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Why do Trajectory Optimization?
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Well known:
■ Optimal control may be used to provide stabilization, tracking, etc., for nonlinear

systems

■ Model predictive/receding horizon strategies have been used successful for a number
of nonlinear systems with constraints
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Well known:
■ Optimal control may be used to provide stabilization, tracking, etc., for nonlinear

systems

■ Model predictive/receding horizon strategies have been used successful for a number
of nonlinear systems with constraints

Also:
■ Trajectory exploration: What cool stuff can this system do?

◆ capabilities

◆ limitations

◆ bad stuff [ videos ]

■ Trajectory modeling: Can the trajectories of this (complex) system be modeled by
those of a simpler system? [e.g., reduced order, flat, ...]

■ Objective function design: needed to exploit system capabilities

■ Systems analysis: investigate system structure, e.g., controllability



Minimization of Trajectory Functionals
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Consider the problem of minimizing a functional

h(x(·), u(·)) :=

∫ T

0

l(τ, x(τ), u(τ)) dτ +m(x(T ))

over the set T of bounded trajectories of the nonlinear system

ẋ(t) = f(x(t), u(t))

with x(0) = x0 (... without additional constraints).

We write this constrained problem as

min
ξ∈T

h(ξ)

where ξ = (α(·), µ(·)) is in general a bounded curve with α(·) continuous and α(0) = x0.
How may we approach this problem?



Unconstrained (?) Optimal Control
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■ In the usual case, the choice of a control trajectory u(·) determines the state
trajectory x(·) (recall that x0 has been specified). With such a trajectory
parametrization, one obtains so-called unconstrained optimal control problem

min
u(·)

h(x(·;x0, u(·)), u(·))

■ Why not just search over control trajectories u(·)? If the system described by f is
sufficiently stable, then such a shooting method may be effective.

■ Unfortunately, the modulus of continuity of the map
u(·) 7→ (x(·), u(·)) is often so large that such shooting is
computationally useless:

small changes in u(·) may give LARGE changes in x(·)

■ Indeed, finite escape time issues may make the set of admissible inputs extremely
difficult to describe (and possibly shrinking as T grows).



Projection Operator Approach

Projection Operator Lund Apr 10 – 5 / 28

Key Idea: a trajectory tracking controller may be used to minimize the effects of system
instabilities, providing a numerically effective, redundant trajectory parametrization.

Let ξ(t) = (α(t), µ(t)), t ≥ 0, be a bounded curve and
let η(t) = (x(t), u(t)), t ≥ 0, be the trajectory of f determined by
the nonlinear feedback system

ẋ = f(x, u), x(0) = x0,

u = µ(t) +K(t)(α(t)− x) .

The map

P : ξ = (α(·), µ(·)) 7→ η = (x(·), u(·))

is a continuous, Nonlinear Projection Operator.

For each ξ ∈ domP, the curve η = P(ξ) is a trajectory.

Note: the trajectory contains both state and control curves.



Projection Operator
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η = P(ξ)

ξ



Projection Operator Properties
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Suppose that f is Cr and that K is bounded and
exponentially stabilizes ξ0 ∈ T . Then

■ P is well defined on an L∞ neighborhood of ξ0

■ P is Cr (Fréchet diff wrt L∞ norm)

■ ξ ∈ T if and only if ξ = P(ξ)

■ P = P ◦ P (projection)

On the finite interval [0, T ], choose K(·) to obtain stability-like properties
so that the modulus of continuity of P is relatively small.

Note: on the infinite horizon, instabilities must be stabilized in order to obtain
a projection operator; consider ẋ = x+ u.



Trajectory Manifold
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ξ

ξ+ζ

η = P(ξ+ζ)

Thm T is a Banach manifold: Every η ∈ T near ξ ∈ T can be
uniquely represented as

η = P(ξ + ζ), ζ ∈ TξT

Key: the projection operator DP(ξ) provides the required subspace splitting.



Computation of D2P
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We may use ODEs to calculate D2P(ξ) · (ζ1, ζ2):

η = (x, u) = P(ξ) = P(α, µ)
γi = (zi, vi) = DP(ξ) · ζi = DP(ξ) · (βi, νi)
ω = (y,w) = D2P(ξ) · (ζ1, ζ2)

η(t) : ẋ(t) = f(x(t), u(t)), x(0) = x0

u(t) = µ(t) +K(t)(α(t)− x(t))

γi(t) : żi(t) = A(η(t))zi(t) +B(η(t))vi(t), zi(0) = 0
vi(t) = νi(t) +K(t)(βi(t)− zi(t))

ω(t) : ẏ(t) = A(η(t))y(t) +B(η(t))w(t) +D2f(η(t)) · (γ1(t), γ2(t))
w(t) = −K(t)y(t), y(0) = 0

■ The derivatives are about the trajectory η = P(ξ)

■ The feedback K(·) stabilizes the state at each level



Equivalent Optimization Problems

Projection Operator Lund Apr 10 – 10 / 28

Using the projection operator, we see that

min
ξ∈T

h(ξ) = min
ξ=P(ξ)

h(ξ)

h(x(·), u(·)) =

∫
T

0
l(τ, x(τ), u(τ)) dτ +m(x(T ))

Furthermore, defining

g(ξ) := h(P(ξ))

for ξ ∈ U with P(U) ⊂ U ⊂ domP, we see that

min
ξ∈T

h(ξ)

︸ ︷︷ ︸
constrained

and min
ξ∈U

g(ξ)

︸ ︷︷ ︸
unconstrained

are equivalent in the sense that

■ if ξ∗ ∈ T ∩ U is a constrained local minimum of h,
then it is an unconstrained local minimum of g;

■ if ξ+ ∈ U is an unconstrained local minimum of g in U ,
then ξ∗ = P(ξ+) is a constrained local minimum of h.



projection operator Newton method
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given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction ζi = arg min
ζ∈Tξi

T
Dh(ξi)·ζ + 1

2
D2g(ξi)·(ζ, ζ)

line search γi = arg min
γ∈(0,1]

h(P(ξi + γζi))

update ξi+1 = P(ξi + γiζi)

end
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given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .

redesign feedback K(·) if desired/needed

descent direction ζi = arg min
ζ∈Tξi

T
Dh(ξi)·ζ + 1

2
D2g(ξi)·(ζ, ζ)

line search γi = arg min
γ∈(0,1]

h(P(ξi + γζi))

update ξi+1 = P(ξi + γiζi)

end

When D2g(ξi) is not positive definite on TξiT , one may obtain a
quasi-Newton descent direction by solving

ζi = arg min
ζ∈Tξi

T
Dh(ξi)·ζ + 1

2
q(ξi) · (ζ, ζ)

where q(ξi) is positive definite on TξiT (e.g., an approximation to D2g(ξi))

This direct method generates a descending trajectory sequence in Banach space!



Brockett’s Integrator
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min

∫ 1

0

‖u(τ)‖2/2 dτ + ‖x(T )‖2P1
/2

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2

P1 = diag([10 10 100])



Derivatives
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g(ξ) = h(P(ξ))

Dg(ξ) · ζ = Dh(P(ξ)) ·DP(ξ) · ζ

D2g(ξ) · (ζ1, ζ2) =

D2h(P(ξ)) · (DP(ξ) · ζ1,DP(ξ) · ζ2)

+Dh(P(ξ)) ·D2P(ξ) · (ζ1, ζ2)



Derivatives

Projection Operator Lund Apr 10 – 13 / 28

g(ξ) = h(P(ξ))

Dg(ξ) · ζ = Dh(P(ξ)) ·DP(ξ) · ζ

D2g(ξ) · (ζ1, ζ2) =

D2h(P(ξ)) · (DP(ξ) · ζ1,DP(ξ) · ζ2)

+Dh(P(ξ)) ·D2P(ξ) · (ζ1, ζ2)

When ξ ∈ T , ζi ∈ TξT ,

Dg(ξ) · ζ = Dh(ξ) · ζ

D2g(ξ) · (ζ1, ζ2) =

D2h(ξ) · (ζ1, ζ2) + Dh(ξ) ·D2P(ξ) · (ζ1, ζ2)︸ ︷︷ ︸
generalizes Lagrange multiplier



D2g Lagrange Multiplier
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Dh(ξ) ·D2P(ξ) · (ζ, ζ) =

∫ T

0

D2l(τ, ξ(τ)) · (D
2P(ξ) · (ζ, ζ))(τ) dτ

=

∫ T

0

D2l(τ, ξ(τ)) ·

[
I

−K(τ)

] ∫ τ

0

Φc(τ, s)D
2f(ξ(s)) · (ζ(s), ζ(s)) ds dτ

=

∫ T

0

∫ T

s

D2l(τ, ξ(τ)) ·

[
I

−K(τ)

]
Φc(τ, s) dτ D

2f(ξ(s)) · (ζ(s), ζ(s)) ds

=

∫ T

0

q(s)T D2f(ξ(s)) · (ζ(s), ζ(s)) ds

where

q̇(t) = −[A(ξ(t))−B(ξ(t))K(t)]T q(t)− lTx (t) +K(t)T lTu (t), q(T ) = 0

We obtain a stabilized adjoint variable, independent of stationary considerations!



D2g
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For ξ ∈ T and ζ ∈ TξP, D2g(ξ) · (ζ, ζ) has the form

∫ T

0

(
z(τ)
v(τ)

)T [
Q(τ) S(τ)
S(τ)T R(τ)

] (
z(τ)
v(τ)

)
dτ + z(T )TP1z(T )

where

W (t) =

[
Q(τ) S(τ)

S(τ)T R(τ)

]

has elements

wij(t) =
∂2l

∂ξi∂ξj

(t, ξ(t)) +
n∑

k=1

qk(t)
∂2fk

∂ξi∂ξj

(ξ(t))

and P1 = ∂2m

∂x2 (x(T )).

In fact, W (·) is just the second derivative matrix of the Hamiltonian

H(t, x, u, q) = l(t, x, u) + qT f(x, u)

Again, no stationary considerations.



descent direction LQ OCP
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The descent direction problem is a linear quadratic optimal control problem

min

∫ T

0

(
a(τ)
b(τ)

)T(
z(τ)
v(τ)

)
+

1

2

(
z(τ)
v(τ)

)T [
Q(τ) S(τ)

S(τ)T R(τ)

] (
z(τ)
v(τ)

)
dτ

+ rT
1 z(T ) + z(T )TP1z(T )/2

subj to ż = A(t)z +B(t)v, z(0) = 0,

where the cost is, in general, non-convex.

This LQ OCP (with PD R(·)) has a unique solution if and only if

Ṗ + ÃTP + PÃ− PBR−1BTP + Q̃ = 0, P (T ) = P1

has a bounded solution on [0, T ].

[ Ã = A − BR−1ST , Q̃ = Q − SR−1ST ]
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The descent direction problem is a linear quadratic optimal control problem

min

∫ T

0

(
a(τ)
b(τ)

)T(
z(τ)
v(τ)

)
+

1

2

(
z(τ)
v(τ)

)T [
Q(τ) S(τ)

S(τ)T R(τ)

] (
z(τ)
v(τ)

)
dτ

+ rT
1 z(T ) + z(T )TP1z(T )/2

subj to ż = A(t)z +B(t)v, z(0) = 0,

where the cost is, in general, non-convex.

This LQ OCP (with PD R(·)) has a unique solution if and only if

Ṗ + ÃTP + PÃ− PBR−1BTP + Q̃ = 0, P (T ) = P1

has a bounded solution on [0, T ].

[ Ã = A − BR−1ST , Q̃ = Q − SR−1ST ]

HELP:
How can we detect, numerically, a lack of positive definiteness?
How might we compute the minimum eigenvalue of q on the subspace?



aside ... Analysis Challenge: Controllability of the
Pendubot

Projection Operator Lund Apr 10 – 17 / 28

ϕ̈ = a sinϕ+ b θ̇2 sin (ϕ− θ) + b u cos (ϕ− θ)

θ̈ = u

quadratic approximation about θ = π/2, ϕ = 0

ϕ̈ = aϕ− b θ̇2 + b (ϕ− θ)u

θ̈ = u

...



Trajectory Exploration: Rigid Motorcycle
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RigidMoto system has

5 states : v, β, ϕ, ϕ̇, ψ̇

3 inputs : δ, κr, κf

The configuration variables, x, y, and ψ, are related to these kinematically.



RigidMoto dynamics
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


m 0 0 0 µ̄fx µ̄rx

0 m 0 0 µ̄fy µ̄ry

0 0 mhsϕ 0 −1 −1

0 0 Ix Ixzcϕ h (sϕ − cϕ µ̄fy) h (sϕ − cϕ µ̄ry)

0 0 0 Iysϕ h µ̄fx + a (cϕ + sϕ µ̄fy) h µ̄rx − b (cϕ + sϕ µ̄ry)

0 0 Ixzcϕ Izc
2
ϕ + Iys

2
ϕ h sϕ µ̄fx + a µ̄fy h sϕ µ̄rx − b µ̄ry







ax

ay

ϕ̈

ψ̈

ffz

frz




+




0

0

mhcϕϕ̇
2

−mg

(Iz−Iy)cϕsϕψ̇
2

−Ixzϕ̇
2 + (Ix+Iy−Iz)cϕϕ̇ψ̇ + Ixzc

2
ϕψ̇

2

−Ixzsϕϕ̇
2 + 2(Iy−Iz)cϕsϕϕ̇ψ̇




=




0

0

0

0

0

0






trajectory exploration
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the RigidMoto is a
model vehicle

to gain experience in
high performance maneuvering

To this end, we use nonlinear least squares trajectory optimization to explore system
trajectories. That is, we consider the optimal control problem

min ‖(x(·), u(·))− (xd(·), ud(·))‖2L2
/2

subj ẋ = f(x, u) , x(0) = x0 ,

where ‖ · ‖L2 is a weighted L2 norm on [0, T ] and the desired (non) trajectory (xd(·), ud(·))
is a trajectory exploration design parameter.



chicane example
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Trajectory Constraints
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We investigate the use of a barrier function method for approximating the (local) solution
of constrained optimal control problems of the form

minimize

∫ T

0

l(τ, x(τ), u(τ)) dτ +m(x(T ))

subject to ẋ(t) = f(x(t), u(t)), x(0) = x0

cj(t, x(t), u(t)) ≤ 0, t ∈ [0, T ], a.e.
j = 1, . . . , k,

where the data satisfies some reasonable smoothness and convexity properties.

Approximating OCPs will be unconstrained.



Barrier Function Approach n
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In finite dimensions, a solution to a C2 convex problem

min f(x)
s.t. cj(x) ≤ 0, j = 1, . . . , k

is found by solving a sequence of convex problems

min
x∈C

f(x)− ε
∑

j log(−cj(x))

where C = {x ∈ R
n : cj(x) < 0} is the open strictly feasible set.



Barrier Function Approach ∞
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The direct OCP translation is

min

∫ T

0

l(τ, x(τ), u(τ))− ε
∑

j log(−cj(τ, x(τ), u(τ))) dτ

+ m(x(T ))

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x0

Suppose that at some ε0 > 0, this problem possesses a locally optimal trajectory
ξ∗ε0 = (x∗ε0(·), u

∗
ε0(·)) that is SSC and that the Hamiltonian is strongly convex in u.

Then ξ∗ε0 is a strictly feasible trajectory (of constrained problem) and the IFT indicates nice
dependence on ε.
Looks promising ... but guaranteeing strict feasibility during optimization process is very
difficult!



Approximate Barrier Function
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For 0 < δ ≤ 1, define the C2 approximate log barrier function

βδ : (−∞,∞)→ (0,∞)

βδ(z) =





− log z z > δ

k − 1

k

[(
z − kδ

(k − 1)δ

)k

− 1

]
− log δ z ≤ δ

where k > 1 is an even integer, e.g., k = 2.
βδ(·) retains many of the important properties of the log barrier function.
Similar to z 7→ − log z: for strictly convex proper c : R→ R,
z 7→ βδ(−c(z)) is also strictly convex so that

min
x∈C

f(x) + ε
∑

j βδ(−cj(x))

is a convex problem that has the same solution (x∗ε ) provided δ < cj(x
∗
ε ) for all j.
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Returning to infinite dimensions, define, for ξ = (α(·), µ(·))

bδ(ξ) =

∫ T

0

∑
jβδ(−cj(τ, α(τ), µ(τ))) dτ

and consider unconstrained approximation (to constrained OCP)

min
ξ∈T

h(ξ) + εbδ(ξ)

Note: h(·) + εbδ(·) can be evaluated on any curve ξ in X̃.
As in the finite dimensional case, a locally optimal trajectory ξ∗ε for this problem is also
locally optimal for the non-δ problem provided δ > 0 is sufficiently small.



Strategy
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The projection operator based Newton method may be used to optimize the functional

gε,δ(ξ) = h(P(ξ)) + εbδ(P(ξ))

as part of a continuation (or path following) method to seek an approximate solution to the
constrained OCP.
The strategy is to start with a reasonably large ε and δ, for instance, ε = δ = 1. Then, for
the current ε and δ, the problem

min gε,δ(ξ)

is solved using the Newton method starting from the current trajectory.
If necessary or desired, the value is δ is reduced to ensure strict feasibility.
Next, both ε and δ are decreased using, for instance, ε← ε/10 and δ ← δ/10.
Then, go back to the minimization step and continue.



PVTOL Example
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desired
ρ = 4
ρ = 1

ÿ = u1 sinϕ− εu2 cosϕ
z̈ = −u1 cosϕ− εu2 sinϕ+ g
ϕ̈ = u2.
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