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NETWORK SYSTEMS
Fast growth of interest during last decade:

Search for papers with “complex networks” in titles
IEEE Xplore (www.ieee.org)

2000-2001rr — 44 papers; 2005-2006rr — 101 papers
APS journals (www.aps.org)

2000-2001rr — 4 papers; 2005-2006rr — 96 papers

e

Paper by R. Albert and A.-L. Barabasi, “Statistical
mechanics of complex networks,”

Rev. Mod. Phys., vol. 74, pp. 47-97, 2002.
had more than 3000 citations in 2007. ;
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NETWORK SYSTEMS (Murray, R.M., K.J. Astrom, S.P. Boyd, R.W.
Brockett, and G. Stein. Future directions in control ... CS-M Apr 03 20-33)
Problems:

 Internet congestion control

* Control of energy, manufacturing, transportation networks
e Coordination of mobile robots, UAVs, UUVs

*Control of bio- and ecosystems, monitoring of global changes
* Quantum computation networks

Challenges:

e Control in geterogeneous nets (communication, computation,
transportation, finance, ...

 Reliability

* Asynchronous, multi-agent, distributed data processing



I. Synchronization of dynamical systems

1. HISTORY OF DEFINITIONS OF SYNCHRONIZATION
e Blekhman 1.1. Synchronization of dynamical systems. Moscow: Nauka Pub-
lishers, 1971, 894 p.
— Frequency synchronization of processes z1(t), ..., zx(t) as coincidence of
average frequencies of rotations or oscillations;

— General idea of synchronization as coincidence of some functionals.
¢ Gurtovnik A.S., Neimark Yu.l. Appl. Math. Mech. 1974, No 5.

— Convergence of X (t) = {x1(t),...,z;(t)} to asymptotically stable invari-
ant torus of dimension n — m (m — degree of synchronization).

e Afraimovich V.S., Verichev N.N., Rabinovich M.I. Radiophys. &
Quantium Electronics, 1986.

— Existence of a homeomorphism g : m;(A.) — m(A.), such that g (m (z1(t))) —
o (2(t + a(t))).

See also Fujisaka H. and Yamada T. (1983).



I. Synchronization of dynamical systems
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Synchronization of dynamical systems (ctd)

¢ Babloyantz A., Destezhe A. (1986), Anischenko V.S, et al. (1990-
91), Landa P.S., Rosenblum M.G. (1992-93)

— Inequality d < dy + da + - - - + dp,

where d - fractal dimension of {zy,...,z:},
d; —fractal dimension of {z;}.

F‘i-‘ ' '
m = > d; —d — degree of synchronization.
=1

e The 1990s:

Generalized synchronization (Abarbanel H.D.I., Rulkov N.F., Suschik
M., 1995);

Phase synchronization (Rosenblum M.G., Pikovsky A.S. Kurths J.,
1996);

Lag synchronization (Rosenblum M.G., Pikovsky A.S. Kurths J., 1997);
Master-slave synchronization (Pecora L.M. and Carroll T.L., 1990)
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Synchronization of dynamical systems (ctd)
2. UNIFIED DEFINITIONS OF SYNCHRONIZATION

e Blekhman I.I., Fradkov A.L., Nijmeijer H., Pogromsky A. Yu. Sys-
tems & Control Lett., v. 31, 1997. (Special issue: Control of Chaos and
Synchronization).

e Brown R., Kocarev L. Chaos, v. 10, No 2, 2000.
e Boccaletti S., Pecora L., Pelaez A. Phys. Rev. E, v. 63, 2001.

GIVEN:
— Processes x1(t), x1(t), ..., xi(t), z;(-) € X
— Characteristic (indez) — non-anticipating family of mappings
Ci: X = C (C—metric space)
— Comparison functions F; :C - R, i =1,..., k

DEFINITION. Processes x(t), ..., z;(t) are called

A) synchronized w.r.t. index C; and comparison functions F;, i =1, ..., k, if
there exist time shifts ;, e =1, ..., k:

Fy (Crin[21]) = F2(Cran|a]) = - . = Fi (Cianze]) V220



Definitions of synchronization (ctd)

B) e—synchronized w.r.t. index C} and comparison functions F;, ¢ =1, ..., k,
if there exist time shifts n, =1, ..., k:

|Fi (Cein[2i]) — Fj (Coary[zi])| < Wiyj, t=0

C) asymptotically synchronized w.r.t. index C; and comparison functions F;,

i=1, ..., k, if there exist time shifts =, 1 =1, ..., k:

lim | F; (Confi]) = Fj (Coary[2])| =0

D) synchronized in the average w.r.t. index C} and comparison functions F;,
t=1, ..., k, if there exist time shifts 7, : =1, ..., k:
Qi) <¢
k . ; s
Q=3 | £ (Corrl:]) — F; (Cranlas])|” =
.l.ui‘—
— measure of synchronization.

I.I.Blekhman, A.L.Fradkov. On general definitions of synchronization.
In: Selected topics in vibrational mechanics, Ed. I.I.Blekhman,
Singapore: World Scientific, 2004, pp. 179-188. >



Definitions of synchronization. Examples
1. Fl'l";[’lll["llff:'ﬁ ':il'_'r'lli'lll't]IliH-I'l.E-leli.:llli

E [r]—l:..?,} =w; —average frequency of ._ ol [l] f]

2. Phase synchronization:

A) Cilz] = ¢ = Eqrr#:*_ﬂr + 2, ty <t < t,4, t, — time of nth crossing of
the Poincaré section.
k=2 Filg=F(g) = ps — inphase synchronization
File=wr, Fale=@i+m — antiphase synchronization
B) C,lx] =1,.

3. Complete coordinate [identical) synchronization:

il =xlt), Flz)==, i=1,... k.

4. Generalized coordinate (partial) synchronization:

'f."f[ ]—T rit) € R",
Fi(x) =G (x), F,;{ = (Fo(x), G R =™
Remark. Asymptotlc coordinate synchronization =
coordination=convergence=consensus 10
Partial coordinate synchronization=output synchronization



3. DEFINITION OF ADAPTIVE SYNCHRONIZATION

(A.L.Fradkov. Nonlinear adaptive control: regulation-tracking-oscillations. Proc.
1st IFAC Workshop ""New trends in design of control systems', 1994, 426-431.)
Given eguations of controlled systems
II=Fi{xl1lll1rlu+tlE]1 i=l‘-+‘-r [2!3}

where E€Z is vector of unknown parameters, find
the equation of the control algorithm

u;U{I_‘1+++Ir+ﬂlt]} 11'4]
and adaptation algorithm

0=0(x ,...x_,0,t) (2.5)
ensuring the control goal

hl{t}-_lt:{t'_i I=4 for t>t, (2.6)



Adaptive synchronization of networks

B. Gazelles, B. Boudjema, N.P. Chau. Resynchronisation of globally coupled
chaotic oscillators using adaptive control. Phys. Lett. A 210 (1996), 95-100
(See also Physica D 103: pp. 452-465, 1997.)

Z.. Li and G. Chen, “Robust adaptive synchronization of uncertain dynamical

networks,” Phys. Lett. A, v.324, pp.166-178, 2004.
J.Zhou, Jun-an Lu, J.Lu. Adaptive Synchronization of an Uncertain Complex
Dynamical Network. IEEE Tr. AC-51, (4), 2006.

Jing Yao, David J. Hill, Zhi-Hong Guan, and Hua O. Wang. Synchronization of
Complex Dynamical Networks with Switching Topology via Adaptive Control.
Proc. 45th IEEE CDC, San Diego, CA, 2006.

7. Yang, 7. Liu, Z.Chen, Z. Yuan. Adaptive Synchronization of an Uncertain

Complex Delayed Dynamical Networks. Int. J. Nonlin. Sci. V. 3 (2007) N2.

T. Liu, G. Dimirovski, J. Zhao. Controlled Synchronization of Complex

Dynamical Networks with Nonlinear Nodes and Couplings.
3rd JEEE Multiconf. Systems and Control, St.Petersburg, July 8-10, 2009.
P.De Lellis, M. di Bernardo, F.Garofalo. Novel decentralized adaptive strategies
for the synchronization of complex networks. Automatica 45 (2009) 13121-21318.



Typical dynamical network model

(J.Zhou, Jun-an Lu, J.Lu. Adaptive Synchronization of an Uncertain Complex
Dynamical Network. IEEE Trans. Autom. Control, (4), 2006.)

x, =fix,. )+ h{x. X9, ... Xy )+ 1, (1}
where 1 < ¢ < N.x, = (r,. ra. ... r, )’ € R is the state
vector of the ith node, f @ (2 x BT — R" is a smooth nonlinear vector
feld, node dynamics 1s x = fix, f}.h, : {1 ®--- = L2 — H" are un-

known nonlinear smooth diffusive coupling functions, u, £ R”
are the control mputs, and the coupling-control terms satisfy
hi(s.s. ....8) + u;, = 0, where s 15 a synchronous solution
of the node system x = f(x. 7).
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Typical adaptive control algorithm

(J.Zhou, Jun-an Lu, J.Lu. Adaptive Synchronization of an Uncertain Complex
Dynamical Network. IEEE Trans. Autom. Control, 2006 (4).)

Hypothesis I: H1) Assume that there exists a nonnegative constant
n satisfying ||Df (s, #)||e = || A(t)||: < . where A(t) is the Jacobian

of fis. ).
Hypothesis 2: H2) Suppose that there exist nonnegative constants
T (] = ‘. J = ) ﬁi'lljﬁj._‘g.’i.ﬂg ||.h'|'[}:| c Mo veas XN 5‘.'”5' <

YN wsllei]l: for1 € i € N,

e, (f) =x;1F) —s{t). | A T
]_1.[:-:|.:-:-_-.. coXyesl=hoxxe. o xy ) = hilsos L 8)

14



Typical adaptive control algorithm (ctd)

(J.Zhou, Jun-an Lu, J.Lu. Adaptive Synchronization of an Uncertain Complex
Dynamical Network. IEEE Trans. Autom. Control, (4), 2006.)

Theorem I: Suppose that H1 and H2 hold. Then, the synchronous
solution 8{1) of uncertain dynamical network (1) 1s locally asymptot-
ically stable under the adaptive controllers

n, = —d,e;. | (/)

and updating laws

SO

|
|
e
o

r.ii, = |r|'. 'I.=':I e, = 't-“'-:"l

15



Challenge:

To design decentralized
adaptive output feedback control
ensuring synchronization
under conditions of uncertainty
and incomplete control

16



11. Decentralized output feedback
adaptive synchronization
for networks of Lurie systems

[.Junussov&A.Fradkov. Decentralized adaptive output
feedback synchronization of interconnected Lurie systems.
Autom.Rem.Control. 2009, 7.

A .Fradkov&lI.Junussov, R.Ortega. IEEE MSC’009,
St.Petersburg, July, 20009.

A .Fradkov&l.Junussov. IPACS Physcon(09, Catania, 2009.
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Problem statement I: System description
T=A; T+ Br(i+U0(7), 7=C"T, (1)

where T € R" — state, 7 € R' — measurment, (t) € R! is control
that specified in advance, 1y: R! — R! — internal nonlinearity.
Assume Ay, Br.C and 9q(-) are known and do not depend
of unknown parameters £ € =, where = is known set.
Consider a network S of d interconnected subsystems
S;.oi=1,.... d,d € N. Subsystem 5; :

d
i = Ajri + Biug + Briol(y:) + Z ijpig(Ti — xj), (2)
7=1

y; = Ch . i=1.....d.
where z; € R". u; € R1. (vij € R, y; € R'. Functions wij(+),
i=1..... d, j=1.....d, describe interconnections between
subsystems. . Let matrices

=

Aji, B; and functions p;;(-), i = 1 I,7=1,....d. depend on
the vector of unknown parameters £ € =.



Problem statement II: Control goal

Let the control goal be specified as convergence of all tra-
jectories of subsystems and the leader:

lim (2,(t) —7(t) =0, i=1,....d  (3)

t——oo

The adaptive synchronization problem is to find a de-
centralized controller u; = U;(y;,w, t) ensuring the goal (3)
for all values of unknown initial conditions «;(0), z(0) and
all values of unknown plant parameters £ € =.

Remark. Control goal (3) corresponds to coordinate
synchronization or convergence or consensus:

lxi(t) —xi(t)) — 0 as t— o0, i,5=1,...d.
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Decentralized output feedback synchronization
for identical nodes: A4;=A, B; =B

Adaptive controller: u; = |5'T (t) [y:_ B ﬂ] ey

I."?-|;:'=—Q'T§':']._;'§';', Z=115I!

If the functions v, ¢; are Lipschitz continuous, and
gTCT[(s+L)I-AJ"'B — hyper minimum-phase and
d is sufficiently small, then the adaptive
Y " lai;Li;| controller ensures the goal and 6, () are
3=1 bounded.
(Adaptive synchronization of nonlinear dynamical networks.

I.Junussov, A.Fradkov, Autom. Remote Control, 2009,2N7)
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Passification theorem

(A.L.Fradkov: Aut.Rem.Contr.,1974(12), Sib.Math.J. 1976, Eur.
J.Contr. 2003; Andrievsky, Fradkov, Aut.Rem.Contr., 2006 (11) )

Let W(s)=C'(sI-A)"'B — transfer matrix of a linear
system. The following statements are equivalent:
A) There exist matrix P=PT >0 and row vector K, such that

PA,+A T P<0, PB=(CG"), A, =A+BKC"

B) Matrix GW(s) is hyper-minimum-phase
(det|GW(s)] has Hurwitz numerator, GC'B=(GCT'B)! >0)

C) There exists a K, such that feedback u=Ky+v renders
the system strictly passive «from input v to output Gy,



Case of nonidentical nodes.
(A .Fradkov, I.Junussov, Physcon-2009.)

Adaptive controller

Denote a;(t) = col(y;(t).@(t)). Let the main loop of the adaptive
system be specified as set of linear tunable local control laws:

ui(t) = Ti(t)Toi(t), i=1,....d, (4)

where 7;(t) e R*Y i = 1.....d are tunable parameters. By
applying speed-gradient method we can derive following adaptation
law:

T; = —HT(,UE' —y)ioi(t), e =1,....d. (5)

where I'i = I') > 0— (14 1) x (I + 1) matrices, g € R



Assumptions

A1) The functions @;;(-),i =1,..., d, j=1..... d are globally
Lipschitz:

lii(x) — ws;(x")|| < Li||lz — ||, L;; >0,
J j J J

A2)(matching cc}nditions) For each & =1,....d there exist
vectors 1; = 1/;(£) € R! and number5 H = H (&) > 0 such that
_-A_I.L = _Fl.é:_ -+ B.E'_J'!_:-.T(_.TT. BL — H_?B_i. (6)

23



Notations

Consider real matrices H = HT > 0.g of size n x n.l x 1
correspondingly and a number p > 0 such that:

HA; —|—_—1EH < —pH. HB; =0Cjg. (?)

Denote \, = Ao (H )/ Amin(H ) condition number of matrix H.
where A\paz(H ), Amin(H ) are maximum and minimum eigenvalues
of matrix H.

Denote \(s) = C"(sl,, — Ap)~'Bp. For the case when matrix Ay
is Hurwitz introduce notation p, for degree of stability of function’s

LRR]

A (Ap ) are eigenvalues of Aj.

Detinition

Let G € R'. Function f: R' — R! is called G-monotonically
decreasing if inequality (x — y)*G (f(x) — f(y)) < 0 holds for all
z.y € RY



Synchronization conditions
Theorem (1)

Let B # 0, matrix A, is Hurwitz and for some ¢ € R! following
frequency domain conditions hold:

Re g"y(iw) > 0. lim w?RegTy(iw) > 0 (8)

J— XD

for all w € R,

. Let for all £ € = assumptions A1, A2 hold, function #q(-) be
g-monotonically decreasing, and following inequalities hold

f
E |”'-é.jLij
7=1

<~ i=1,....d (9)
where v = p./(2)\,), As is condition number of matrix H.
Then for all ¢ € =,i =1, ..., d adaptive controller (4),(5) ensures

achievement of the goal (3) and boundedness of functions 6;(t) on
[0, 00) for all solutions of the closed-loop system (1), (2), (4), (5).



Remark 1. Evaluation of the value of ~

The value of v can be evaluated by solving LMI
HA; + AEH < —pH, HB; =CCy,

by means of one of existing software package (0 < p < p,).
Remark 2. Weighted in-degree of graph node

The inequality (9) from Theorem 1:

can be interpreted as follows:

Weighted in-degree of the each node of connections graph
must be less than .



Example: Network of Chua circuits

Let the leading subsystem be described by the equation
T=A[T+ Br(u+o(y), 7=C'T,
c

R! is output available for
measurement, @ is scalar control variable, (7)) = pv(7)/b, where v(x) =

—0.5(mg — my)(|z + 1| = |z — 1| — 2x). Further, let

where T € R” is state vector of the system, 7

-1 0 0
Ar=11 -11
0 —q 0
By, = col(b,0,0),C" = col(1,0,0). Let the leader be controlled as follows:
1
u(t) = 7 [(=(1 +mo)p + T1(t) + pa(t)]
Such control ensures chaotic behavior of the leader for mg = —8/7,m; =

—5/T,p=15.6,q=30,b=1and g = 1.

L/



Example: Network of Chua circuits (ctd)

Denote i; = wijlei—x;),i=1,...,5,5=1,...,5. Let ©14, o5, ©32, 042, ©45. 52, (053,
be equal to (0.0,0)". Further, let

sin(awy; — x91),0,0)7",
L1y — a39,0)",
0,sin(ay3 — ws3)) ",
o) — 11, U, w93 — LlE)Tv
0,s (i.:;z — ng) 0)",

(w3 — xy41),0,0)7,
31 — L5132 — L2, L33 — L53J 3
0,s ( Lyo — Lu) 0)",

sin(wy — wa1).0,0)7",

Lrl — L1, 0, y L'R3 — Hg) ;

u

= (
= (0,
= (0,
= (:
= (0,
= (0,
(‘311 (Lgi — 111} 0 0)7,
= (:
= (:
= (0,
= (
= (@
= (0,

Lra — Ly2, U)

28



Example: Network of Chua circuits (ctd)

Let subsystem S; for « = 1,...,5 be described by (2) with u;, oy € R!. By
choosing (v, vo, Vs, vy, v5) = (3 1,4,1,5),6; = 1/i,e = 1,...,5 and using
(6) we obtain matrices A;, B; for i = 1,...,5, which are not equal, i.e. nodes
are nonidentical.

It is easy to show that frequency-domain conditions (8) hold, ¥g(-) 1s g-

monotonically decreasing, Lipschitz constants of all w;; are equal to 1.
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Example: Simulation for 40 seconds

———
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Figure: (A): Phase portrait of leading subsystem, (B): |[z; — T,
ﬂ!; = U; — U, = 1,,.,,5,
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ADAPTIVE SYNCHRONIZATION
OF NETWORKS
BY DIFFUSION COUPLING

I.A.Junussov, A.L Fradkov. XI International E.S.
Pyatnitskiy Workshop STAB 10, June 1-4, 2010, Moscow
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Controlled network:

i I
ry = Axry + Buy, y=0C" 7y,
Diffusion coupling (Output Feedback, Consensus Protocol):

w=K Y (m—w)=KC"Y (z—x), KeR",

FEN; JEN;

32
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Theorem.

Al. Network graph is strongly connected and balanced.
A2. gW(s) is hyper-minimum-phase for some g=(g,,...2.).
Let K=png, where n>0 is sufficiently large.

Then synchronization is achieved:

lim (s (t) — A7V 1T e I () =0i=1,...,4d

L

33
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Extension 1. Network of Lurie systems.
Extension 2. Network graph has a spanning tree
Extension 3. Adaptive controller:

34
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III. ADAPTIVE SYNCHRONIZATION
OF NONLINEAR NETWORKS UNDER
COMMUNICATION CONSTRAINTS

Boris Andrievsky, Alexander Fradkov. X International
E.S. Pyatnitskiy Workshop, June 3-6, 2008, Moscow
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PLAN

1. Introduction
2. Synchronization of nonlinear systems under communication
constraints
2.1. Overview.
2.2. Problem statement
2.3. Coding procedure for first order coder
2.4. Bound for synchronization error
2.5. Synchronization of chaotic Chua systems
3. Adaptive synchronization of nonlinear systems and networks
under communication constraints

Conclusions
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G. Nair, R. Evans, “Exponential stabilisability of finite-dimensional
linear systems with limited data rates,” Automatica, 2003, 585-593.

X, =AX, +Bu,, y, =Cx,,
Z:{Oﬂla'“a//l_l}, Rzlogzll,[
S, =7 (¥i»S,,)—coder

u, =0,(s,_,)—controller

P - exponential stabilizability of the system:

p_erXkHr —>0as k> &

R > Z logzi

nil2p P 37
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Corollary (“Data-Rate Theorem”):

INFORMATION MUST BE TRANSPORTED
AS FAST AS THE SYSTEM GENERATES IT,
OR ELSE INSTABILITY OCCURS

38
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Observer-based Synchronization of Nonlinear Systems

Under Communication Constraints
Drive—response synchronization of two unidirectionally coupled
oscillators via a communication channel with finite capacity:

Vi Communication
Channel
f f--001011...3

Santem.
ecoder
Svstem

I
[l
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* Drive system:

= Az +¢(y), y = Cx, (1)
x - n-dimensional vector of state variables, y - scalar output,
A - (n x n)-matrix, C - (1 x n)-matrix, ¢(y) — nonlinearity. All
the trajectories of (1) belong to a bounded set €2.

Coupled systems in the Lurie form

* Response system - nonlinear observer:

= Ad +o(y) + K(y — 9), §=C%, (2)

K - observer gain vector.

40
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Central numbers c;, k = 0,1,...; ¢, = 0. Deviation oy, =y, — ¢,

§- (6~ ly), if < M,
=420 vk 1= (6)
M sign(y), otherwise,

Coding procedure

Qu.M

Signal 0y, transmitted over the channel to the decoder.
Numbers c¢;,; and M, are renewed:

ck+1=ck+8yk1 CU=O: k=0:11"'1 (8)
My = (My— Moo)p*+ M, k=0,1,..., (9)

0 <p <1 -decay parameter, M, - limit value of M,.
M,: should be large enough to capture all y,.

41
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Transmission error

Oy(t) = u(t) — u(t). (4)

Error equation:

¢ = Axce+p(y) — oy +5,(0) — Ko,(8) (5
where Ay =A4— KC. Let |0,(7)] < A.

Upper bound of the limit synchronization error:

Q = sup lim [le(t)]

Problem: relate O to 4 and 4 to data rate R.

42
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Assumption: |p(y) — ¢(y+90)| < L,|o| for all y=Cx, xin 2, Q-a
set containing all the trajectories of the drive system (1).

Bound for synchronization error

Choose K s.t. A is a Hurwitz matrix; choose P=PT >() satisfying
for some u > 0 the modified Lyapunov inequality:

PAy + A}'(P < —uP, (21)
Result:  Tim [le(t)|| < Cir* Ly/R, (24)
Amax(P) Ly + || K|
where Cj — '
\/Amin (P) 2

[Fradkov, Andrievsky, Evans. Physical Review E, v.73, 066209,
2006]
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Adaptive Synchronization of Nonlinear Systems
Under Communication Constraints

[Fradkov A.L., Andrievsky B., Evans R.J. Proc. Ist IFAC Conf.
"CHAOS 2006", Reims, 28-30 June, 2006. pp. 279-284.
http://www.ifac-papersonline.net

Fradkov A.L., Andrievsky B., Evans R.J. Adaptive Observer-
Based Synchronization of Chaotic Systems with First-Order
Coder in Presence of Information Constraints.

IEEE Trans. Circuits & Systems-I, 2008 ]
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Nonlinear uncertain system (“transmitter”, “master system”):

Problem statement and synchronization scheme

™
&=Az+po(y)+B ) Oipi(y), y=Cu, (1)
=1
x - transmitter state 71-vector; y — [-vector of outputs (to be
transmitted over the communication channel);
0=10,...,0 |- parameters.
Assumption: ¢ (), A,C, B are known; W(s)=C(sI-4)"'B - HMP.

To achieve synchronization between two chaotic systems:

adaptive observer | Fradkov, Nijmeijer, Markov, Int. J. Bifurc.
Chaos, 10 (12), 2000].
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Adaptive observer

o Tunable observer block: .
&=Az+po(y)+B Y bipi(y)+Ly—19),
=1

y =7z, (2)

x —observer state n-vector, y — observer output /-vector,

Y

0; — tunable parameters (i = 1,2,...,m).
e Adaptation block:
9‘1:_7%(9_@)90%(31): t=1,2,...,m, (3)

y; > 0 — adaptation gains.
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Regularized adaptive observer

Observer input:  y(t) = y(t) + 6, (¢)
o,(t) — total distortion.

t=Az+po()+B Y 0ipi(@)+L({G—17),
¢=1
0i=—v(G—0)pi(7)—cibi, i=1,2,...,m, (6)

a; — regularization gains.
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Analytical bounds for synchronization error

Limit synchronization error ¢ = tll}l’goH:B(t) — z(t)||

Problem: find bounds on the system parameters and
transmission rate ensuring prespecified upper bound of

the asymptotic error Q <A,.
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Theorem 1. Let the following assumptions hold:

Al. The observer gain matrix L 18 such that the transfer
function

WL(A) =C(Al — A+ LG)_IB
18 ginictly passive, 1.e. satisfies inequalihies
RBWL(W) >0 Vw20,
lim w?Re Wy (iw) > 0. (10)

w—00
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A2. The system (1) possesses a bounded 1nvanant set {25 C
R™ for any 8§ € © C R™, where O 1s the set of possible
values of uncertain parameters and z(0) € Q.

A3. Functions ¢;(y), 2 =0,1,...,m are bounded and Lips-
chitz continuous mn the closed A-vicinity of 4, 1.e.

lesWI <Ly, @iy —@i(y)| <L,

for some L, L" and forall y = Cz, z € SA(Qp), where
Sa(Q) = {z: Elz €N |lz—z|| <A}
Then there exast constants C1 > 0, Ca > 0 such that for any
A > 0 the choice of design parameters o = A?, v = Cy/A?
guarantees that the synchronization goal 1s achieved for

Am —_ C]_A,
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Adaptive synchronization of Chua systems

Drive
System

y(t)

Coder ‘

Response
Svstem

e 000 A rameter

Y. [ Communication
Channel Unknown
y(?)

Decoder ‘

Drive system

1 = p(zo+z1+ f(z1)+0f1(z1)),
i‘z =1 — T2 + I3 (30)

i'3 — —{qx2,

y(t)=x1 (t) ’

J(@) = mz+0.5(m—my)f1(z), fi@R)=|z+1|—|z—1].
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Response system — adaptive observer
& =p(@2+ &1+ F(H() +6() f(5(2)) + he(?),
:f?g =§7l — :E'Q + :f?g-l-lg&'(t),

&3 =—gqZa+lse(t), Adjustable parameter

(31)
§(t) = £1(¢), e(t) = G(t) —§(¢), L=, b, L]7 - gain
Adaptation algorithm

0 =(5(t) —3(0)) L EW) + (o — 1), (2

M

7, . — parameters, fp, — a priori estimate for 6.
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4.4 Simulation results
Parameters: p=10.0, g=15.6, my=0.33, m,;=0.22.

Observer gain matrix L = [1.00, 5.54, 4.44|T ; a = 0.02, y = 0.2.
Two values of 6: 6=0.8 ; 6 =1.0.

Q vs R for 6o = 0.9 and different 6.

Q
3

300 400  _ 500
R bitfs
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Parameter estimation error

Q= f lo—deyPaz)

0,0 vs R Parameter estimation
A =1, R = 50 bit/s.
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Synchronization of Dynamical Networks
under Communication Constraints

() h) )

— " oo

“Star”, “chain” and “star-chain” network topologies.

A.L. Fradkov, B. Andrievsky. Application of passification method
to controlled synchronization of tree networks under information

constraints. IEEE MSC’09. St.Petersburg, July, 2009 =
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Limit Synchronization Error
(. . ~
XO_AX0+ @( yo )9 yo:‘VX() >

< XIZAX1+§0( Yo )+L1 ( Yo=Yi )9 ylzcxl ’

\XN =AX\ (Y Ly (Vo= Yn ) Ya=CXy

Q =1im || x;(t) = %, (1) |

t—o0
Q <K, /R, whereR, =min{R,.R,} K,>0
1< <1
R ; =vo — computation rate s6
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EXTENSIONS
1. Tunable coder may be used to avoid saturation and to improve
accuracy.

Ak = (Oye + Oyr—1) /2,

4

PMk—l, lf |)tk| S 0.5
My =m + {

M, _,/o, otherwise,
\

0 < 0<1- decay parameter; m = (1 — p) My,
M, — minimal value for M.
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EXTENSIONS-II

2. System structure can be extended beyond Lurie form, e.g.

x=A()x+Bop(y), y=Ckx,
Then response system is as follows:

L=A(X+Be(y) + KF(t) = $(1)), ¥=Cx

All results hold under convergence condition, e.g. Demidovich

condition for matrix 4 ,(y)=A(y)-KC, namely

NAKY) +Ar()) =-e<0, i=12,....n
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CONCLUSIONS

* For systems with first-order coders the upper and lower
bounds of limit synchronization error are proportional to the
maximum rate of the coupling signal and inversely
proportional to the data transmission rate (channel capacity).

* If channel bit-rate is sufficiently large then an arbitrarily
small limit synchronisation error can be reached for uncertain
system by means of adaptive synchronization algorithm.

*More results for nonadaptive case: see survey
*Andrievsky, Matveev, Fradkov. Automation and Remote
Control, 2010, 4. 59
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Experimental Multi-Pendulum Set-Up in IPME, St.Petersburg
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CONCLUSIONS

1) Decentralized adaptive output feedback synchronization problem for
nonlinear networks encompassing coordinate synchronization and
consensus problem is studied.

2) In contrast to a large number of previous results, we obtained control
algorithms and synchronization conditions for networks consisting of
nonidentical nonlinear systems with incomplete measurement,
incomplete control, incomplete information about system
parameters and coupling.

3) Control algorithm design 1s based on speed-gradient method,
passivity, passification.

Future research: examination of the influence of information
constraints with full order coder.
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Thank
you

62



Institute for Problems of Mechanical Engineering of RAS
Laboratory «Control of Complex Systemsy

Tool: Decentralized Speed-Gradient approach
( M.V. Druzhinina and A. L. Fradkov. Adaptive decentralized control

of interconnected systems. Proc. of 14th IFAC WC, 1999, Vol.L, pp.175-180,

Fradkov A.L., Miroshnik L.V, Nikiforov V.O. Nonlinear and Adaptive Control of
Complex Systems. Dordrecht: Kluwer Academic Publ., 1999).

Ty = fil i) + blzg, wi) + ha(x), (1)
i=1...N,
N
hi(z) <% &jllzgll, & =0, i=1...N. (2)

Control
Goal: Ci(zi(t)) — 0 ast — oo, (5)
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Assumption Al: local subsystems
r; = filmg) + iz, i), i=1...N, (6]
can be exponentially stabilized, i.e. there exist u,;*(x,):

ayi|zi]|* < Qilwi) < a7

[V Qi (z:)]| = Bl

o,
=]
L——

!j:'l;'-'*"i'-?-‘-fj wg=uj (T = —pililri)

where

(il xy) wy=utimy) =
= VQulxs)" (filzs) + balws, uf(z:))) )
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Theorem. Let: 1. Local laws u,*(x;) can be represented as

smooth functions of auxiliary parameters:
u¥(x;) = Uy(xg,0%), i=1...N,

2. Time-derivative of the function )0 x; ) 1s convex
in #;, i.e. anv #;, &, r; satisfy the inequality:
Qulxi,8) — Qul24,6,) > (0: — 6] Vg, (Qilzs,6:))

3. Functions hg(-), ¢ = 1... N =satisfy (2) and
additional condition:

L

5

'
G2+ & < 2pion VN, i=1...N. (13)
=1
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Then the decentralized adaptive control law

Uz = ET‘E-IZI-'M E‘E-J

B = —7 Ve, (VQ; bilms, Uiz, 6:))) . (14)
i=1...N,

where ; =0, i=1...N, provides the bounded-
ness of the whole system (1),(14 ) trajectories and

the achievement of the goal (5).
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Proof. Choose Lyapunov function and evaluate its time derivative:

o N
1
Va(z,6) = Y Via(z:,8;) = »_{Qulz:) + 5 (6 — 67" (8; — 7))
i—1 i=1 )

N
Vo= 1Qu(zi,0) — (8: — 67) Ve, (Q:) +
i=1
N .
+VQFhi(2)} = ) {Qilxa 6)) + VQT hi() )

Then apply Al and condi;ion (2):

N N N

Va < =Y pQulzs) + ) Balleal ) &y
i=1 i=1 =1
i N N

= — Zﬂ'nPfHTiHE + Z ﬁ:'”ﬂ“:'”ZfE:'j
i—1 i=1 i=1

i
|

Ej . 67
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Introduce notation: a VN [ 2
m=— | P +Zj:‘5:'j — Pi
Choosing f;(- ), which satisfy the inequality (13),
we obtaln that 1; = (. Thus, we have:

M M

T v I U . 1
Va = =Y millz|[F = =) ——Qilzi),  (16)

=1 B

Integrate (16) over [0,t]:

N

0= (ra(1)) < Vaiz(8).8(8)) =
Y Q(z(t)) = Valz(t).0(t)
i—1

< Vo (2(0).0(0)) = 5 - f Qilzi(s))ds,
i=1 !

(15)
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The boundedness of the system (1), (14) trajec-
tories x(f), #(f) follows from the growth condition
(11) for objective functions (), i=1,.... V.

Taking into account boundedness of the right
hand sides of the svatem (1), (14).0ne may show
that x;if) are uniformly continuons. Hence fune-
tlons ylxg(f)), 4 = 1...N, are uniformly con-
tinuous and integrable on [0, oc), Le. satisfy the
condition of Barbalat's lemmea, which cuarantees
that (J;ix;(f)) — 0 when ¢ — o¢. This proved the
theorem.
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