i}) \in \mathbb{X} \times \mathbb{U}$, polytopic constraints
 $x_{N} \in \mathcal{X}_{F}$, terminal set
 $x_{0} = x$,

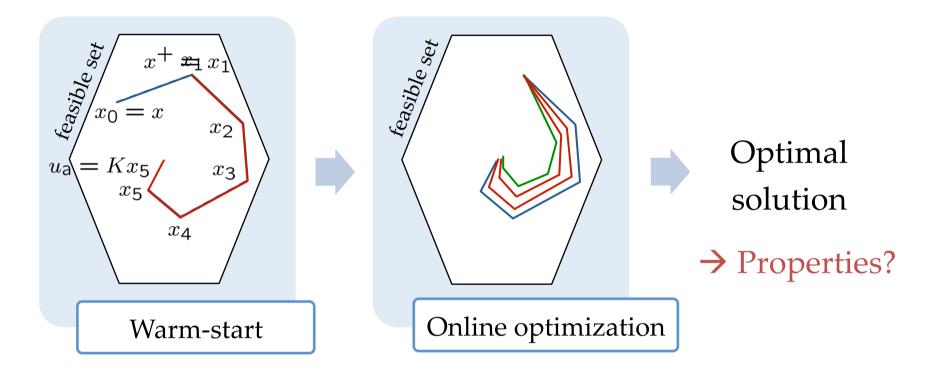
Optimal MPC controller:

- Input and state constraints are satisfied
 - \rightarrow Recursive feasibility
- J^{*}(x) is a convex Lyapunov function
 → Stability of the closed-loop system

Goal: Feasibility/Stability/Tracking for suboptimal MPC controller with real-time constraint

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

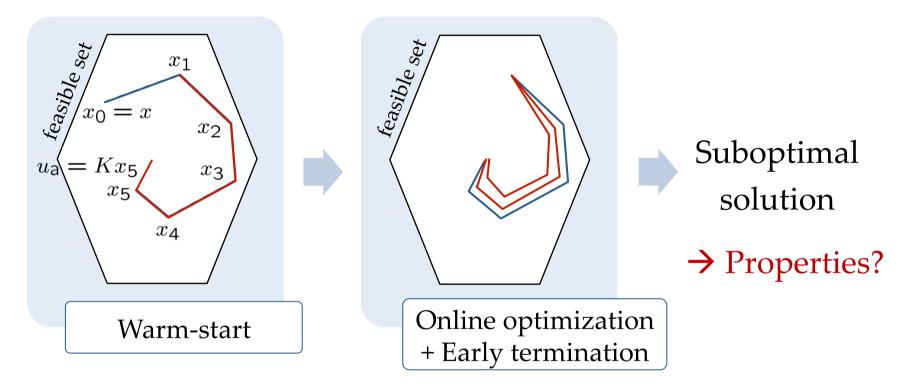
Optimal MPC scheme (Not Real-time!)



Optimal MPC:

- Recursively feasible
- Stabilizing
- Unknown computation time...

Real-time MPC scheme

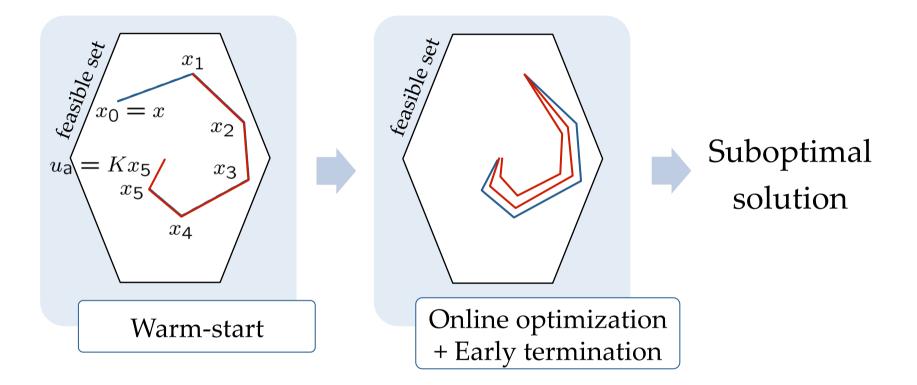


General approach for real-time MPC:

- Use of warm-start method
- Exploitation of structure inherent in MPC problems
- Early termination of the online optimization

[Ferreau et al., 2008], [Wang et al., 2008],...

Real-time MPC scheme - Current methods



Suboptimal solution during online optimization steps

- can be infeasible
- can destabilize the system
- can cause steady-state offset

Real-time MPC with stability and robustness guarantees

• Guarantees on

← Early termination

- Feasibility
- Stability
- Steady-state tracking
- Implementation for large-scale systems
- Fast implementation

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

Real-time MPC method

- Constraint satisfaction

Consider uncertain system: $x^+ = Ax + Bu + w$ where $w \in W$ is a bounded disturbance.

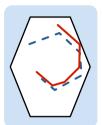
- Robust MPC: Initial feasible solution for all disturbances e.g. [Limon et *al.*, 2009] and references therein
- Optimization maintains feasibility at all times

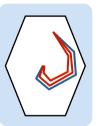
Here: Tube-based robust MPC: [Mayne et al., 2005]

$$\min_{\{\bar{x}_0,\bar{\mathbf{u}}\}} \bar{V}_N(x,\bar{x}_0,\bar{\mathbf{u}}) \triangleq \frac{1}{2} \bar{x}_N^T P \bar{x}_N + \sum_{i=0}^{N-1} \frac{1}{2} \bar{x}_i^T Q \bar{x}_i + \frac{1}{2} \bar{u}_i^T R \bar{u}_i$$

s.t.
$$\bar{x}_{i+1} = A\bar{x}_i + B\bar{u}_i$$
,
 $(\bar{x}_i, \bar{u}_i) \in \bar{\mathbb{X}} \times \bar{\mathbb{U}}$, $\bar{\mathbb{X}} = \mathbb{X} \ominus \mathcal{Z}, \bar{\mathbb{U}} = \mathbb{U} \ominus K\mathcal{Z}$
 $\bar{x}_N \in X_f$,
 $x \in \bar{x}_0 \oplus \mathcal{Z}$,

→ Ellipsoidal invariant sets can be computed for all system sizes
→ Resulting optimization problem is a convex QCQP





Real-time MPC with stability and robustness guarantees

- Guarantees on

 - Feasibility ← Robust MPC formulation
 - Stability ← Lyapunov constraint
- Fast implementation

Real-time MPC - Fast Implementation

- Tracking formulation and Lyapunov constraint significantly modify structure of matrices in Newton step computation compared to literature.
 [Rao et al., 1998, Wang et al., 2008]
- Matrices can be transformed into arrow structure, which can be solved efficiently with same complexity as standard MPC problems [Rao et *al.*,1998; Hansson, 2000; Wang et *al.*,2008]

→ Fast solution of the tracking problem with guaranteed stability for all suboptimal iterates → for all time constraints!

• Custom solver in C++ was developed extending fast MPC solver described in literature [Wang et *al.*, 2008]

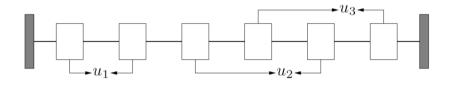
→ Computation times that are faster or equal compared to methods with no guarantees

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

Numerical Examples

Oscillating masses example

• Problem: 12 states, 3 inputs



• Fast MPC with guarantees: horizon N=10

→ Computation of 5 Newton steps in 2 msec
 Comparison: CPLEX 26.4 msec, SEDUMI 252.3msec
 Closed loop performance loss in % for varying iteration numbers

Random example

- Problem: 30 states, 8 inputs, horizon N=10
 - → QCQP with 410 optimization variables and 1002 constraints
 - → Computation of 5 Newton steps in **10 msec**

Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods : Nano-seconds

Summary

Structured Optimization: Input constrained MPC

- Linear system, input constraints only
- Gradient-based optimization
 - Very simple
 - Easy to parallelize
 - Fast for large number of states

⇒ Can pre-compute required number of online iterations

Require:
$$U_0 \in \mathbb{U}^N$$
, $V_0 = U_0$
1: for $i = 1$ to i_{\max} do
2: $U_i = \pi_{\mathbb{U}^N} \left(V_{i-1} - \frac{1}{L} \nabla J_N(V_{i-1}; x) \right)$
3: $V_i = U_i + b_i (U_i - U_{i-1})$
4: end for

[Y. Nesterov, 1983] [S. Richter, C.N. Jones and M. Morari, CDC 2009]

- Work per iteration
 - 1 matrix-vector product
 - 2 vector sums
 - 1 projection (more later)

Fast Gradient Method for MPC

Observe:

Input-constrained MPC problem has a "simple" feasible set

$$\mathbb{U}^{N} := \mathbb{U} \times \mathbb{U} \times \ldots \times \mathbb{U}$$

$$\Rightarrow \text{ Projection can be separated: } \pi_{\mathbb{U}^{N}} \left(\overline{U} \right) = \begin{bmatrix} \pi_{\mathbb{U}} \left(\overline{u}_{0} \right) \\ \pi_{\mathbb{U}} \left(\overline{u}_{1} \right) \\ \vdots \\ \pi_{\mathbb{U}} \left(\overline{u}_{N-1} \right) \end{bmatrix}, \text{ where } \overline{U} = \begin{bmatrix} \overline{u}_{0} \\ \overline{u}_{1} \\ \vdots \\ \overline{u}_{N-1} \end{bmatrix}$$

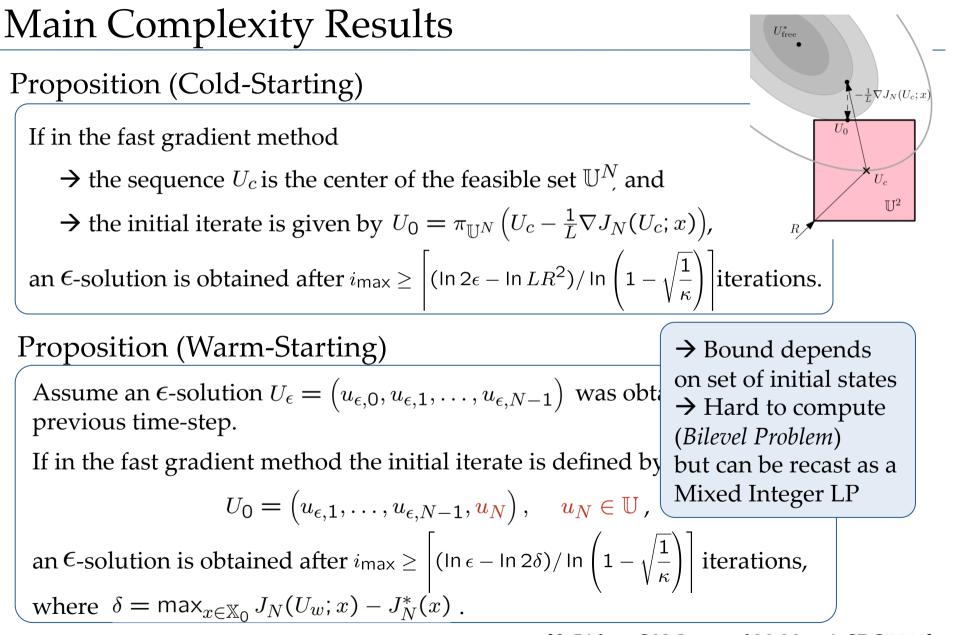
Missing Pieces

Require: $U_0 \in \mathbb{U}^N$ $V_0 = U_0$ 1: for i = 1 to i_{max} do 2: $U_i = \pi_{\mathbb{U}^N} (V_{i-1} - \frac{1}{L} \nabla J_N(V_i))$ 3: $V_i = U_i + b_i (U_i - U_{i-1})$ 4: end for

Two Initialization Strategies \Leftrightarrow Two Different Lower Bounds on i_{max} :

→ Cold-Starting

→ Warm-Starting



[[]S. Richter, C.N. Jones and M. Morari, CDC 2009]

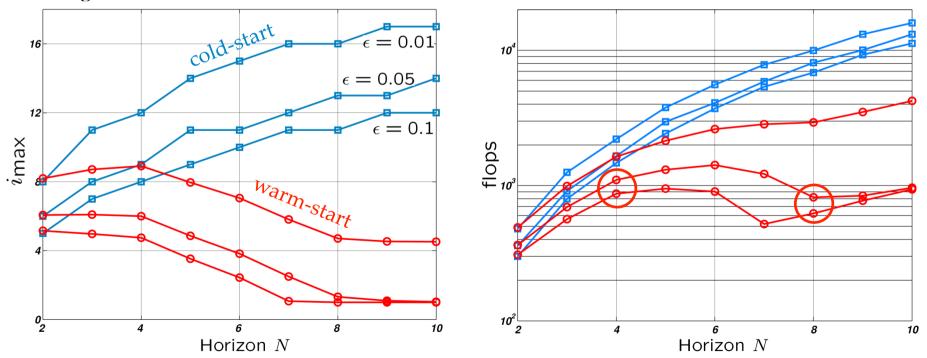
Illustrative Example

4 states/2 inputs system:
$$x^+ = \begin{bmatrix} 0.7 & -0.1 & 0.0 & 0.0 \\ 0.2 & -0.5 & 0.1 & 0.0 \\ 0.0 & 0.1 & 0.1 & 0.0 \\ 0.5 & 0.0 & 0.5 & 0.5 \end{bmatrix} x + \begin{bmatrix} 0.0 & 0.1 \\ 0.1 & 1.0 \\ 0.1 & 0.0 \\ 0.0 & 0.0 \end{bmatrix} u + w$$

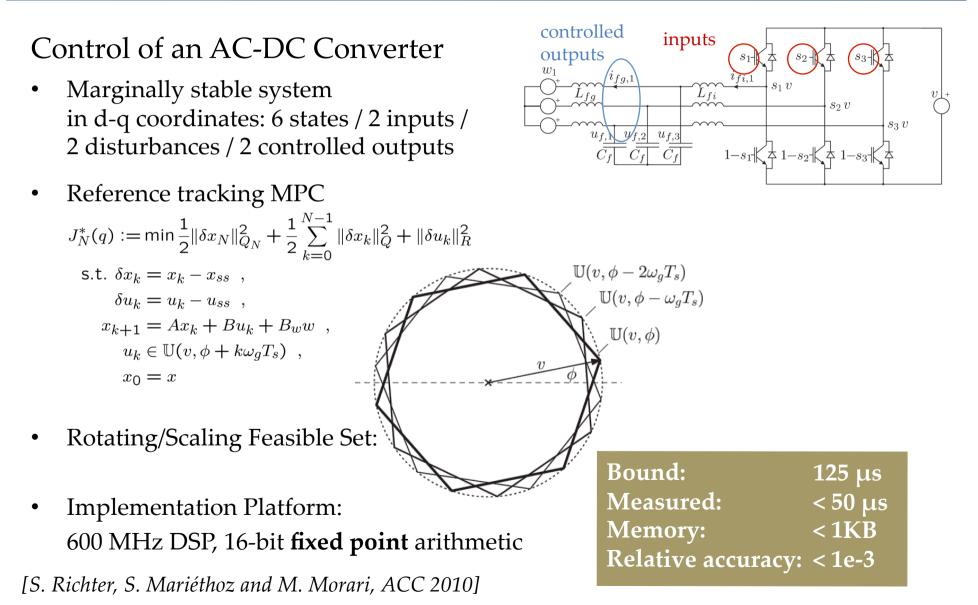
 \Rightarrow Set of initial states $\mathbb{X}_0 = \{x \mid ||x||_{\infty} \le 10\}$

- → Set of feasible inputs $\mathbb{U} = \{u \mid ||u||_{\infty} \leq 1\}$
- → State disturbance $w \in \mathbb{W} = \{w \mid ||w||_{\infty} \le 0.25\}$

→ Weight matrices
$$Q = I_n$$
, $R = 0.1I_m$



Application to AC-DC Converter



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods
 - : Nano-seconds

Summary

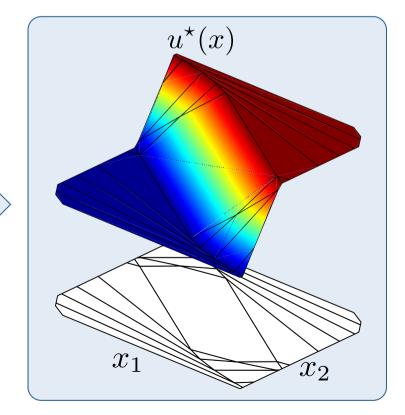
Explicit MPC : Online => Offline Processing

- Optimization problem is function parameterized by state
- Control law piecewise affine for PWA systems/constraints
- Pre-compute control law as function of state x

Result : Online computation dramatically reduced

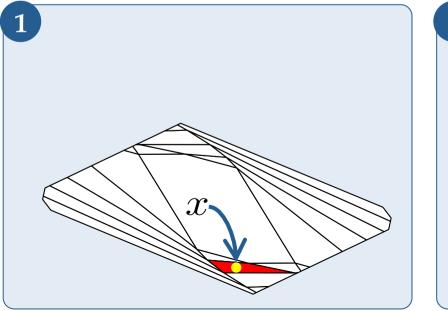
$$\begin{bmatrix} u^{\star}(x) = \underset{u_{i}}{\operatorname{argmin}} V_{N}(x_{N}) + \sum_{i=0}^{N-1} l(x_{i}, u_{i}) \\ \text{s.t. } x_{i+1} = f(x_{i}, u_{i}) \\ (x_{i}, u_{i}) \in \mathcal{X} \times \mathcal{U} \\ x_{N} \in \mathcal{X}_{N} \\ x_{0} = x \end{bmatrix}$$

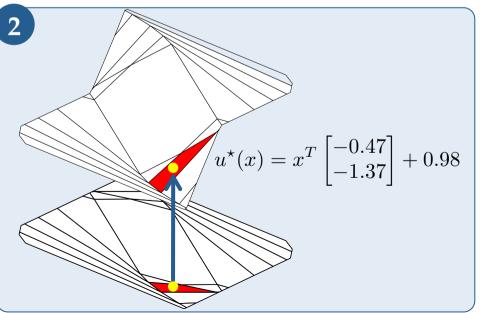
[M.M. Seron, J.A. De Doná and G.C. Goodwin, 2000] [T.A. Johansen, I. Peterson and O. Slupphaug, 2000] [A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000]



Online speed depends on number of control law regions

- Online evaluation reduced to:
 - 1 Point location
 - 2 Evaluation of affine function
- Online complexity is governed by point location
 - Function of number of regions in cell complex
 - Milli- to microseconds possible only *if small number of regions!!*





Real-time \Leftrightarrow synthesize control law of *specified* complexity

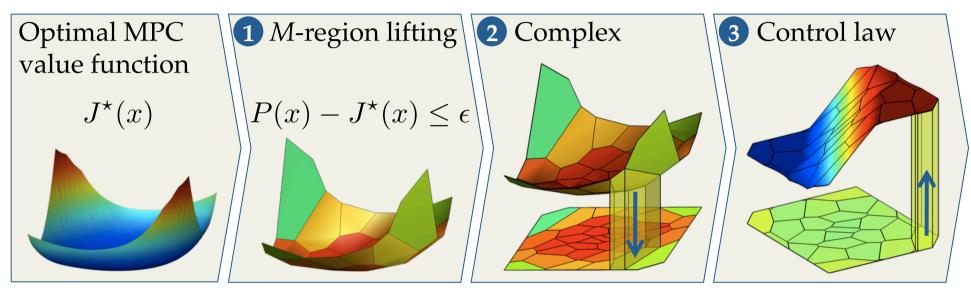
- Explicit MPC may not satisfy given real-time constraint
 - Complexity independent of available processing power
 - Number of regions (complexity) is exponentially sensitive to
 - State dimension
 - Input dimension
 - Small changes in system dynamics

Idea : Real-time explicit MPC with complexity as input

Algorithm properties:

- Tradeoff between complexity and optimality
 - Real-time synthesis
 - Control extremely high-speed systems
- Process any convex MPC problem
- Synthesis of control law to software is verifiable

Real-time explicit MPC : Offline processing



Given optimal controller:

- 1 Compute convex polyhedral function of *M* facets
- 2 Define complex as projection of lifting facets
- 3 Interpolate optimal control law at vertices of complex

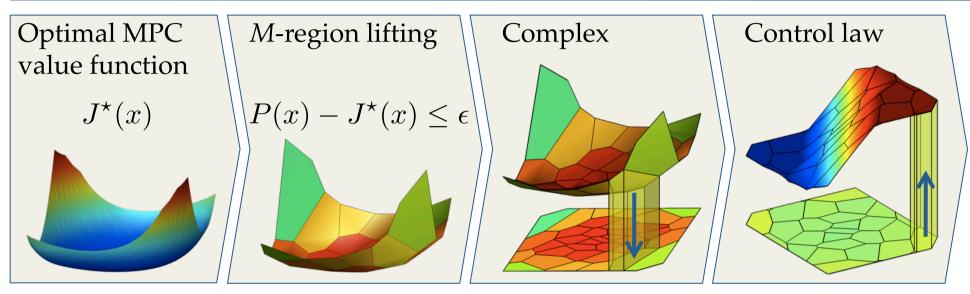
Result : Piecewise polynomial controller of *M* regions

$$J^{\star}(x_0) = \min_{u_i} V_N(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$

s.t. $x_{i+1} = f(x_i, u_i)$
 $(x_i, u_i) \in \mathcal{X} \times \mathcal{U}$
 $x_N \in \mathcal{X}_N$

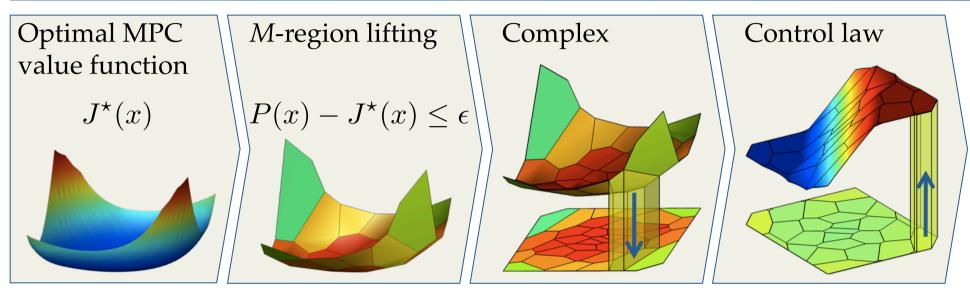
[C.N. Jones and M. Morari, TAC 2010]

Real-time explicit MPC : Properties



Real-time explicit MPC:

- Is computable in micro- to nanoseconds
 - Liftable complexes have log-time point location
 - Design convex lifting => Log-time evaluation
- Satisfies constraints
- Stabilizes the system
- Complexity / performance tradeoff



Real-time explicit MPC:

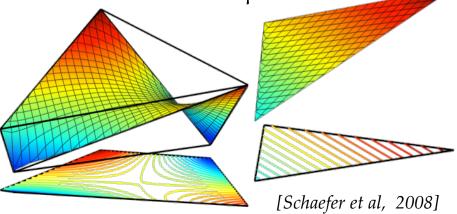
- Is computable in micro- to nanoseconds <=
- Lifting function

- Satisfies constraints
- Stabilizes the system
- Complexity / performance tradeoff

Barycentric interpolation satisfies convex constraints

Thm: $\tilde{u}(x) = \sum_{v \in V} \frac{u^{\star}(v)\alpha_v}{\|v - x\|_2}$ is barycentric for $\operatorname{conv}(V)$

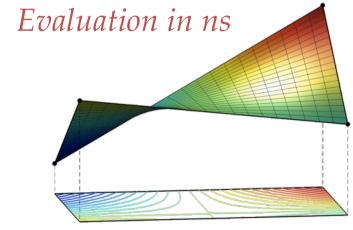
- α_v : area of facet v in dual polytope (pre-computed)
- Valid for *any polytope*
- Low data storage
- Evaluation in μ s



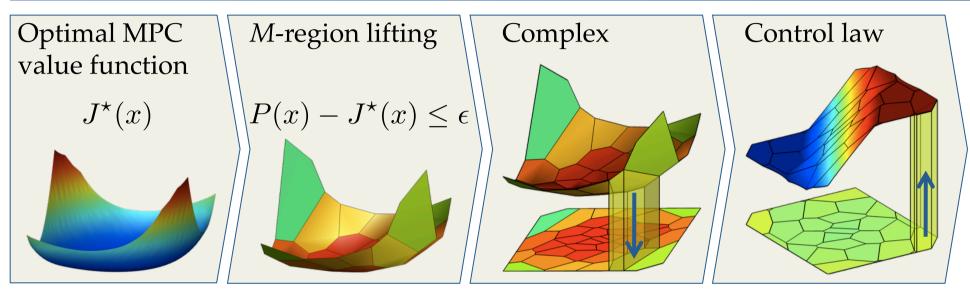
Thm: Tensor-product expansion of second-order interpolants is barycentric

$$\tilde{u}(x) = \sum_{v} u^{\star}(v) \prod_{j=1}^{d} \max\left\{0, \ \frac{|x_j - v_j| + 1}{h}\right\}$$

- Defined on hierarchical grid
- High data storage



[Summers, Jones, Lygeros, Morari 2009]



Real-time explicit MPC:

Is computable in micro- to nanoseconds<= Lifting function</th>Satisfies constraints<= Barycentric interpolation</td>

Stabilizes the system

Complexity/performance tradeoff

ε -approx controller is stable if ε < 1

$$J(u) := V_N(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$
$$J^*(x_0) := \min_{u_i} J(u)$$
s.t. $x_{i+1} = f(x_i, u_i)$
$$(x_i, u_i) \in \mathcal{X} \times \mathcal{U}$$
$$x_N \in \mathcal{X}_N$$

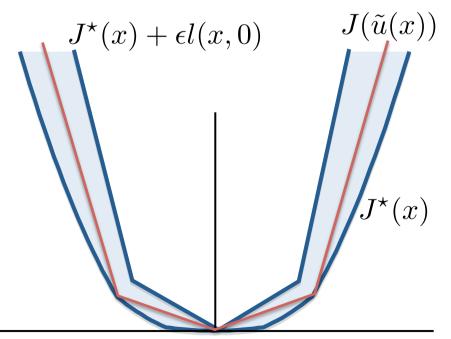
Sufficiently close to optimal

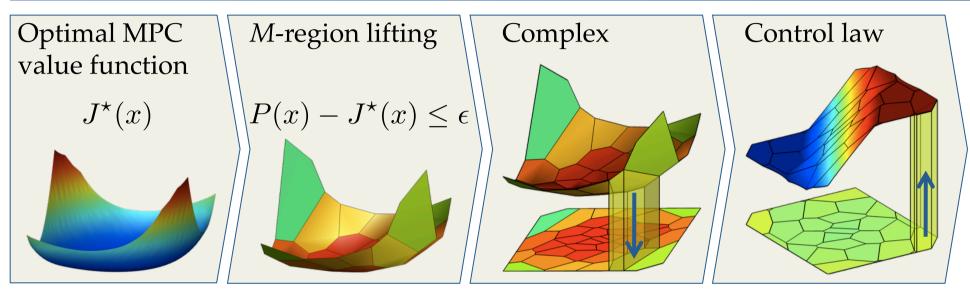
⇒ Stabilizing

Idea:

• Find a lifting sufficiently close to optimal and use it to define $\tilde{u}(x)$

Thm: $x^+ = f(x, \tilde{u}(x))$ is stable if $J^*(x) \le J(\tilde{u}(x)) \le J^*(x) + \epsilon l(x, 0)$ for $\epsilon < 1$

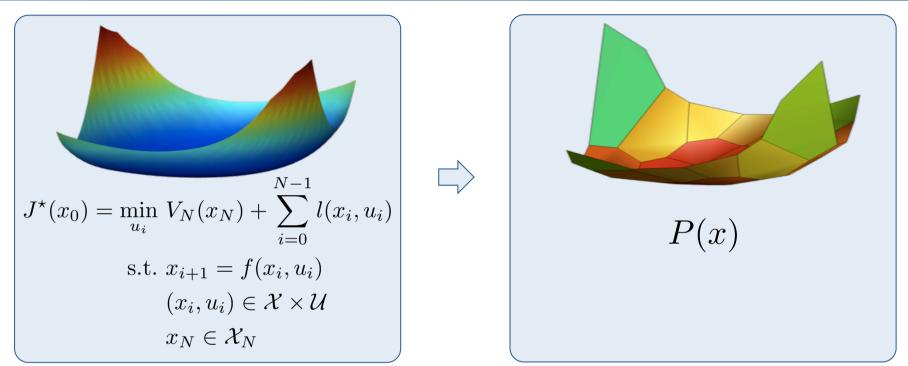




Real-time explicit MPC:

Complexity/performance tradeoff		
Stabilizes the system		<= Error less than one
Satisfies constraints		<= Barycentric interpolation
Is computable in micr	co- to nanoseconds	<= Lifting function

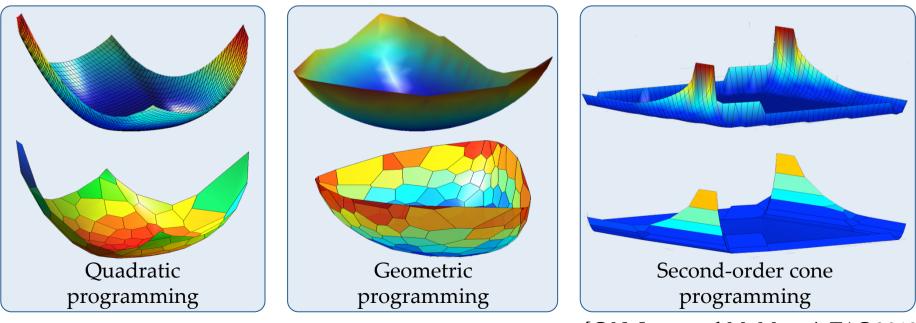
M-region approximation => Double description method

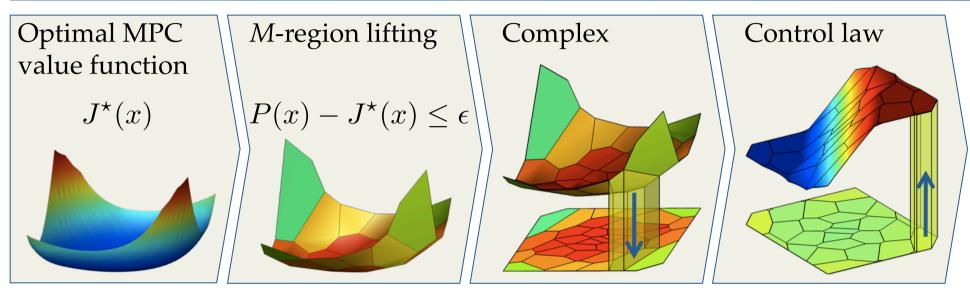


- Approximate convex parametric programming
- Open problem in many areas:
 - Vertex enumeration, Projection, Non-negative matrix factorization...
 - These problems are known to be NP-hard
- ⇒ Poly-time greedy-optimal algorithm

Double description method : Algorithm properties

- Lifting of *M* regions <= Iterate algorithm *M* times
- Monotonic decrease in Hausdorff distance
 - Complexity / performance tradeoff via M
- There exists a minimum *M* for stability
 - ϵ -error in finite time \Rightarrow will find a Lyapunov function
 - Once stable, always stable





Real-time explicit MPC:

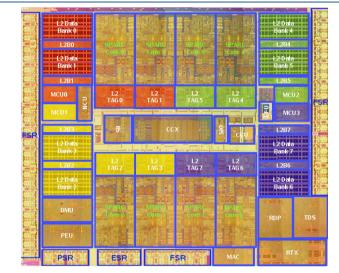
- Is computable in micro- to nanoseconds <= Lifting function
- Satisfies constraints
- Stabilizes the system
- Complexity/performance tradeoff

- <= Barycentric interpolation
- <= Error less than one
- <= *M*-region lifting

Example :

Temperature Regulation of Multi-Core Processor

- Goals
 - Track workload requests
 - Minimize power usage
 - Respect temperature limits
- Quadratic nonlinear dynamics
 - Exact convex relaxation
- Stringent computational and storage requirements



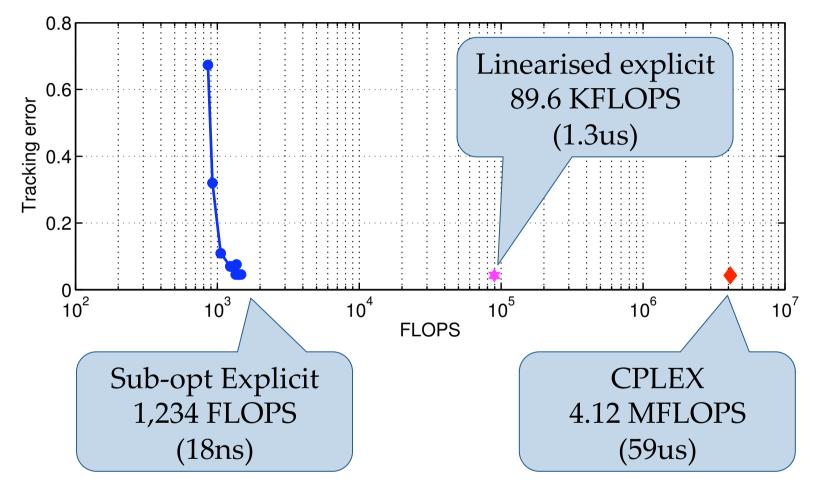
$$J^{\star}(x_0, w) = \min_{f_i} \sum_{t=0}^{N} \sum_{i=0}^{t} (w_i - f_i)$$

s.t. $x_{i+1} = Ax_i + Bf_i^2$
$$\sum_{i=0}^{t} w_i \le \sum_{i=0}^{t} f_i$$

 $x_i \le T_{\max}$
 $f_{\min} \le f_i \le f_{\max}$

[F. Zanini, C.N. Jones, D. Atienza, and G. De Micheli, 2010]

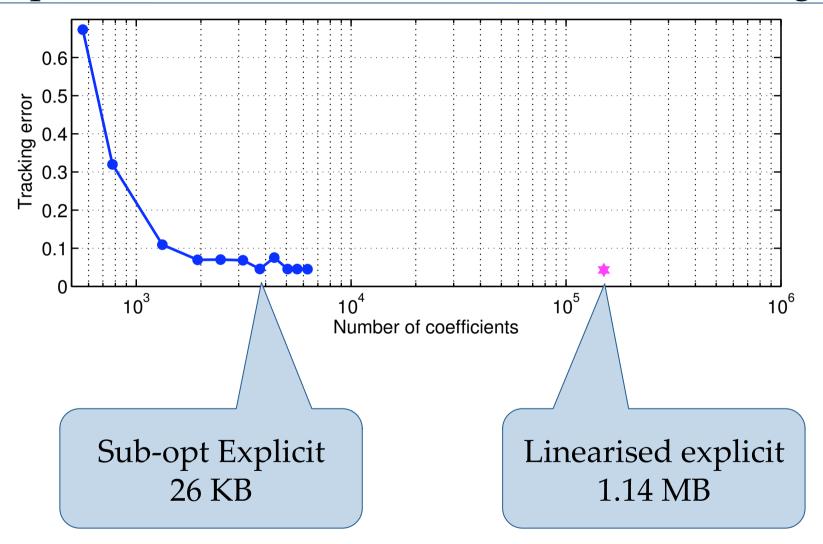
Computational results for QCQP : >3,000× faster



(Assuming 70 GFLOPS/sec – e.g., Intel Core i7 965 XE)

>3,000× / 72× faster than CPLEX / lin. explicit

Computational results for QCQP : 45× less storage



45× less storage

Outline

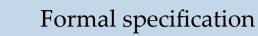
Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods : N
 - : Nano-seconds

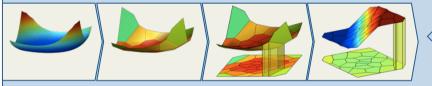
Summary

Summary



- YALMIP
- HYSDEL
- Linear + Hybrid models

Verified controller



Explicit MPCFixed-complexity solutions

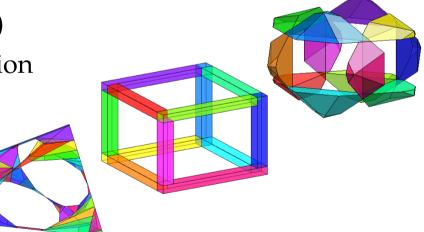
Software synthesis

Control law

- Real-time workshop
- Bounded-time solvers
- Verifiable code generation

Multi-Parametric Toolbox (MPT)

- (Non)-Convex Polytopic Manipulation
- Multi-Parametric Programming
- Control of PWA and LTI systems
- > 22,000 downloads to date



MPT 3.0 coming in 2010