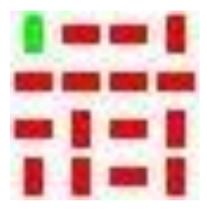
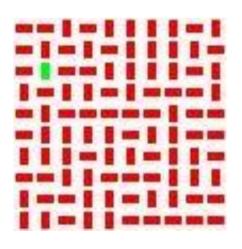
Learning bottom-up visual processes using automatically generated ground truth data

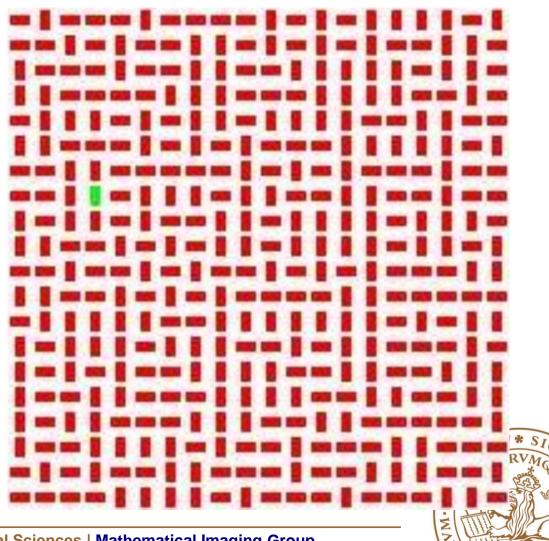
Kalle Åström, Yubin Kuang, Magnus Oskarsson, Lars Kopp an Martin Byröd

Mathematical Imaging Group Center for Mathematical Sciences Lund University

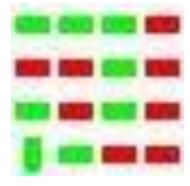
Fast (bottom-up) - some methods scale

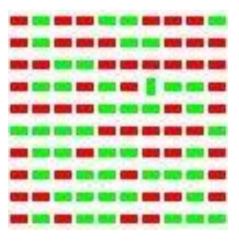


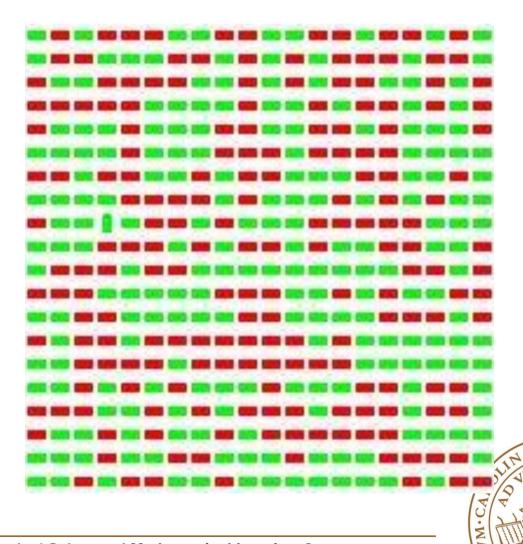




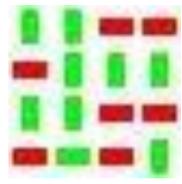
Fast (bottom-up) - some methods scale

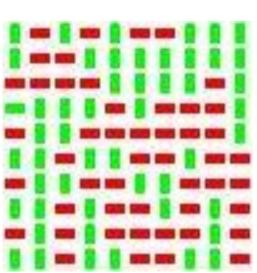


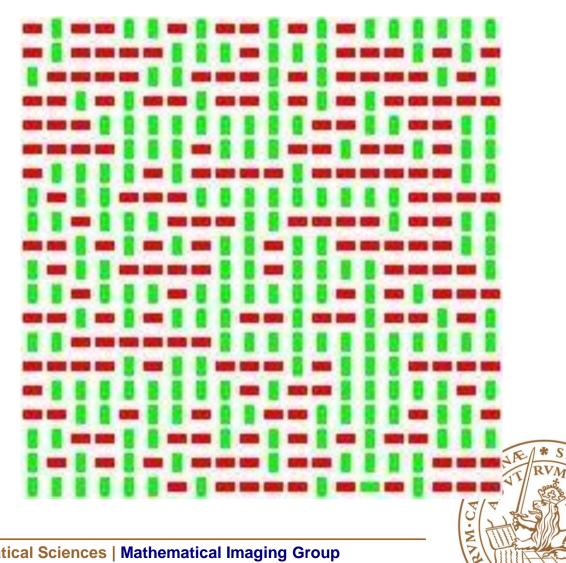




Fast (bottom-up) - some don't







• Oxford Building Data (Philbin et al. CVPR'07)

Query

• Oxford Building Data (Philbin et al. CVPR'07)

Query

• Oxford Building Data (Philbin et al. CVPR'07)

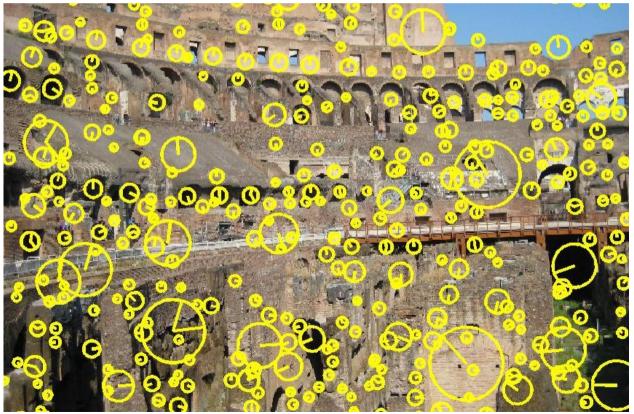
Query

• Oxford Building Data (Philbin et al. CVPR'07)



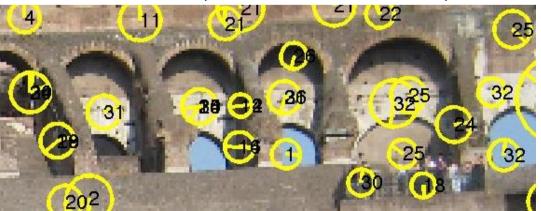
• Oxford Building Data (Philbin et al. CVPR'07)

- Interest point detection (position, scale, orientation)
 - Differences of Gaussian/Harris



- Interest point detection
 - Differences of Gaussian/Harris
- Feature extraction (feature vector e g R^128)
 - SIFT/SURF/DAISY

- Interest point detection
 - Differences of Gaussian/Harris
- Feature extraction
 - SIFT/SURF/DAISY
- Generating vocabularies quantization
 - hierarchical k-means (Nister, Stewenius CVPR'06)
 - approximate k-means (Philbin et al. CVPR'08)



- Interest point detection
 - Differences of Gaussian/Harris
- Feature extraction
 - SIFT/SURF/DAISY
- Generating vocabularies quantization
 - hierarchical k-means (Nister, Stewenius CVPR'06)
 - approximate k-means (Philbin et al. CVPR'08)
- Bags of words
 - measure image similarities based on the histogram of words with L_1 or L_2 norm

- Interest point detection
 - Differences of Gaussian/Harris
- Feature extraction
 - SIFT/SURF/DAISY
- Generating vocabularies quantization
 - hierarchical k-means (Nister, Stewenius CVPR'06)
 - approximate k-means (Philbin et al. CVPR'08)
- Bags of words
 - measure image similarities based on the histogram of words with L_1 or L_2 norm

Our Focus

• ~ 1M words

- ~ 1M words
- Hierarchical K-means, Approximate K-means, Approximate K-means + soft-assignment

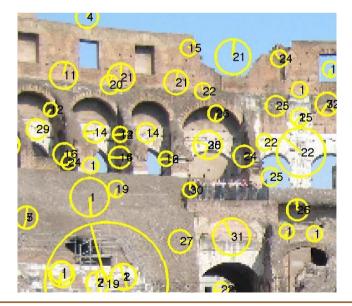
- ~ 1M words
- Hierarchical K-means, Approximate K-means, Approximate K-means + soft-assignment
- Advantage:
 - efficient training
 - fast matching or retrieval using inverted files

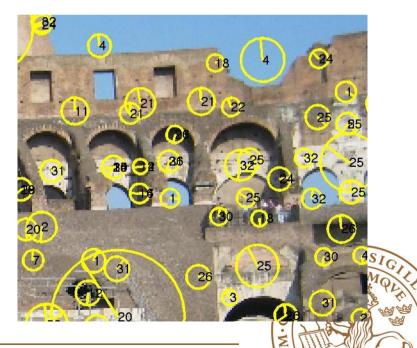
- ~ 1M words
- Hierarchical K-means, Approximate K-means, Approximate K-means + soft-assignment
- Advantage:
 - efficient training
 - fast matching or retrieval using inverted files
- Disadvantage?
 - Unsupervised: Features quantized to the same word do not usually correspond

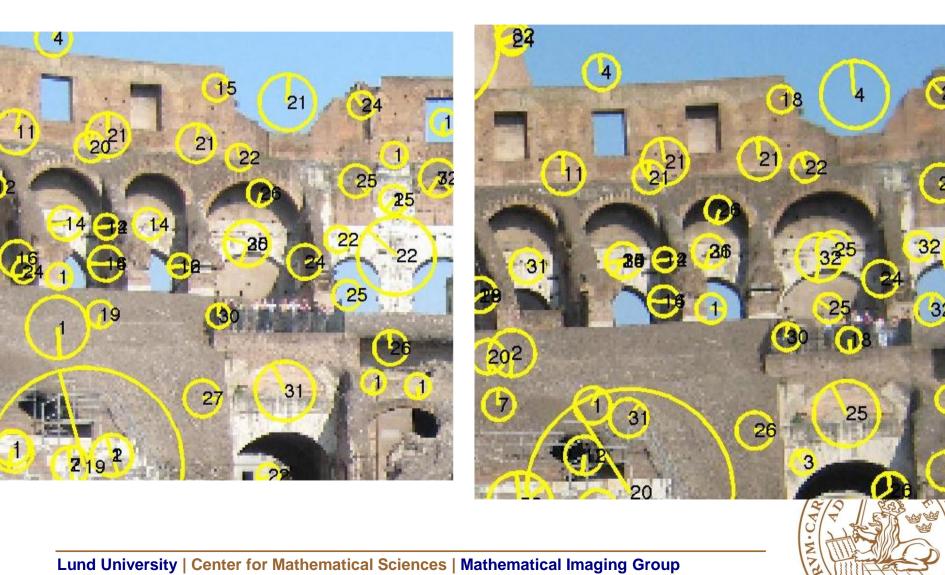
Image query vs database (5000 images, 100 000 images)
 mean average precision

- Image query vs database (5000 images, 100 000 images)
 mean average precision
- Image vs Image

- Image query vs database (5000 images, 100 000 images)
 mean average precision
- Image vs Image
- Descriptor vs descriptor

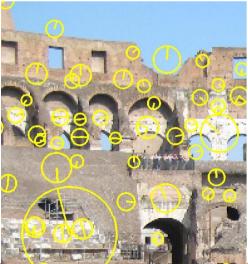


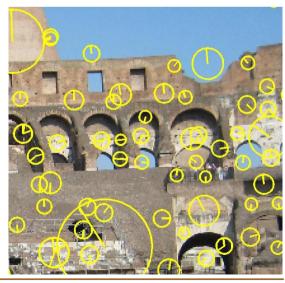




0

- Image query vs database (5000 images, 100 000 images)
 mean average precision
- Image vs Image
- Descriptor vs descriptor
- Feature vs feature





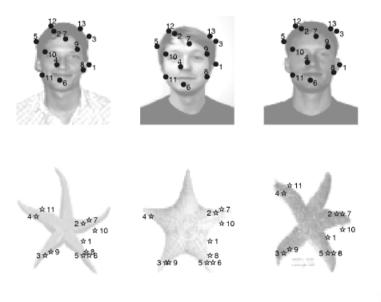
- Image query vs database (5000 images, 100 000 images) – mean average precision
- Image vs Image
- Descriptor vs descriptor
- Feature vs feature
- Aim: Improve on features and descriptors by evaluating and learning already on lower levels
- For this we need ground truth correspondences
- We aim at fast bottom up processes
- We use heavier algorithms for generating ground truth
- Feedback

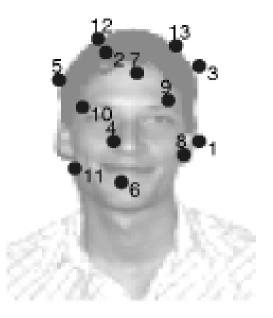
Obtaining ground truth data

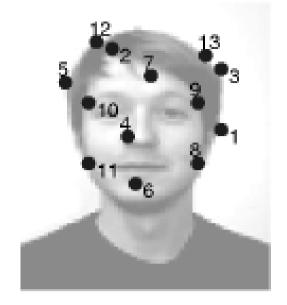
Static scenes

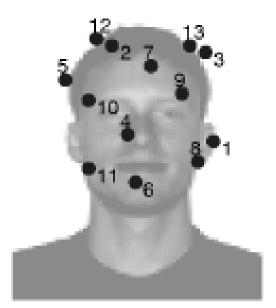
Obtaining ground truth data

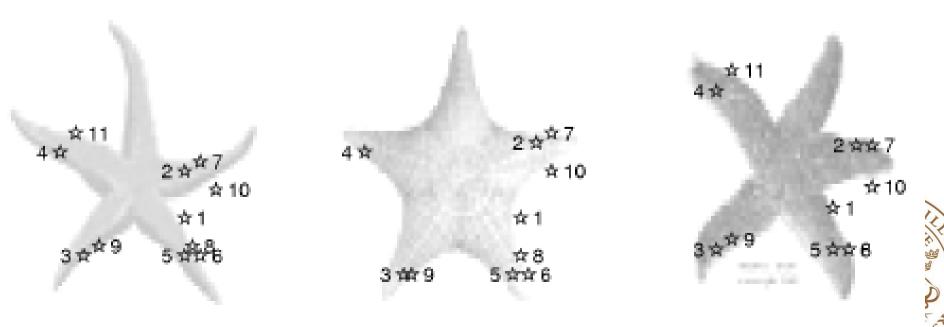
- Static scenes
- Matches using deformable shape models (Karlsson-Åström ICPR 2008, CVPR 2008)







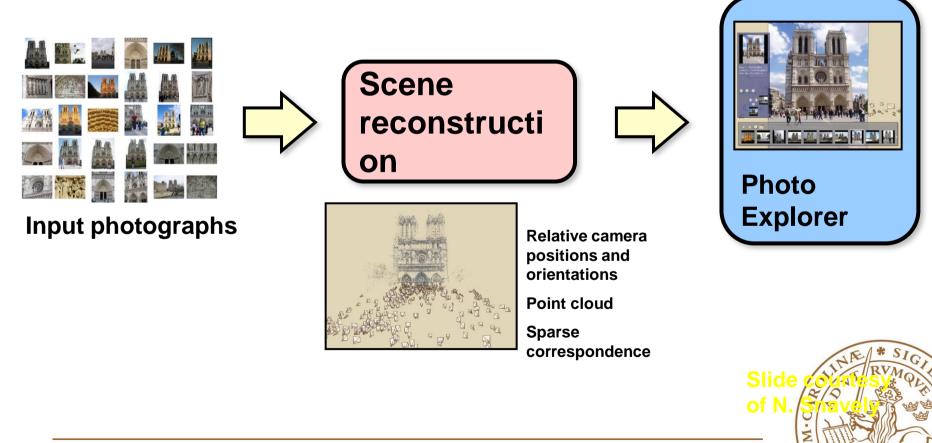




Obtaining ground truth data

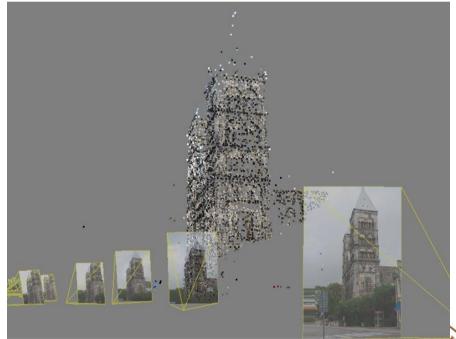
- Static scenes
- Matches using deformable shape models
- Matches using geometry

Reconstruction pipeline

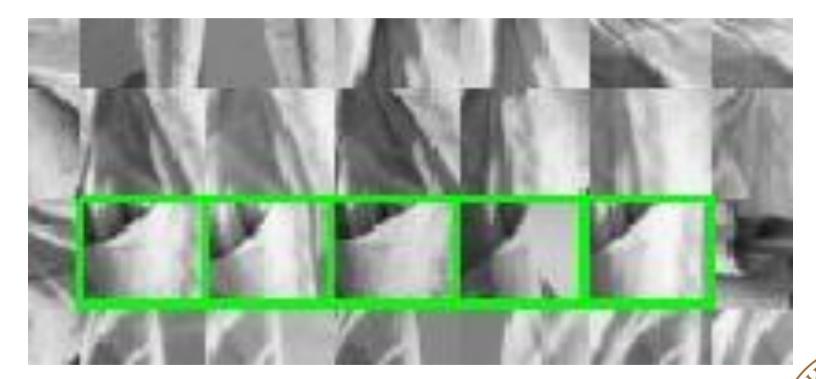


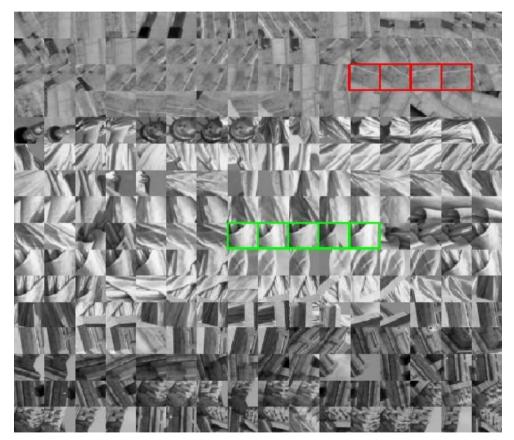
Examples from Lund

Lundagård

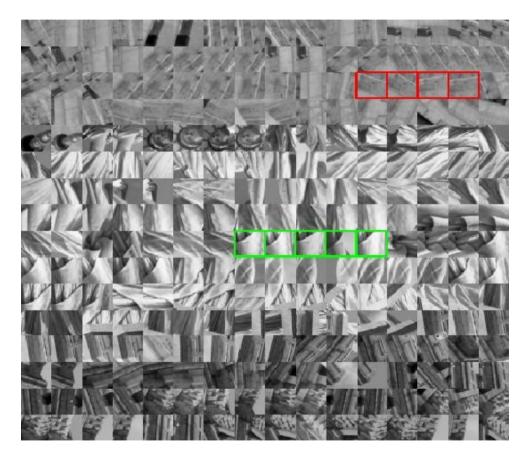


UBC Patch Data (Hua et al. CVPR'09)





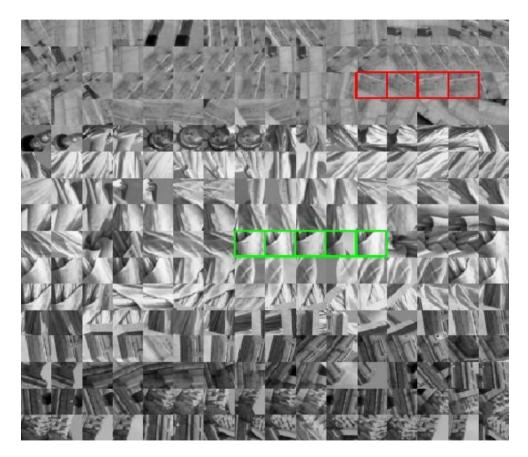
UBC Patch Data (Hua et al. CVPR'09)



UBC Patch Data (Hua et al. CVPR'09)

- Patch correspondences obtained via 3D reconstructions

- Scale and orientation normalized



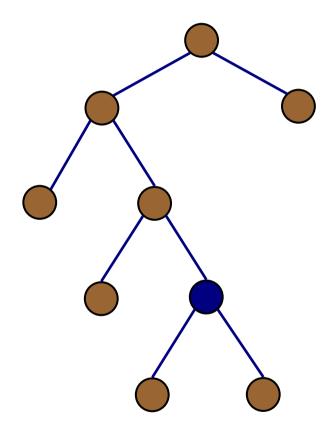
UBC Patch Data (Hua et al. CVPR'09)

- Patch correspondences obtained via 3D reconstructions
- Scale and orientation normalized

We train the vocabulary in the manner that corresponding patches tend to fall in the same word (cluster)

Approximately 1.5 million patches in 0.6 million classes

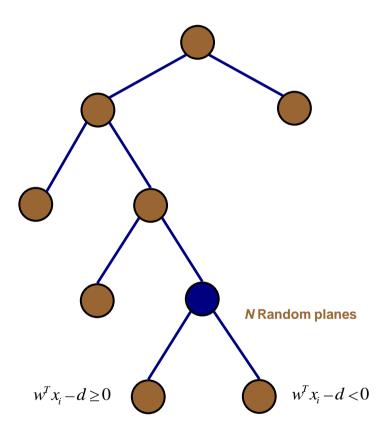
Our approach



Hierarchical splits

- At each level the features are split into 2 clusters

Our approach



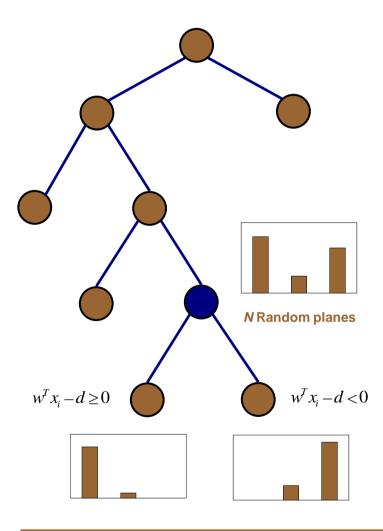
Hierarchical splits

- At each level the features are split into 2 clusters

Random plane

- At each split node, N (~1000) planes are randomly generated, and the one with lowest entropy is selected

Our approach



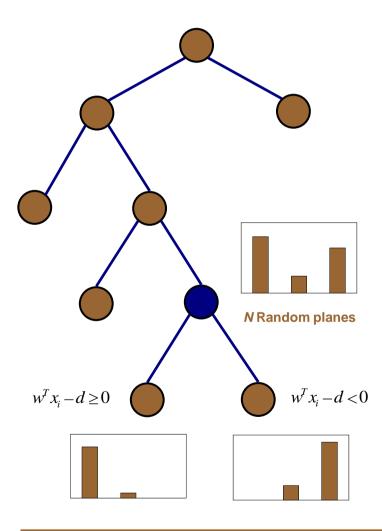
Hierarchical splits

- At each level the features are split into 2 clusters

Random plane

- At each split node, *N* (~1000) planes are randomly generated, and the one with **lowest entropy** is selected

Our approach



Hierarchical splits

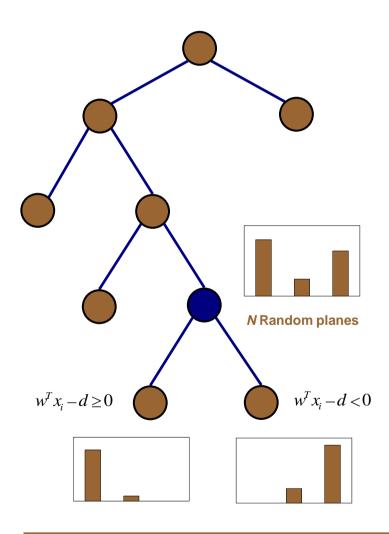
- At each level the features are split into 2 clusters

Random plane

- At each split node, N (~1000) planes are randomly generated, and the one with lowest entropy is selected
- Local optimum

- Perturbing the selected plane to obtain a locally optimal plane w.r.t the entropies

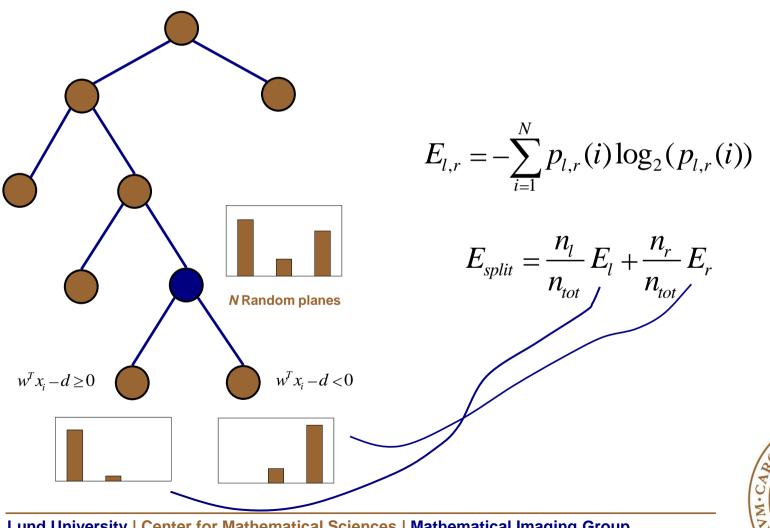
Our approach - Entropy



$$E_{l,r} = -\sum_{i=1}^{N} p_{l,r}(i) \log_2(p_{l,r}(i))$$

$$E_{split} = \frac{n_l}{n_{tot}} E_l + \frac{n_r}{n_{tot}} E_r$$

Our approach - Entropy



Our approach - Soft Assignment

Margin

- Instead of assigning each feature exactly to 1 cluster, we assign features smoothly to both clusters according to their **distances** to the best plane.

Our approach - Soft Assignment

Margin

- Instead of assigning each feature exactly to 1 cluster, we assign features smoothly to both clusters according to their **distances** to the best plane.

- The smoothness is determined by the parameter m – the margin.

$$f(t) = \frac{1}{1 + e^{-t/m}}$$

Our Approach - Soft Assignment

Margin

- Instead of assigning each feature exactly to 1 cluster, we assign features smoothly to both clusters according to their directional **distances** to the best plane.

- The smoothness is determined by the parameter m – the margin.

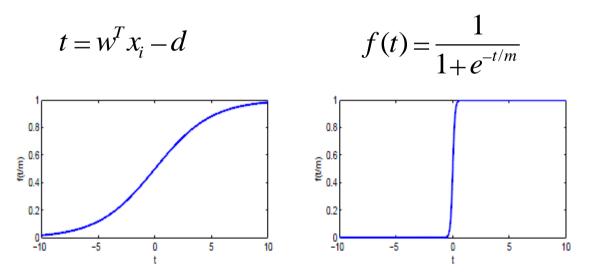


Fig. 1. Left: f(t/m) for large m Right: f(t/m) for small m

Entropy minimization - local search

Gradients derivation

- the gradients of the entropy w.r.t the random plane direction (*w*), offset(*d*) and the margin (*m*) are derived for optimization step

Entropy minimization - local search

Gradients derivation

- the gradients of the entropy w.r.t the random plane direction (*w*), offset(*d*) and the margin (*m*) are derived for optimization step

Optimization

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Broyden, 1970) is used to find the local minimum

Experiments

- Extract SIFT features on the patches with default settings
- 20% of Statue of Liberty data for training
- 10% of non-overlapped Statue of Liberty data for testing

Result Evaluation

For evaluation --

- Matched pairs
 - sets of pair-wise matching within each class
- Non-matched pairs
 - pick an unmatched randomly for each feature

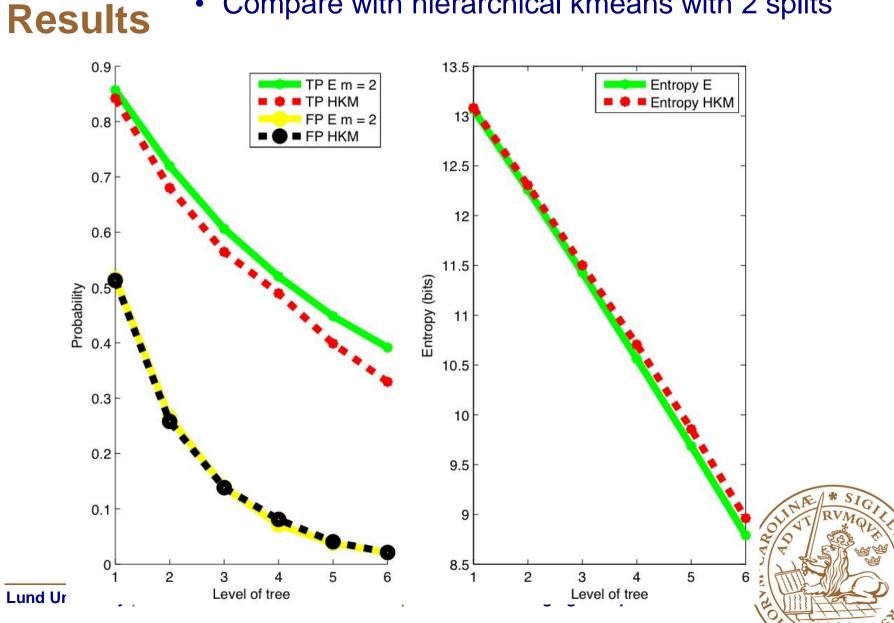
Result Evaluation

For evaluation --

- Matched pairs
 - sets of pair-wise matching within each class
- Non-matched pairs
 - pick an unmatched randomly for each feature

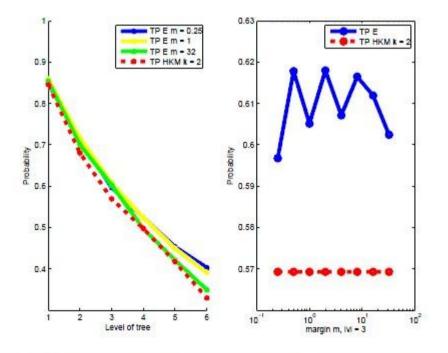
- TP ('True Positive')
 - the percentage of matched pairs get the same word ID
- FP ('False Positive')
 - the percentage of non-matched pairs get the same word ID

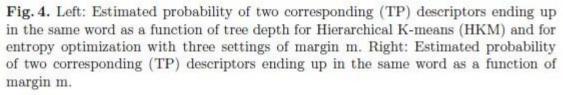
Compare with hierarchical kmeans with 2 splits



Results (cont.)

• Different margins





Future Work

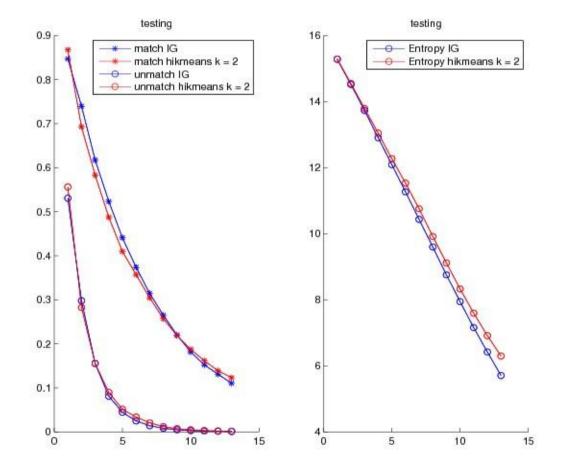
- Generalize to K splits at each levels
- Create additional large ground-truth dataset using geometry with images from Lund, Malmö, Stockholm
- Use soft margin
- Vocabulary for combinations of words

Thank you for your attention!



UNIVERSITY

Further experiments



50% liberty for training50% notredame for testing

Put in the Oxford pipeline

Train on 50% of the whole patch data (~750K features) with 65K words

HIK-2splits	Entropy-opt
0.1641	0.1956

State of the art....train on 5M features with 50K words (Philbin 2007)

kmeans	AKM
0.464	0.453

