Bursting Phenomena in Adaptive Control

K. J. Åström

Department of Automatic Control, LTH Lund University

Bursting Phenomena in Adaptive Control

- **1** Introduction
- 2 Deterministic Mechanisms
- **3** Stochastic Mechanisms
- ⁴ Summary

Introduction - Burst?

Webster:

- To break apart or into pieces
- To give way from an excess of emotion (to burst into tears)
- To emerge or spring suddenly (to burst into the house)
- To be filled to the breaking point (bursting with excitement)

Science and Engineering:

- **•** The dynamics of bursting in simple adaptive feedback systems with leakage. IEEE-Circuits and Systems
- **Bursting in adaptive hybrids. IEEE-Communications**
- Manipulating Epileptiform Bursting in the Rat Hippocampus using Chaos Control and Adaptive Techniques. IEEE Biomedical Engineering

Bursting in an Adaptive System

- Notice occasional large asymmetric excursions
- Why is it of interest?
- Understand the mechanisms and avoid the phenomena!
- Look at the simplest cases

Bursting Phenomena in Adaptive Control

A Simple Deterministic Adaptive System

Real process and model

$$
y(t + 1) = \theta_0 y(t) + a + u(t)
$$
 $y(t + 1) = \theta y(t) + u(t)$

where *a* represents unmodeled dynamics. Controller is designed assuming $a = 0$

$$
u(t) = -\hat{\theta}(t)y(t) + y_0
$$

Estimator

$$
\hat{\theta}(t+1) = \hat{\theta}(t) + \gamma \frac{y(t) (y(t+1) - \hat{\theta}(t)y(t) - u(t))}{\alpha + y^2(t)}
$$

where γ and α are parameters. Closed loop system

$$
y(t+1) = (\theta_0 - \hat{\theta}(t)) y(t) + a + y_0
$$

$$
\hat{\theta}(t+1) = \hat{\theta}(t) + \gamma \frac{y(t) ((\theta_0 - \hat{\theta}(t)) y(t) + a)}{\alpha + y^2(t)}
$$

Behavior

Steady State Behavior

Closed loop system

$$
y(t+1) = (\theta_0 - \hat{\theta}(t)) y(t) + a + y_0
$$

$$
\hat{\theta}(t+1) = \hat{\theta}(t) + \gamma \frac{y(t) ((\theta_0 - \hat{\theta}(t)) y(t) + a)}{\alpha + y^2(t)}
$$

Equilibrium

$$
y_e = y_0
$$
, $\hat{\theta}_e = \theta_0 + \frac{a}{y_0}$

Correct steady state output, parameter error a/y_0 . Dynamics matrix of linearized system

$$
A = \begin{pmatrix} -\frac{a}{y_0} & -y_0 \\ -\gamma \frac{a}{\alpha + y_0^2} & 1 - \gamma \frac{y_0^2}{\alpha + y_0^2} \end{pmatrix}
$$

γ

− *y*⁰ *y* ⁰ *a*

١

 y_0

 $2(\alpha + y_0^2)$ *y*0 2

Global Behavior - Local Equilibrium Stable

 $\alpha = 0.1, \quad \gamma = 0.1, \; \theta_0 = 1.5, \quad y_0 = 1, \quad a = 0.9, \quad \hat{\theta} = \theta_0 + \frac{a}{a}$ $\frac{a}{y_0} = 2.4$ $y(t+1) = (\theta_0 - \hat{\theta})y(t) + a + y_0$ $\tilde{\theta}(t+1) = \left(1 - \gamma \frac{y^2(t)}{y(t+1)}\right)$ $\alpha + y^2(t)$ $\hat{\theta}(t) + \gamma \frac{a y(t)}{a(t+1)}$ $\alpha + y^2(t)$

Global Behavior - Local Equilibrium Unstable

A Closer Look

Phase Plane

Bursting Phenomena in Adaptive Control

Stochastic Bursting

Typical adaptive system

$$
\frac{dx}{dt} = Ax + Bu + v, \qquad y = Cx + e
$$

$$
\frac{dx_m}{dt} = A_m x_m + B_m r, \qquad y_m = Cx_m
$$

$$
u = \theta^T \varphi(x) + e
$$

$$
\frac{d\theta}{dt} = \gamma \varphi(x)(y - y_m)
$$

- Sensor noise is fed into the coefficients of the linear system via the adaptation mechanism.
- Can bursting occur in linear systems with random coefficients?

The Simplest Case

First order linear system with random forcing and random coefficients

$$
dx = (-dt + dw_1)x + dw_2
$$

 w_1, w_2 Wiener processes with the incremenal covariances

 $E(dw_{1})^{2}=r_{11}dt, \quad \mathcal{E}(dw_{1}\,dw_{2})=r_{12}dt, \quad \quad E(dw_{2})^{2}=r_{22}dt$

Example of a sample path, notice the irregular asymmetric random bursts

Stochastic Differential Equations

Descibes development of $x \in R^n$

$$
dx = f(x,t)dt + \sigma(x,t)dw
$$

w is a Wiener process having zero mean and incremental covariance $E(dw)^2=Idt$

- \bullet The term $f(x,t)dt$ is the drift term
- The term $\sigma(x,t)dw$ is the diffusion term

Regularity conditions:

 $|f(x,t)| \leq K(1+|x|), 0 \leq \sigma(x,t) \leq K(1+|x|)$ $|f(x,t) - f(y,t)| \leq K|x-y|$ $|\sigma(x,t) - \sigma(y,t)| \leq K|x-y|$

SDE & PDE

The stochastic differential equation

 $dx = f(x,t)dt + \sigma(x,t)dw$

is associated with two PDEs (Compare Markov chains and ODE

The Kolmogorov forward equation or the Fokker-Planck equation

$$
\frac{\partial p}{\partial t} = \mathcal{L}p = -\frac{\partial}{\partial x}pf + \frac{1}{2}\frac{\partial^2}{\partial x^2}\sigma^2p, \qquad p(x, t; x_0, t_0) = \delta(x - x_0)
$$

The function $p(x, t; x_0, t_0)$ is the probability density of being in state x at time t given that the process is in state x_0 at time t_0 .

The the Kolmogorov backward operator is the adjoint of the forward equation

$$
-\frac{\partial p^*}{\partial t} = L^* p^* = f(x,t) \frac{\partial p^*}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 p^*}{\partial x^2}
$$

Our Problem

First order linear system with random forcing and random coefficients

$$
dx = (-dt + dw_1)x + dw_2
$$

*w*1, *w*² Wiener processes with the incremenal covariances

$$
E(dw_1)^2=r_{11}dt,\qquad E(dw_1\,dw_2)=r_{12}dt,\qquad E(dw_2)^2=r_{22}dt
$$

Write in standard form

$$
dx = f(x)dt + \sigma(x)dw, \qquad f(x) = -x, \qquad dw = xdw_1 + dw_2
$$

where

$$
\sigma^2(x) = (x^2r_{11} + 2xr_{12} + r_{22})dt
$$

Hence

$$
f(x) = -x, \qquad \sigma^2(x) = x^2 r_{11} + 2x r_{12} + r_{22}
$$

Feller's Characterization of Boundary Conditions

$$
dx = f(x)dt + \sigma(x)dw
$$

\n
$$
f(x) = -x, \qquad \sigma^2(x) = (x^2r_{11} + 2xr_{12} + r_{22})dt
$$

\n
$$
g(x) = \exp\left(-\int^x \frac{f(z)}{\sigma^2(z)}dz\right), \qquad h(x) = \frac{1}{\sigma^2(x)g(x)}
$$

The boundary *r* is:

- regular if $g(x)$ and $h(x)$ are integrable at r
- an exit boundary if $h(x)$ is integrable and $g(x)$ is not
- an entrance boundary if $g(x)$ is integrable and $h(x)$ is not
- a natural boundary otherwise (boundary never reached)

In out case natural boundries at $\pm \infty$ if $\sigma^2(x) > 0$, entrance boundary at $x = -r_{12}/r_{22}$ if $r_{12}^2 = r_{11}r_{22}$. $x = -r_{12}/r_{11}$, no diffusion at that point but a drift towards the orgin.

Steady State Probability Distributions

Kolmogorov backward equation

$$
\frac{d^2}{dx^2}\sigma^2(x)p(x) + \frac{d}{dx}f(x)p(x) = 0
$$

Integrating once gives

$$
(r_{11}x^2 + 2r_{12}x + r_{22})\frac{dp}{dx} + (-x + 2xr_{11} + 2r_{12})p = 0
$$

Pearson type distributions

Case 1: $r_{12}^2 < r_{11}r_{22}$ for $r_{12} = 0$

$$
f(x) = \sqrt{\frac{r_{11}}{\pi r_{22}}} \frac{\Gamma(1 + 1/r_{11})}{\Gamma(1/2 + 1/r_{11})} \left(1 + x^2 \frac{r_{11}}{r_{22}}\right)^{-1 - 1/r_{11}}
$$

Case 2: $r_{12}^2 = r_{11}r_{22}$

Uncorrelated Disturbances $r_{12} = 0$

$$
f(x) = \sqrt{\frac{r_{11}}{\pi r_{22}}} \frac{\Gamma(1 + 1/r_{11})}{\Gamma(1/2 + 1/r_{11})} \left(1 + x^2 \frac{r_{11}}{r_{22}}\right)^{-1 - 1/r_{11}}
$$

Probability density for $r_{22} = 1/2$ and increasing values of r_{11}

Notice both the fat tails and the peaking of the distribution.

${\bf Strong}$ ly Correlated Disturbances $r_{12}^2=r_{11}r_{12}$

$$
f(x) = C \left(\frac{r_{22}}{r_{11}} \frac{1}{1 + x\sqrt{r_{11}/r_{22}}} \right)^{2 + \frac{r_{22}}{r_{11}}} \exp\left(-\frac{r_{22}}{r_{11}} \frac{1}{1 + x\sqrt{r_{11}/r_{22}}} \right)
$$

$$
C = \left(\frac{r_{11}}{r_{22}}\right)^{1.5} \frac{1}{\Gamma(1 + r_{22}/r_{11})}
$$

Probability density for $r_{22} = 1/2$ and $r_{11} = 0, 1/4, 1$ and 4.

Notice the fat tails and the asymmetric peaking.

Sample Paths for Strongly Correlated Disturbances

Moments

$$
dx = (-dt + dw_1)x + dw_2
$$

*w*1, *w*² Wiener processes with the incremenal covariances

$$
E(dw_1)^2=r_{11}dt,\quad \ \ E(dw_1\,dw_2)=r_{12}dt,\quad \ \ E(dw_2)^2=r_{22}dt
$$

The first moments are given by

$$
\frac{dm}{dt} = -m
$$
\n
$$
\frac{dP}{dt} = (-2 + r_{11})P + 2mr_{12} + r_{22}
$$

The variance goes to infinity if $r_{11} > 2$

Wide Band Noise

Does the system

$$
\frac{dx}{dt} = (-1 + n_1)x + n_2
$$

where n_1 and n_2 are wide band white noise behave in the same way as the stochastic differential equation

$$
dx = (-dt + dw_1)x + dw_2
$$

where w_1 and w_2 are Wiener processes?

Wide Band Noise - Stratonovich and Ito

The solution to the differential equation

$$
\frac{dx}{dt} = f(x,t) + \sigma(x,t)n(t)
$$

with band-limited white noise *n* approaches the solution to the SDE

$$
dx = \left(f(x,t) + \frac{1}{2}\sigma_x(x,t)\sigma(x,t)\right)dt + \sigma(x,t)dw
$$

=
$$
\left(f(x,t) + \frac{1}{4}(\sigma^2(x,t))_x\right)dt + \sigma(x,t)dw
$$

when the noise bandwidth goes to infinity. The system

$$
\frac{dx}{dt} = -x + (r_{11}x^2 + 2r_{12}x + r_{22})n
$$

where *n* is whide band noise is thus equivalent to the SDE

$$
dx = \left(-x + \frac{xr_{11} + r_{12}}{2}\right)dt + \sqrt{x^2r_{11} + 2xr_{12} + r_{22}}\ dw
$$

Comparing the SDEs

$$
dx = \left(-x + \frac{xr_{11} + r_{12}}{2}\right)dt + \sqrt{x^2r_{11} + 2xr_{12} + r_{22}} dw
$$

$$
dx = -x dt + \sqrt{x^2r_{11} + 2xr_{12} + r_{22}} dw
$$

Significant differences between with band-limited and white noise

Comparing the SDEs

$$
dx = \left(-x + \frac{xr_{11} + r_{12}}{2}\right)dt + \sqrt{x^2r_{11} + 2xr_{12} + r_{22}} dw
$$

$$
dx = -x dt + \sqrt{x^2r_{11} + 2xr_{12} + r_{22}} dw
$$

Significant differences between with band-limited and white noise. Good example for testing numerical simulation of noisy systems.

K. J. Åström [Bursting Phenomena in Adaptive Control](#page-0-0)

Bursting Phenomena in Adaptive Control

- **1** Introduction
- 2 Stochastic Mechanisms
- **3** Deterministic Mechanisms
- ⁴ Summary

Summary

- **•** Bursting can be generated by noisy parameters in a linear ODE
	- **Distributions have fat tails**
	- Moments may not exist
	- Correlation properties are important
	- Interesting peaking phenomena
- Bursting can be generated by nonlinear mechanisms
	- Unmodeled dynamics may generate local instabilities
	- Strong global attraction because regular dynamics dominates