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Motivating Example: a Unicycle

The equations of motion are
mi = F_, m:Q:F;, JO = u

Here F7, F,; are components of constraint force; w is control
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Motivating Example: a Unicycle

The equations of motion are

mi = X -cos(0 — 3), migj = X -sin(0 — 3), JO0 = u

Here A i1s amplitude of the constraint force.
|
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Motivating Example: a Unicycle

The equations of motion are

& = —|[g§-sin@+ & -cosb)] -0 -sin(h)
j = [y-sin@+ & -cos@]-0 - cos(H)

JO

u
|
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Motivating Example: a Unicycle

The equations of motion are

0,

d[8£] L = R(q,q) + B(q) R 1"1:(q)q
— —L = , u, i =4q'r;
it | g B q,q q q"ri(q)q

Here ¢ € R™, u € R™, and R(-) is a vector of reaction forces.
|
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Motivating Example: a Unicycle

Problems:
- Given a motion, design controller for its orbital stabilization

- Given a motion and controller, analyze the dynamics

- Given specifications, plan a feasible motion
|
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Motivating Example: Elements of Theory of G.W. Hill

Equations of motion for the
position of the Moon in rotat-
Ing coordinate frame are

/ (= . o
: < T —2my = - F
¥ . _ 8
'r Y + 2max = ayF
'.. Here
R E F _ K _|_ §m2w2
* : ’ \/$2 _I_ y2 2

m, K are positive constants.
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Motivating Example: Elements of Theory of G.W. Hill

Equations of motion for the
position of the Moon in rotat-
Ing coordinate frame are

<’ i—2my = 2F
G+ 2mi = a%F
Here
F = " - %m2w2

Ve +y?

m, K are positive constants.

The system has the invariant: T = &2 + ¢* — 2F(z,y) + C
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Motivating Example: Elements of Theory of G.W. Hill

Equations of motion for the
position of the Moon in rotat-

Pl ,Y‘\ A Ing coordinate frame are
, P4 | \/ \ -
t L (.. o o
e : v T —2my = - F
/ £r
’ /\/, J\, < 8
/ e T 2 1 y — os
' e 2 Y + 2mx ayF
",‘ : )
) -I
. -l ! Here
)
N\ n
; ’ F — _|_ %m2w2
. V4 \/$2 _|_ y2

m, K are positive constants.

The system has the invariant: T = &2 + ¢* — 2F(z,y) + C

Task: Analyze the dynamics in a vicinity of periodic circle motion
|
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Motivating Example: Elements of Theory of G.W. Hill

Denote [xz,(t), yp(t)] the periodic solution

1
Anton Shiriaev. April 21, Lund, 2010. —p.4/32



Motivating Example: Elements of Theory of G.W. Hill

Denote [xz,(t), yp(t)] the periodic solution

Perturbed solutions '[z,(t) + dx(t), yp(t) + dy(t)] defined by
[5w] 2m% [5y] =
= | ZF(zp() up(1))| 02 + | 525

dt2
p(t))] 9y

[(5y]—|—2m [5:13] —
5 (p(0), up(0) ] 6 + [ 2P (p(t), (1)) 60
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Motivating Example: Elements of Theory of G.W. Hill

Denote [xz,(t), yp(t)] the periodic solution

Perturbed solutions '[z,(t) + dx(t), yp(t) + dy(t)] defined by
[5w] 2m% [5y] =
= | ZF(zp() up(1))| 02 + | 525

dt2
p(t))] 9y

[(5y]—|—2m [5:13] —
5 (p(0), up(0) ] 6 + [ 2P (p(t), (1)) 60

The integral Jacobi I(-) gives another relation

Frp(t) G [0x]+ Zup(t) & [0y] =
= [ZF(@p(®),yp(1))] 82 + [ 2 F(2y(t), up(t)) | v
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Motivating Example: Elements of Theory of G.W. Hill

¢ M
P T ~ ”’\N\\ XL
Ve 7 o \
/7 ' }
\ p /
4 \r J. ) 7
' // ~ ) 4
! l,'s’\’ o ?
(gL : )
) o__-
' S !

Transform of coordinates into normal (6IV) and tangent (67")

dx | | cos¢p —sing orT
by | | singp coso¢ ON
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Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates
@, Y, &, 9]
are changed into
[qb, I, N, N}
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Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates
@, Y, &, 9]
are changed into
[qb, I, N, N}

The linearization of ¢(-) is not important: it perpetually rotates
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Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates
@, Y, &, 9]
are changed into
[qb, I, N, N}

The linearization of ¢(-) is not important: it perpetually rotates

The linearization of I(-) is straightforward: % 011 =0
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Motivating Example: Elements of Theory of G.W. Hill

In a vicinity of the motion the original coordinates
@, Y, &, 9]

are changed into
[qﬁ, I, N, N}

The linearization of ¢(-) is not important: it perpetually rotates

The linearization of I(-) is straightforward: % 011 =0

The linearization of [INV, N] is the famous Hill's equation

4 [6N] + ®(t)dN =0
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Motivating Example: Observations

Analysis of dynamics in a vicinity of the motion’s orbit requires:

® Decomposition of coordinates into
© transverse to the trajectory (dim = 2n — 1)
© along the trajectory (dim = 1)
In the example they are

[I, N, N] and ¢
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Motivating Example: Observations

Analysis of dynamics in a vicinity of the motion’s orbit requires:

® Decomposition of coordinates into
© transverse to the trajectory (dim = 2n — 1)
© along the trajectory (dim = 1)
In the example they are

[I, N, N} and ¢

® Presence of invariants allows to reduce a number of
transverse coordinates with non-trivial dynamics.

In the example the integral Jacobi I(-) is excluded.
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Geometrical Interpretation

P e i,

Given a trajectory of a nominal motion
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Geometrical Interpretation

We would like to analyze properties of the dynamics

In its tubing vicinity
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Geometrical Interpretation

Introduce a family of dis-joint transverse surfaces

that are continuously slicing this vicinity
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Geometrical Interpretation

For the linearization of the dynamics the surfaces

are substituted by tangent planes
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Geometrical Interpretation

If the dynamics have some invariants,

then they define a manifold
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Geometrical Interpretation

For the linearization we consider the linear subspaces

that are tangent to to the trajectory along this manifold
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Geometrical Interpretation

Evolution of coordinates on these linear subspaces will define

linearization of transverse coordinates with nontrivial behavior
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Outline

® Motivation and Preliminaries
® Representation of a Motion for a Mechanical System
® Good Coordinates around a Target Motion

® Example
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Representation for a Nominal Motion:

Given a model of mechanical system
M(q)G + C(g,49)g + G(q) = R(q,q9) + B(q)u
where

°* g=|q, q2, ..., gn] is avector of degrees of freedom

® u=|ug, ..., Um| Isa vectorof control forces

®* R(-)is avector
R(:) = [R1(:), ---, Ra()]"
of reaction forces with
Ri(Qa Q) — q.T'ri(Q)Cja 1= 1,...,n
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Representation for a Nominal Motion (Cont’d):

Given a motion

s (1) = (6i(®), GO -, a4(®)

of the system defined for the

\/ time interval t € [0, T']
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Representation for a Nominal Motion (Cont’d):

Given a motion

Q (1) = (6i(®), GO -, a4(®)

| of the system defined for the
\/ time interval t € [0, T']

Then one can always find a way to re-parameterize the motion

® In the phase space the motion is the path
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Representation for a Nominal Motion (Cont’d):

Given a motion

Q (1) = (6i(®), GO -, a4(®)

| of the system defined for the
\/ time interval t € [0, T']

Then one can always find a way to re-parameterize the motion

® In the phase space the motion is the path
® Denote by 6*(t) the arc-length along the path = t = t(6*)
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Representation for a Nominal Motion (Cont’d):

Given a motion

Q (1) = (6i(®), GO -, a4(®)

of the system defined for the

\/ time interval t € [0, T']

Then one can always find a way to re-parameterize the motion

® In the phase space the motion is the path
® Denote by 6*(t) the arc-length along the path = t = t(6*)

® The motion is parameterized by this new variable 6*

7 = q7(t(6%)) = ¢1(0%), ..., a7 = q;(t(6%)) = dn(07)
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Representation for a Target Motion (Cont'd):

Given a motion

s () = (a1, G5 ®), -, a5(t))

There are n-functions

\/ $1()s $2()s -y Gul’)
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Representation for a Target Motion (Cont'd):

Given a motion

a*() = (g (1), G5(), -5 a4(0))

There are n-functions

Cbl(')a ¢2(')7 SO ¢n()

The orbit of the motion lives on 2-dimensional manifold [, 6]
defined by the relations

qi1 — le(e)a g2 = ¢2(0)9 ceey (n = an(e)
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Representation for a Target Motion (Cont'd):

Given a motion

a* () = (g (1), @O, -, G 0))

There are n-functions

¢1(’)9 ¢2(')7 000 ) ¢n()

The orbit of the motion lives on 2-dimensional manifold [, 6]
defined by the relations

qi1 — le(e)a g2 = ¢2(0)9 ceey (n = ¢n(0)

How do the dynamics of 8 look like on that manifold?
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Reduced Dynamics: Given an Euler-Lagrange system
d [85] oL R(q.d) + B(q)
dt | 8q]  9q b /

where the components of force R(-) are quadratic in g and

dimqg — dimu =1,
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Reduced Dynamics: Given an Euler-Lagrange system
d [8£] oL R(q.d) + B(q)
dt | 8q]  9q b /

where the components of force R(-) are quadratic in g and

dimqg — dimu =1,

consider the following geometrical relations

g1 — qbl(e)a g2 = qbz(H), ceey (n = d)n(e)

relating the coordinates g; and the new independent variable 6.

Anton Shiriaev. April 21, Lund, 2010. —p.15/32



Reduced Dynamics: Given an Euler-Lagrange system
d [8£] oL R(q.d) + B(q)
dt | 8q]  9q b /

where the components of force R(-) are quadratic in g and

dimqg — dimu =1,
consider the following geometrical relations

qi1 = qbl(e)a q2 = §b2(0)9 ceey  (gn = d)n(e)
relating the coordinates g; and the new independent variable 6.

If there exists w*(-) for the E-L system that makes these
relations invariant along solutions of the closed loop system
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Reduced Dynamics: Given an Euler-Lagrange system
d [6£] oL R(q.d) + B(q)
dt | 8q]  9q b /

where the components of force R(-) are quadratic in g and

dimqg — dimu =1,

consider the following geometrical relations

g1 — qbl(e)a g2 = qbz(H), ceey (n = ¢n(0)

relating the coordinates g; and the new independent variable 6.

If there exists w*(-) for the E-L system that makes these
relations invariant along solutions of the closed loop system

Then 0 is a solution of the system

a(0)0 + B3(0)6% + ~(6) =0

where a(-), B(-) and ~(-) are scalar function. m
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies

d1
g1

¢ ()0,
$1(6)"6% + ¢/, (8)4,

..,

..’

dn
Gn

= ¢, (0)6
Pn(0)"6% + ¢! (6)0
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies

¢1(6)6,

g1 =
g1 =

$1(0)"6% + ¢, (6)8,

If the dynamics are

M (q)

G
G

Gn

+C(q,q)

q1
d2

dn

..,

..,

_91(Q)_
g2(q)

gn(q)

dn
Gn

= ¢,,(0)8
= $n(0)"0% + ¢/,(0)0

G"r1(q)q | 0
q"r2(q)q U2

_qTrn(q)Q_ Un
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies
a1 = ¢1(0)6, ooy G = ¢1(0)6
(.1.1 — qbl(e)”é2 + ¢11 (9)97 © ooy (.jn — an(e)”é2 + Qb;z(e)g

If the dynamics are

d1 d1 91(q) | G7r1(q)q | 0
dz | a2 g2(q) q"r2(q)g U2
M(q) | . |+C(q, ) | . |+| . | = . +|
_(.jn_ _Cjn_ _gn(Q)_ _qTrn(q)(j_ | Un |

Then one picks up the first equation (independent on control)

m11(q)G1+- - -+min(q)dn+
‘I‘Cll(q, q)Ql + -+ Cln(‘]a Q)Qn + g1 (Q) — (jT’l"l(q)(j + 0

1
Anton Shiriaev. April 21, Lund, 2010. —p.16/32



Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies
1 = ¢1(0)9, oy dn = 0,(0)8
G = ¢1(0)70% +¢,(0)0, ..., dn n(0)"62 + ¢’ (0)6

If the dynamics are

. 0
° ) u2
+(1q, q) : + | .
] (@) \ un

e picks dp the fiyst equation {independent on contro

7q.)41 n ‘|‘Cln(
and substitute the relations
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies
@1 = ¢1(0)0, oy dn = $,(0)0
& = 61(0)702 +¢"(0)0, ..., h = ¢n(0)"62+ ¢ (0)0

If ti\dynamics are

\ - .Trl(Q)q- 0
X ~1.g Q)4 U2
o 5o v @i, |
_(.jn_ _Cjn_\ ] \ Un |
Then one picks\upAhe first equatiol (i ontro

m11(q)g1+- - - 1n(q) Gn+

+c11(g,9)q1 + -+ - + cin(q, @)dn + g1(q@) = ¢ r1(q)q
and substitute the relations
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies

i = ¢,(0)8, R AGL
1 = ¢1(0)"6% + ¢}(0)6, = ¢n(0)"6% + ¢/,(0)0

If the dynamics are

ki Q1
gz | a2
M(q)\| . |+C(g;9) | . |+

G"r1(q)q | 0
q"r2(q)q U2

_qTrn(q)(j_ Un
Then ona picks up the first equation (independent on control)

m11(q)g1+- - -+min(q)dn+

+ci11(g,q)g1 + -+ + cin(q,9)dn + 91(q) = ¢"r1(q)q
and substitute the relations
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies

G = ,(0)6, ey Gn = @L,(0)0

i = $1(0)"02+ ¢\ (0)6, ..., dn = Pn(0)"6% + ¢,(6)6
The matrix-function C'(q, q) of the E-L system

M(q)gG + C(q,4)d + G(g) = R(q,q) + B(q)u™,
IS linear in q.
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies
G = ¢,(0)8, iy Gn = ¢(0)0
i1 = ¢1(0)"0° +¢1(0)0, ..., Gn = én(0)"6 + ¢,(0)6
The matrix-function C'(q, q) of the E-L system
M(q)d + C(q,4)g + G(q) = R(q,q) + B(q)u",
IS linear in q.

Substituting expressions for g, ¢, and ¢ into the system
dynamics, we obtain the system of n second order equations

M (®) [cb’éi n @”éz} L O(P, 8'0)D'6+G(®) = R(®, '0)+B(®)u*
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Proof’s Sketch: Invariance of the relations g; = ¢;(0) implies
G = ¢,(0)8, iy Gn = ¢(0)0
i1 = ¢1(0)"0° +¢1(0)0, ..., Gn = én(0)"6 + ¢,(0)6
The matrix-function C'(q, q) of the E-L system
M(q)d + C(q,4)g + G(q) = R(q,q) + B(q)u",
IS linear in q.

Substituting expressions for g, ¢, and ¢ into the system
dynamics, we obtain the system of n second order equations

M (®) @' + "0 +C (@, 9'0)'6+G(®) = R(®, ¥'0)+ B(P)u*
where ®(0), ®’(0) and ®’/(0) denote the vectors

®(0) = [91(0), 92(0), ..., Pn(0)]"

'(0) = [97(8), $5(6), ..., ¢1,(8)]

®"(0) = |[¢7(0), $5(8), ..., ¢, (0)]" |
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Proof’s Sketch (cont'd): Since rank B(q) = n — 1, then there
exists a 1 x n raw function B-(q) such that

B*(q)B(q)u* =0, Vgq
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Proof’s Sketch (cont'd): Since rank B(q) = n — 1, then there
exists a 1 x m raw function B-(q) such that

B*(q)B(q)u* = 0,

Vq

Then the functions «(-), 3(+) and ~(-) of the system

a(0)0 + B(0)6 + ~v(0) =0

can be computed as follows

a(0)

B(6)

v(0)

B~(®(0)) M (2(0)) '(6)

B~(®(0)) [M(2(6)) 2" (0)+

+C(2(0), 2'(0))2'(0) — R(2(0), 2'(0))]

B~(®(0)) G (2(0))

Anton Shiri aev.

April 21, Lund, 2010. —p.17/32



Comments on Underactuation = 2:

Invariance of the relations q; = ¢;(0) implies

d1
q1

AQL2
¢1(0)"6% + ¢ (6)0,

..’

..,

dn
dn

= ¢!,(6)0
Pn(60)"0% + ¢1,(0)6
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Comments on Underactuation = 2:
Invariance of the relations q; = ¢;(0) implies

@1 = ¢1(0)6, ey Gn = @,(0)0
i1 = $1(0)"6% + ¢1(0)0, ..., dn = Pn(0)"6%+ ¢!, (0)6
If the dynamics are

d1 d1 91(q) | G7r1(q)q | 0
d2 a2 g2(q) qd"r2(q)q 0
M(q) | . |+C(g:4q) | . |+| . | = . | s
G dn| |gn(@)| |d"rn(@)d] | :
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Comments on Underactuation = 2:
Invariance of the relations q; = ¢;(0) implies

1 = ¢1(0)"602+ ¢1(0)8, ..., Gn = én(0)"6%+ ¢,(0)0

If the dynamics are

d1 d1 91(q) | G7r1(q)q | 0
d2 a2 g2(q) qd"r2(q)q 0
M(q) | . |+C(q,4q) | . |+| . | = . | s
 Gin | dn| |gn(@)| |d"rn(@)d] | :

Then one picks up two first equations (independent on control)

mi11(q@)g1+- - - +m1n(q)dn+
+c11(g,9)¢g1 + -+ - + cin(g,4)dn + 91(q) = ¢"r1(g)g + 0

m21(q)G1+- « -+man(q)dn+
+c21(g,q)g1 + -+ - + c2n(q,4)dn + g2(q) = G"r2(q)g + 0
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Comments on Underactuation = 2:
Invariance of the relations q; = ¢;(0) implies

1 = ¢1(0)"602+ ¢1(0)8, ..., Gn = én(0)"6%+ ¢,(0)0

If the dynamics are

d1 d1 91(q) | G7r1(q)q | 0
d2 a2 g2(q) qd"r2(q)q 0
M(q) | . |+C(q,4q) | . |+| . | = . | s
 Gin | dn| |gn(@)| |d"rn(@)d] | :

Then two first equations (independent on control) result in
a1(0)6 + 81(0)6% +71(6) = 0O
az(0)60 + B2(0)6% + 72(0) = 0

and 6(t) is the solution of both equations! |
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Integral of Motion: Suppose the solution

6(t) = 0(t, 09, 6p)
of the system

a(6)6 + B(0)6> + ~(6) = 0
with initial conditions [6g, o] and a.(8y) # 0 exists.
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Integral of Motion: Suppose the solution

0(t) = 6(t, 00, 00)
of the system
a(6)6 + B(0)6> + ~(6) = 0
with initial conditions [6g, o] and a.(8y) # 0 exists.

Then the function

0
I(Ha éa 009 00) — 0’2 - 1,0(90,0) [03 - 'Qb(SaHO) 27(8) dS]
6o a(s)
with

(60, 61) = exp {_2 " ﬁ(T)dT}

6o (T)

preserves its zero-value along this (even unbounded) solution
§ (H(t),é(t),eo,éo) =0

1
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Integral is a Distance: Given the target orbit [6*(t), 8*(t)], then
® For any x; and x5 the function I(.) satisfies the identity

I (wl,wz,H*(O),é*(O)) =1 (ml,mz,H*(p),é*(p)) , p€[0,T]

) O'w, 0'w)
Ae / {t €[0,T] }

3(9'(‘9.), é.(?.)]

1
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Integral is a Distance: Given the target orbit [6*(t), 8*(t)], then
® For any x; and x5 the function I(.) satisfies the identity

I (wl,wz,H*(O),é*(O)) =1 (wl,wg,H*(p),é*(p)) , p€[0,T]

® Nearby the target orbit |I(-)| measures the distance to the
orbit. Namely, the following approximation holds

I (5’31’ x2,0%(po), é*(pO))z —

_ . _ Ox 2 0% 2
—~ O?;QT{IM 0*(p)[2 + |3 — 6*(p)[?} x

x4 [é*(p0)2 n é*(p0)2] t...

Here

o . Y 2 _* 2
po = arg min {|z1 —0*(p)[* + w2 — 0*(p)|”
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New Passivity Relation:

The time derivative of the function I(0, 6, x, y) defined as

( (

6 ) 6 S )
. 2
I =6%—exp{—2 @dv' vy — /exp Q2 @dT > 7(s) ds
T ]

a(T) a(T) a(s)

\ xr J L \ L y,

with & and y being some constants, calculated along a solution
of the system

a(0)8 + B(0)6* +v(6) = W

has the form

%I(O, é,m,y) — {LW - 25(9)

() o (6) I(H,H,a:,y)}

1
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Outline

® Motivation and Preliminaries
® Representation of a Motion for a Mechanical System
® Good Coordinates around a Target Motion

® Example
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Transverse Coordinates:

Given a T'-periodic motion

s () = (a1, G5 ®), -, an(®))

There are n-functions

\/ $1(-), G2(); -5 bnl)
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Transverse Coordinates:

Given a T'-periodic motion

s () = (a1, G5 ®), -, an(®))

There are n-functions

\/ $1(-), G2(); -5 bnl)

We can always assume thatq,, = 0 =  ¢n,(+) is trivial!
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Transverse Coordinates:

Given a T'-periodic motion

Q () = (a1, G5 ®), -, an(®))

There are n-functions

\/ $1(-), G2(); -5 bnl)

We can always assume that g,, = 0 = ¢, (-) is trivial

New n-generalized coordinates are 8 and y = (yl, ey yn_l)

Y1 = q1 — ¢1 (9)7 ceey Yn—1 = 4dn—1 — ¢n—1(9)
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Transverse Coordinates:

Given a T'-periodic motion

Q () = (a1, G5 ®), -, an(®))

There are n-functions

\/ $1(-), G2(); -5 bnl)

We can always assume thatq,, = 0 =  ¢n,(+) is trivial!

New n-generalized coordinates are 8 and y = (yl, ey yn_l)
Y1 =q1 — $1(0), ..., Yn—-1=qn-1— Pn-1(0)
For the E-L system x = (q1,---5Qns;q1s--.5qn)", dimx = 2n

Consider as a candidate for x | -variable the set of quantities

L1 = I(Q,é, 9*(0)79.*(0))7 Yls oo v 9 Yn—1s Y15 -+ 9 gn—l]

1
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Transverse Coordinates:

With the choice

L1l = [I(O,é,@*(O),é*(O)), Yis ooos Yn—1y YLy o+ yn—l}

one can compute analytically the linearization of transverse
dynamics of the underactuated Euler-Lagrange system

d[c’?ﬁ] BLZ_R( .
dt |ag|  aq P4 A

around its solution

a*(t) = (a1 (®), ¢5(®), -+, a5(D)

Anton Shiriaev. April 21, Lund,
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Outline

® Motivation and Preliminaries
® Representation of a Motion for a Mechanical System
® Good Coordinates around a Target Motion

® Example
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.

Find feasible motions of the system consistent with requirement
the center of mass should stay on a circle of radius R
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.

Find feasible motions of the system consistent with requirement
the center of mass should stay on a circle of radius R

l.e. along any such motion [x.(t), y.(t), 8.(t)] the relations hold

z.(t) = R - cos (0.(t) — 7) Ye(t) = R - sin (0c(t) — 3)
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.

Find feasible motions of the system consistent with requirement
the center of mass should stay on a circle of radius R

l.e. along any such motion [x.(t), y.(t), 8.(t)] the relations hold

xc(t) = R - sin 0.(t) Ye(t) = —R - cos 0.(1)
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.

Find feasible motions of the system consistent with requirement
the center of mass should stay on a circle of radius R

l.e. along any such motion [x.(t), y.(t), 8.(t)] the relations hold
xe(t) = R -sin0.(t) Ye(t) = —R - cos O.(t)

Ec(t) = R - cos0.(t) - 0.(t) Ye(t) = R - sin 04(t) - 0.(t)
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How to Plan a Motion for a Unicycle

Motion planning for the dynamical model

& = —|[§-sin@+&-cosb]-0-sin(H)
j = [y-sin@+ & -cos@] -0 -cos(H)
Jo = wu

can be quite non-trivial.

Find feasible motions of the system consistent with requirement
the center of mass should stay on a circle of radius R

l.e. along any such motion [x.(t), y.(t), 8.(t)] the relations hold

xc(t) = R - sin 0.(t) Ye(t) = —R - cos 0.(t)
Ec(t) = R - cos0.(t) - 0.(t) Ye(t) = R - sin 04(t) - 0.(t)

e = R [cos 0050 — sin Hcég} Yo = R |sin 9050 + cos 006.’3}

1
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How to Plan a Motion for a Unicycle

Along a circular motion [x(t), yc(t), 0.(t)] of the system

& = —|[§-sin@+&-cosb)]-0-sin(H)
j = [y-sin@+ & -cos@]-0 - cos(H)
Jo = wu

the relations hold

. = R {cos Hcéc — sin Hcég} Yo = R |sin Hcéc + cos 9093}
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How to Plan a Motion for a Unicycle

Along a circular motion [x(t), yc(t), 0.(t)] of the system

& = —|[§-sin@+&-cosb)]-0-sin(H)
j = [y-sin@+ & -cos@]-0 - cos(H)
Jo = wu

the relations hold

CcOS Qc . {ﬁc COS Hc - R - [COS Hcéc — sin Hcég]

sin O « Y.

sinf. - R - [sin Hcéc + cos 0093}
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How to Plan a Motion for a Unicycle

Along a circular motion [x(t), yc(t), 0.(t)] of the system

& = —|[§-sin@+&-cosb)]-0-sin(H)
j = [y-sin@+ & -cos@]-0 - cos(H)
Jo = wu

the relations hold

cos 0, - x.

cosb.- R - {cos 9050 — sin 9093}

sinf - R - [sin 0,0 + cos 0.0

sin 0. - Y.

RO,

cosBO. - L.+ sin O, - .
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How to Plan a Motion for a Unicycle

Along a circular motion [x(t), yc(t), 0.(t)] of the system

& = —|[§-sin@+&-cosb)]-0-sin(H)
j = [y-sin@+ & -cos@]-0 - cos(H)
Jo = wu

the relations hold

COS 00 . fi}c p— COS Hc - R- |:COS Hcéc — sin 909.3]
sinf.-4y. = sinf.-R - [sin Hcéc + cos Hcég}
\
cos O, %e+sinb.-j. = R-0,
\

R0,

=
|

1
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How to Plan a Motion for a Unicycle

Any circular motion [x.(t), yc(t), 0.(t)] of the system

£ = —|[g§-sin@+ & -cosb)]-0-sin(h)
ij = [§-sin@ 4+ & -cosB]-0-cos(h)
Jo = wu
has the form
Hc(t) = We: t —|— 90
zc(t) = R-sinB.(t)
Yc(t) = —R-cosB.(t)

0

=
0
~
-
~—

|

1
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

w? y? 09 i? y.? 0
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[o, e, 0,0, ,0, o}
such that most of new coordinates equal to zero on the motion

0,(t) =w-t+0g, =x4x(t)=Rsin(w-t+0y), yY«(t)= —R cos(w-t+06)
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[o, e, 0,0, ,0, o}
such that most of new coordinates equal to zero on the motion

0,(t) =w-t+0g, =x4(t)=Rsin(w-t+0y), yY«(t)= —R cos(w-t+6p)

Candidates
z1 =x— Rsinf, z;=1vy+ Rcos0
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[o, e, 0,0, ,0, o}
such that most of new coordinates equal to zero on the motion

0,(t) =w-t+0g, =x4(t)=Rsin(w-t+0y), yY«(t)= —R cos(w-t+6p)

Candidates

z'lzdz—Rcose-é, z'zzg—Rsiné?-é
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[Zla Z2, 21, 22, ®, .]

such that most of new coordinates equal to zero on the motion

Candidates
z1—=x— Rsinf, z;=1vy+ Rcosf0

31=%— Rcos@-0, 2,=1u— Rsin6-0
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[Zla Z2, 21, 22, ®, .]

such that most of new coordinates equal to zero on the motion

The dynamics of [0, §]-variables

JO = u
can be rewritten in [0, I1-coordinates with I = 62 — w?
|
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Orbital stability of the motion means that
the distance to the trajectory decays to zero

The state space vector of the mechanical system is

@, y, 0,3, 9, 0|

We search for change of coordinates
[219 z2, 21, 22, 1, 9]

such that most of new coordinates equal to zero on the motion

Candidates for transverse coordinates

z1—=x— Rsin@, 2z —=1y+ Rcos0, I =02 — w2

21=4&—RcosB-0, 2,=19— Rsinf-0
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Linearization of transverse coordinates
X | = [zl, 29, 21, 22, I]
along the motion
0,(t) =w-t+0g, x4(t)=Rsin(w-t+0y), y«(t)= —R cos(w-t+6p)

of the system

& = —|[g§-sin@+ & -cosb)]-0-sin(h)
j = [§-sin@ + & -cos@]-0 - cos(h)
Jo = u

has the form

2 [6X] = A(t)6X + B(t)ou

1
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Coefficients of A(t) and B(t) are

A(t) =

I 1
= = (=l =)

© o O O O

© O O O O
| |

B(t) =

0
0
— R cos(wt + 6p)
—Rsin(wt + 6g)
w/J
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Steps in Orbital Stabilization of a Cyclic Motion of a Coin

Coefficients of A(t) and B(t) are

(0 0 1 0 O 0
0 0 0 1 0 0
At)=|10 0 0 —w 0 |, B(t)=| —Rcos(wt-+ 6p)
0 0 w 0 O —Rsin(wt + 6g)
|0 0 0 0 O w/J

The controllability Gramian computed over the period
27 /w .
W =/ e ATB(1)B(T)"e 4 Tdr
0

has three positive and two zero eigenvalues forany J, R > 0

A(We) = {wy, we, ws, 0,0}, w; >0

1
Anton Shiriaev. April 21, Lund, 2010. —p.31/32



Concluding Remarks:

® We suggest a choice of transverse coordinates for a motion
of mechanical system, which experience the quadratic in
velocities reaction forces;
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Concluding Remarks:

® We suggest a choice of transverse coordinates for a motion
of mechanical system, which experience the quadratic in
velocities reaction forces;

® We suggest
© New approach for planning periodic motions

© Analytical formulas for computing a linearization of the
dynamics around the orbit

© Procedure for synthesis of orbitally stabilizing controller
© Method for analysis of closed loop systems around orbit
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Concluding Remarks:

® We suggest a choice of transverse coordinates for a motion
of mechanical system, which experience the quadratic in
velocities reaction forces;

® We suggest
© New approach for planning periodic motions

© Analytical formulas for computing a linearization of the
dynamics around the orbit

© Procedure for synthesis of orbitally stabilizing controller
© Method for analysis of closed loop systems around orbit

® The approach can be extended if the motion does not admit
parametrization by one choice of VHC
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