Projection Operator Stategies in the Optimization of Trajectory Functionals

John Hauser Univ of Colorado

Why do Trajectory Optimization?

Well known:

- Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems
- Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Why do Trajectory Optimization?

Well known:

- Optimal control may be used to provide stabilization, tracking, etc., for nonlinear systems
- Model predictive/receding horizon strategies have been used successful for a number of nonlinear systems with constraints

Also:

- Trajectory exploration: What cool stuff can this system do?
 - capabilities
 - limitations
 - ◆ bad stuff [videos]
- Trajectory modeling: Can the trajectories of this (complex) system be modeled by those of a simpler system? [e.g., reduced order, flat, ...]
- Objective function design: needed to exploit system capabilities
- Systems analysis: investigate system structure, e.g., controllability

Minimization of Trajectory Functionals

Consider the problem of minimizing a functional

$$h(x(\cdot), u(\cdot)) := \int_0^T l(\tau, x(\tau), u(\tau)) \ d\tau + m(x(T))$$

over the set T of bounded trajectories of the nonlinear system

$$\dot{x}(t) = f(x(t), u(t))$$

with $x(0) = x_0$ (... without additional constraints).

We write this **constrained** problem as

$$\min_{\xi \in \mathcal{T}} h(\xi)$$

where $\xi = (\alpha(\cdot), \mu(\cdot))$ is in general a bounded curve with $\alpha(\cdot)$ continuous and $\alpha(0) = x_0$. How may we approach this problem?

Unconstrained (?) Optimal Control

- In the usual case, the choice of a **control** trajectory $u(\cdot)$ determines the **state** trajectory $x(\cdot)$ (recall that x_0 has been specified). With such a **trajectory** parametrization, one obtains so-called unconstrained optimal control problem $\min_{u(\cdot)} h(x(\cdot;x_0,u(\cdot)),u(\cdot))$
- Why not just search over control trajectories $u(\cdot)$? If the system described by f is sufficiently stable, then such a **shooting method** may be effective.
- Unfortunately, the **modulus of continuity** of the map $u(\cdot) \mapsto (x(\cdot), u(\cdot))$ is often so large that such shooting is **computationally useless**:

small changes in $u(\cdot)$ may give **LARGE** changes in $x(\cdot)$

■ Indeed, **finite escape time** issues may make the set of **admissible inputs** extremely difficult to describe (and possibly shrinking as T grows).

Projection Operator Approach

Key Idea: a trajectory tracking controller may be used to minimize the effects of system instabilities, providing a numerically effective, redundant trajectory parametrization.

Let $\xi(t)=(\alpha(t),\mu(t)),\ t\geq 0$, be a bounded curve and let $\eta(t)=(x(t),u(t)),\ t\geq 0$, be the trajectory of f determined by the **nonlinear feedback** system

$$\dot{x} = f(x, u), \qquad x(0) = x_0,$$

$$u = \mu(t) + K(t)(\alpha(t) - x).$$

The map

$$\mathcal{P}: \xi = (\alpha(\cdot), \mu(\cdot)) \mapsto \eta = (x(\cdot), u(\cdot))$$

is a continuous, Nonlinear Projection Operator.

For each $\xi \in \operatorname{dom} \mathcal{P}$, the curve $\eta = \mathcal{P}(\xi)$ is a trajectory.

Note: the trajectory contains both state and control curves.

Projection Operator

Projection Operator Properties

Suppose that f is C^r and that K is **bounded** and **exponentially stabilizes** $\xi_0 \in \mathcal{T}$. Then

- lacksquare is well defined on an L_{∞} neighborhood of ξ_0
- $lacktriangleq \mathcal{P}$ is C^r (Fréchet diff wrt L_{∞} norm)
- lacksquare $\xi \in \mathcal{T}$ if and only if $\xi = \mathcal{P}(\xi)$
- $\mathbb{P} = \mathcal{P} \circ \mathcal{P}$ (projection)

On the finite interval [0,T], choose $K(\cdot)$ to obtain stability-like properties so that the **modulus of continuity** of \mathcal{P} is relatively **small**.

Note: on the infinite horizon, **instabilities** must be **stabilized** in order to obtain a projection operator; consider $\dot{x} = x + u$.

Trajectory Manifold

Thm $\mathcal T$ is a Banach manifold: Every $\eta \in \mathcal T$ near $\xi \in \mathcal T$ can be uniquely represented as

$$\eta = \mathcal{P}(\xi + \zeta), \qquad \zeta \in T_{\xi}\mathcal{T}$$

Key: the **projection** operator $D\mathcal{P}(\xi)$ provides the required **subspace splitting**.

Computation of $D^2\mathcal{P}$

We may use ODEs to calculate $D^2\mathcal{P}(\xi) \cdot (\zeta_1, \zeta_2)$:

$$\eta = (x, u) = \mathcal{P}(\xi) = \mathcal{P}(\alpha, \mu)
\gamma_i = (z_i, v_i) = D\mathcal{P}(\xi) \cdot \zeta_i = D\mathcal{P}(\xi) \cdot (\beta_i, \nu_i)
\omega = (y, w) = D^2 \mathcal{P}(\xi) \cdot (\zeta_1, \zeta_2)$$

$$\eta(t): \dot{x}(t) = f(x(t), u(t)), \qquad x(0) = x_0
u(t) = \mu(t) + K(t)(\alpha(t) - x(t))$$

$$\gamma_i(t): \dot{z}_i(t) = A(\eta(t))z_i(t) + B(\eta(t))v_i(t), \quad z_i(0) = 0
v_i(t) = \nu_i(t) + K(t)(\beta_i(t) - z_i(t))$$

$$\omega(t): \dot{y}(t) = A(\eta(t))y(t) + B(\eta(t))w(t) + D^2 f(\eta(t)) \cdot (\gamma_1(t), \gamma_2(t))
w(t) = -K(t)y(t), \qquad y(0) = 0$$

- The derivatives are about the **trajectory** $\eta = \mathcal{P}(\xi)$
- lacksquare The feedback $K(\cdot)$ stabilizes the state at each level

Equivalent Optimization Problems

Using the projection operator, we see that

$$\min_{\xi \in \mathcal{T}} h(\xi) = \min_{\xi = \mathcal{P}(\xi)} h(\xi)$$

$$h(x(\cdot), u(\cdot)) = \int_0^T l(\tau, x(\tau), u(\tau)) d\tau + m(x(T))$$

Furthermore, defining

$$g(\xi) := h(\mathcal{P}(\xi))$$

for $\xi \in \mathcal{U}$ with $\mathcal{P}(\mathcal{U}) \subset \mathcal{U} \subset \mathsf{dom}\,\mathcal{P}$, we see that

$$\min_{\xi \in \mathcal{T}} h(\xi)$$
 and $\min_{\xi \in \mathcal{U}} g(\xi)$ constrained unconstrained

are equivalent in the sense that

- if $\xi^* \in \mathcal{T} \cap \mathcal{U}$ is a **constrained** *local minimum* of h, then it is an **unconstrained** *local minimum* of g;
- if $\xi^+ \in \mathcal{U}$ is an **unconstrained** local minimum of g in \mathcal{U} , then $\xi^* = \mathcal{P}(\xi^+)$ is a **constrained** local minimum of h.

projection operator Newton method

given initial trajectory $\xi_0 \in \mathcal{T}$

for
$$i = 0, 1, 2, ...$$

redesign feedback $K(\cdot)$ if desired/needed

descent direction
$$\zeta_i = \arg\min_{\zeta \in T_{\xi_i} \mathcal{T}} Dh(\xi_i) \cdot \zeta + \frac{1}{2} D^2 g(\xi_i) \cdot (\zeta, \zeta)$$

line search
$$\gamma_i = \arg\min_{\gamma \in (0,1]} h(\mathcal{P}(\xi_i + \gamma \zeta_i))$$

update
$$\xi_{i+1} = \mathcal{P}(\xi_i + \gamma_i \zeta_i)$$

end

projection operator Newton method

given initial trajectory $\xi_0 \in \mathcal{T}$

for
$$i = 0, 1, 2, ...$$

redesign feedback $K(\cdot)$ if desired/needed

descent direction
$$\zeta_i = \arg\min_{\zeta \in T_{\xi_i} \mathcal{T}} Dh(\xi_i) \cdot \zeta + \frac{1}{2} D^2 g(\xi_i) \cdot (\zeta, \zeta)$$

line search
$$\gamma_i = \arg\min_{\gamma \in (0,1]} h(\mathcal{P}(\xi_i + \gamma \zeta_i))$$

update $\xi_{i+1} = \mathcal{P}(\xi_i + \gamma_i \zeta_i)$

end

When $D^2g(\xi_i)$ is **not positive definite** on $T_{\xi_i}\mathcal{T}$, one may obtain a quasi-Newton descent direction by solving

$$\zeta_i = \arg\min_{\zeta \in T_{\xi_i} \mathcal{T}} Dh(\xi_i) \cdot \zeta + \frac{1}{2} q(\xi_i) \cdot (\zeta, \zeta)$$

where $q(\xi_i)$ is positive definite on $T_{\xi_i}\mathcal{T}$ (e.g., an approximation to $D^2g(\xi_i)$)

This direct method generates a descending trajectory sequence in Banach space!

Brockett's Integrator

$$\min \int_{0}^{1} ||u(\tau)||^{2}/2 d\tau + ||x(T)||_{P_{1}}^{2}/2$$

$$\dot{x}_{1} = u_{1}$$

$$\dot{x}_{2} = u_{2}$$

$$\dot{x}_{3} = x_{2}u_{1} - x_{1}u_{2}$$

$$P_1 = diag([10 \ 10 \ 100])$$

Derivatives

$$g(\xi) = h(\mathcal{P}(\xi))$$

$$Dg(\xi) \cdot \zeta = Dh(\mathcal{P}(\xi)) \cdot D\mathcal{P}(\xi) \cdot \zeta$$

$$D^{2}g(\xi) \cdot (\zeta_{1}, \zeta_{2}) =$$

$$D^{2}h(\mathcal{P}(\xi)) \cdot (D\mathcal{P}(\xi) \cdot \zeta_{1}, D\mathcal{P}(\xi) \cdot \zeta_{2})$$

$$+ Dh(\mathcal{P}(\xi)) \cdot D^{2}\mathcal{P}(\xi) \cdot (\zeta_{1}, \zeta_{2})$$

Derivatives

$$g(\xi) = h(\mathcal{P}(\xi))$$

$$Dg(\xi) \cdot \zeta = Dh(\mathcal{P}(\xi)) \cdot D\mathcal{P}(\xi) \cdot \zeta$$

$$D^{2}g(\xi) \cdot (\zeta_{1}, \zeta_{2}) =$$

$$D^{2}h(\mathcal{P}(\xi)) \cdot (D\mathcal{P}(\xi) \cdot \zeta_{1}, D\mathcal{P}(\xi) \cdot \zeta_{2})$$

$$+ Dh(\mathcal{P}(\xi)) \cdot D^{2}\mathcal{P}(\xi) \cdot (\zeta_{1}, \zeta_{2})$$

When
$$\xi \in \mathcal{T}$$
, $\zeta_i \in T_{\xi}\mathcal{T}$,

$$Dg(\xi) \cdot \zeta = Dh(\xi) \cdot \zeta$$

$$D^2g(\xi) \cdot (\zeta_1, \zeta_2) =$$

$$D^2h(\xi) \cdot (\zeta_1, \zeta_2) + Dh(\xi) \cdot D^2 \mathcal{P}(\xi) \cdot (\zeta_1, \zeta_2)$$
generalizes Lagrange multiplier

Projection Operator Lund Apr 10 - 13 / 28

D^2g Lagrange Multiplier

where

$$\dot{q}(t) = -[A(\xi(t)) - B(\xi(t))K(t)]^{T}q(t) - l_{x}^{T}(t) + K(t)^{T}l_{u}^{T}(t), \qquad q(T) = 0$$

We obtain a stabilized adjoint variable, independent of stationary considerations!

D^2g

For $\xi \in \mathcal{T}$ and $\zeta \in T_{\xi}\mathcal{P}$, $D^2g(\xi) \cdot (\zeta, \zeta)$ has the form

$$\int_0^T \left(\frac{z(\tau)}{v(\tau)}\right)^T \begin{bmatrix} Q(\tau) & S(\tau) \\ S(\tau)^T & R(\tau) \end{bmatrix} \left(\frac{z(\tau)}{v(\tau)}\right) d\tau + z(T)^T P_1 z(T)$$

where

$$W(t) = \begin{bmatrix} Q(\tau) & S(\tau) \\ S(\tau)^T & R(\tau) \end{bmatrix}$$

has elements

$$w_{ij}(t) = \frac{\partial^2 l}{\partial \xi_i \partial \xi_j}(t, \xi(t)) + \sum_{k=1}^n q_k(t) \frac{\partial^2 f_k}{\partial \xi_i \partial \xi_j}(\xi(t))$$

and $P_1 = \frac{\partial^2 m}{\partial x^2}(x(T)).$

In fact, $W(\cdot)$ is just the second derivative matrix of the **Hamiltonian**

$$H(t, x, u, q) = l(t, x, u) + q^{T} f(x, u)$$

Again, **no** stationary considerations.

descent direction LQ OCP

The descent direction problem is a linear quadratic optimal control problem

$$\begin{aligned} & \min & & \int_0^T \binom{a(\tau)}{b(\tau)}^T \binom{z(\tau)}{v(\tau)} + \frac{1}{2} \binom{z(\tau)}{v(\tau)}^T \begin{bmatrix} Q(\tau) & S(\tau) \\ S(\tau)^T & R(\tau) \end{bmatrix} \binom{z(\tau)}{v(\tau)} \, d\tau \\ & & + r_1^T z(T) + z(T)^T P_1 z(T)/2 \end{aligned}$$
 subj to
$$& \dot{z} = A(t)z + B(t)v, \qquad z(0) = 0,$$

where the cost is, in general, non-convex.

This LQ OCP (with PD $R(\cdot)$) has a **unique** solution if and only if

$$\dot{P} + \tilde{A}^T P + P \tilde{A} - P B R^{-1} B^T P + \tilde{Q} = 0, \quad P(T) = P_1$$

has a **bounded** solution on [0, T].

[
$$\tilde{A} = A - BR^{-1}S^T$$
, $\tilde{Q} = Q - SR^{-1}S^T$]

descent direction LQ OCP

The descent direction problem is a linear quadratic optimal control problem

$$\begin{aligned} & \min & & \int_0^T \binom{a(\tau)}{b(\tau)}^T \binom{z(\tau)}{v(\tau)} + \frac{1}{2} \binom{z(\tau)}{v(\tau)}^T \begin{bmatrix} Q(\tau) & S(\tau) \\ S(\tau)^T & R(\tau) \end{bmatrix} \binom{z(\tau)}{v(\tau)} \, d\tau \\ & & + r_1^T z(T) + z(T)^T P_1 z(T)/2 \end{aligned}$$
 subj to
$$& \dot{z} = A(t)z + B(t)v, \qquad z(0) = 0,$$

where the cost is, in general, non-convex.

This LQ OCP (with PD $R(\cdot)$) has a **unique** solution if and only if

$$\dot{P} + \tilde{A}^T P + P \tilde{A} - P B R^{-1} B^T P + \tilde{Q} = 0, \quad P(T) = P_1$$

has a **bounded** solution on [0, T].

$$[\tilde{A} = A - BR^{-1}S^T, \tilde{Q} = Q - SR^{-1}S^T]$$

HELP:

How can we detect, numerically, a lack of positive definiteness? How might we compute the minimum eigenvalue of q on the subspace?

aside ... Analysis Challenge: Controllability of the Pendubot

$$\ddot{\varphi} = a \sin \varphi + b \dot{\theta}^2 \sin (\varphi - \theta) + b u \cos (\varphi - \theta)$$

 $\ddot{\theta} = u$

quadratic approximation about $\theta=\pi/2$, $\varphi=0$

$$\ddot{\varphi} = a \varphi - b \dot{\theta}^2 + b (\varphi - \theta) u$$

$$\ddot{\theta} = u$$

. . .

Trajectory Exploration: Rigid Motorcycle

RigidMoto system has

5 states : $v, \beta, \varphi, \dot{\varphi}, \dot{\psi}$

3 inputs : δ , κ_r , κ_f

The configuration variables, x, y, and ψ , are related to these kinematically.

RigidMoto dynamics

 $Iys_{oldsymbol{arphi}}$

 $I_{xz}c_{\varphi} - I_{z}c_{\varphi}^2 + I_{y}s_{\varphi}^2$

 $h \bar{\mu}_{fx} + a \left(c_{\varphi} + s_{\varphi} \bar{\mu}_{fy} \right)$ $h \bar{\mu}_{rx} - b \left(c_{\varphi} + s_{\varphi} \bar{\mu}_{ry} \right)$

 $h s_{\varphi} \bar{\mu}_{rx} - b \bar{\mu}_{ry}$

 $h s_{\varphi} \bar{\mu}_{fx} + a \bar{\mu}_{fy}$

trajectory exploration

the RigidMoto is a

model vehicle

to gain experience in

high performance maneuvering

To this end, we use nonlinear least squares trajectory optimization to explore system trajectories. That is, we consider the optimal control problem

$$\begin{aligned} &\min \quad \|(x(\cdot),u(\cdot))-(x_d(\cdot),u_d(\cdot))\|_{L_2}^2/2 \\ &\text{subj} \quad \dot{x}=f(x,u)\,,\quad x(0)=x_0\,, \end{aligned}$$

where $\|\cdot\|_{L_2}$ is a weighted L_2 norm on [0,T] and the desired (non) trajectory $(x_d(\cdot),u_d(\cdot))$ is a trajectory exploration design *parameter*.

chicane example

Projection Operator Lund Apr 10 - 21 / 28

Trajectory Constraints

We investigate the use of a **barrier function** method for approximating the (local) solution of **constrained** optimal control problems of the form

minimize
$$\int_0^T l(\tau,x(\tau),u(\tau))\ d\tau + m(x(T))$$
 subject to
$$\dot{x}(t) = f(x(t),u(t)),\quad x(0) = x_0$$

$$c_j(t,x(t),u(t)) \leq 0,\quad t\in[0,T],\ a.e.$$

$$j=1,\ldots,k,$$

where the data satisfies some reasonable smoothness and convexity properties.

Approximating OCPs will be unconstrained.

Barrier Function Approach n

In finite dimensions, a solution to a C^2 convex problem

min
$$f(x)$$

s.t. $c_j(x) \le 0, \quad j = 1, \dots, k$

is found by solving a sequence of convex problems

$$\min_{x \in C} f(x) - \epsilon \sum_{j} \log(-c_j(x))$$

where $C = \{x \in \mathbb{R}^n : c_j(x) < 0\}$ is the *open* strictly feasible set.

Barrier Function Approach ∞

The direct OCP translation is

$$\min \int_0^T l(\tau, x(\tau), u(\tau)) - \epsilon \sum_j \log(-c_j(\tau, x(\tau), u(\tau))) d\tau + m(x(T))$$

s.t.
$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$

Suppose that at some $\epsilon_0 > 0$, this problem possesses a locally optimal trajectory $\xi_{\epsilon_0}^* = (x_{\epsilon_0}^*(\cdot), u_{\epsilon_0}^*(\cdot))$ that is SSC and that the Hamiltonian is strongly convex in u. Then $\xi_{\epsilon_0}^*$ is a **strictly feasible** trajectory (of constrained problem) and the IFT indicates nice dependence on ϵ .

Looks promising ... but guaranteeing **strict feasibility** during optimization process is **very difficult**!

Approximate Barrier Function

For $0 < \delta \le 1$, define the C^2 approximate \log barrier function

$$\beta_{\delta}:(-\infty,\infty)\to(0,\infty)$$

$$\beta_{\delta}(z) = \begin{cases} -\log z & z > \delta \\ \frac{k-1}{k} \left[\left(\frac{z-k\delta}{(k-1)\delta} \right)^k - 1 \right] - \log \delta & z \le \delta \end{cases}$$

where k > 1 is an even integer, e.g., k = 2.

 $\beta_{\delta}(\cdot)$ retains many of the important properties of the log barrier function.

Similar to $z \mapsto -\log z$: for strictly convex proper $c: \mathbb{R} \to \mathbb{R}$,

 $z \mapsto \beta_{\delta}(-c(z))$ is also strictly convex so that

$$\min_{x \in C} f(x) + \epsilon \sum_{j} \beta_{\delta}(-c_{j}(x))$$

is a convex problem that has the same solution (x_{ϵ}^*) provided $\delta < c_j(x_{\epsilon}^*)$ for all j.

$$b_{\delta}(\xi) = \int_{0}^{T} \sum_{j} \beta_{\delta}(-c_{j}(\tau, \alpha(\tau), \mu(\tau))) d\tau$$

and consider unconstrained approximation (to constrained OCP)

$$\min_{\xi \in \mathcal{T}} h(\xi) + \epsilon b_{\delta}(\xi)$$

Note: $h(\cdot) + \epsilon b_{\delta}(\cdot)$ can be evaluated on any curve ξ in \widetilde{X} . As in the finite dimensional case, a locally optimal trajectory ξ_{ϵ}^* for this problem is also locally optimal for the non- δ problem provided $\delta > 0$ is sufficiently small.

Projection Operator

Lund Apr 10 – 26 / 28

Strategy

The projection operator based Newton method may be used to optimize the functional

$$g_{\epsilon,\delta}(\xi) = h(\mathcal{P}(\xi)) + \epsilon b_{\delta}(\mathcal{P}(\xi))$$

as part of a continuation (or path following) method to seek an approximate solution to the constrained OCP.

The strategy is to start with a reasonably large ϵ and δ , for instance, $\epsilon = \delta = 1$. Then, for the current ϵ and δ , the problem

$$\min \ g_{\epsilon,\delta}(\xi)$$

is solved using the Newton method starting from the current trajectory. If necessary or desired, the value is δ is reduced to ensure strict feasibility. Next, both ϵ and δ are decreased using, for instance, $\epsilon \leftarrow \epsilon/10$ and $\delta \leftarrow \delta/10$. Then, go back to the minimization step and continue.

Projection Operator

Lund Apr 10 – 27 / 28

PVTOL Example

$$\ddot{y} = u_1 \sin \varphi - \epsilon u_2 \cos \varphi
 \ddot{z} = -u_1 \cos \varphi - \epsilon u_2 \sin \varphi + g
 \ddot{\varphi} = u_2.$$