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Multiagent, game theoretic, cooperative, distributed, networked...

e Special issues:
— SIAM Journal on Control and Optimization, Special Issue on “Control and Optimiza-
tion in Cooperative Networks”

— ASME Journal of Dynamics Systems, Measurement, and Control, Special Issue on
“Analysis and Control of Multi-Agent Dynamic Systems”

— Journal of Intelligent and Robotic Systems, Special Issue on “Cooperative Robots,
Machines, and Systems”

— International Journal on Systems, Control and Communications, Special Issue on
“Networked Control Systems”

— Robotica, Special Issue on “Robotic Self-X Systems”
e Workshops:

— MIT Workshop on Frontiers in Game Theory and Networked Control Systems

— NecSys: IFAC Workshop on Estimation and Control of Networked Systems

— GameNets: International Conference on Game Theory for Networks

— GameComm: International Workshop on Game Theory in Communication Networks
— 8th International Conference on Cooperative Control and Optimization (2008)



Multagent scenarios

e Traffic

e Evolution of convention
e Social network formation
e Auctions & markets

¢ \Voting

e cfc

e Game elements (inherited):

— Actors/players
— Choices
— Preferences

Descriptive Agenda




More multiagent scenarios

e Weapon-target assignment
e Data network routing

e Mobile sensor coverage

e Autonomous vehicle teams

e efc

e Game elements (designed):

— Actors/players
— Choices
— Preferences

Prescriptive Agenda




Prescriptive agenda metrics

e Prescriptive agenda = distributed robust optimization

e Choose to address cooperation as noncooperative game
e Players are programmable components (vs humans)

e Must specify

— Elements of game (players, actions, payoffs)
— Learning algorithm

e Metrics:

— Information available to agent?
— Communications/stage?

— Processing/stage?

— Asymptotic behavior?

— Global objective performance?
— Convergence rates?



Outline

e Game theoretic learning
e Special class: Potential games
e Survey of algorithms

e lllustrations



Running examples

Distributed routing
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Multi-agent sudoku



Game setup & Nash equilibrium

e Setup:

- Players: {1, ..., p}
— Actions: a; € A;
— Action profiles:

(al,ag, ...,Clp) ceA=A4A; x Ay x ... X .Ap

Game theoretic jearning

— Payoffs: w; : (a1, as, ..., a,) = (a;,a—;)) — R
— Global objective: G: A — R
e Action profile a* € A is a Nash equilibrium (NE) if for all players:

*
p

l.e., no unilateral incentive to change actions.

wi(ay, ay, .., ay) = wilaj, ;) = uia;, a”;)



Game theoretic learning

e lterations:
~t=0,1,2,...
—a;(t) = rand(s;(t)), si(t) € A(A;)
— si(t) = F;(available info at time ¢)
e Key questions: If NE is a descriptive outcome...
— How could agents converge to NE?
— Which NE?
— Are NE efficient?



Game theoretic learning

e lterations:
—t=0,1,2,...
—a;(t) = rand(s;(t)), si(t) € A(A;)
- si(t) = F;(available info at time ¢)
e Key questions: If NE is a descriptive outcome...

— How could agents converge to NE?
— Which NE?
— Are NE efficient?

e Focus shifted away from NE towards adaptation/learning

“The attainment of equilibrium requires a disequilibrium process”
K. Arrow

“Game theory lacks a general and convincing argument that a
Nash outcome will occur.”
Fudenberg & Tirole

“..human subjects are no great shakes at thinking either [vs in-
sects]. When they find their way to an equilibrium of a game, they
typically do so using trial-and-error methods.”

K. Binmore

Survey: Hart, “Adaptive heuristics”, 2005.



Game theoretic learning for prescriptive agenda?

e Approach: Use game theoretic learning to steer collection towards desirable configura-
tion

¢ Informational hierarchy:

— Action based: Players can observe the actions of others.
— Oracle based: Players receive an aggregate report of the actions of others.
— Payoff based: Players only measure online payoffs.

e Focus:

— Asymptotic behavior
— Processing per stage
— Communications per stage
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Potential games

e Forsome ¢p: A — R

¢ai, ai) — ¢laj, a_;) >0
&
ui(a;, a_;) —ui(a;,a_;) >0
i.e., potential function increases iff unilateral improvement.

e Features:

— Typical of “coordination games”
— Desirable convergence properties under various algorithms
— Need not imply “cooperation” or ¢ = G
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lllustrations

e Distributed routing

— Payoff = negative congestion. ¢,(,)
— Potential function:

5= o) g 1

r n=l1
— Overall congestion:
G — Z O-T‘CT(O-T> . i
T >0 5
— Note: ¢ £ G g e 1D _
, 716 sle| IS
e Multiagent sudoku: %0 5 | o 7 I
u;(a) =#reps in row + #reps in column-+ g f;’ll i
#reps in sector Shere) 10| K
513 Bl
¢la) = Z ui(a) ;fj 2 6

12



Fictitious play (FP)

e Each player:

— Maintains empeirical frequencies (histograms) of other player actions

— Forecasts (incorrectly) that others are playing randomly and independently according
to empirical frequencies

— Selects an action that maximizes expected payoff
e Bookkeeping is action based
e Monderer & Shapley (1996): FP converges to NE in potential games.

13



FP processing
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Day 1 Actions Day 2 Actions Day 3 Model

e Viewpoint of driver 1 (3 drivers & 2 roads)
e Prohibitive-per-stage for large numbers of players with large action sets

— Monitor all other players with IDs (cf., distributed routing)
— Take expectation over large joint action space (cf., sudoku)
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Joint strategy fictitious play (JSFP)

¢ Virtual payoff vector

u;(m,a_;(t))
l.e., the payofs that could have been obtained at time ¢

e Time averaged virtual payoftf:
Vit +1) = (1 = p)Vi(t) + pUi(?)

e Stepsize p is either

— Constant (fading memory)

— Diminishing (true average), e.g., p = —

1
e Bookkeeping is oracle based (cf., traffic reports)

15



JSFP, cont

e JSFP algorithm: Each player

— Maintains time averaged virtual payoff
— Selects an action with maximal virtual payoff
— OR repeats previous stage action with some probability (i.e., inertia)

e Marden, Arslan, & JSS (2005): JSFP with inertia converges to a NE in potential games.
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JSFP processing
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Day 1 Actions Day 2 Actions Day 3 Model

e Equivalent to best response to joint actions of other players
e Related to “no regret” algorithms

e Survey: Foster & Vohra, Regret in the online decision problem, 1999.
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Equilibrium selection & Gibbs distribution

e Alternative algorithms offer more quantitative characterization of asymptotic behaviors.

e Preliminary: Gibbs distribution (cf., softmax, logit response)

. _ v/T
o(v;T) T o/T¢ €A
e.g.,
evl/T
o(vy,v9:T) = (evl/;;_/%‘i&/T)
evl/T_l_GUQ/T
e As T | 0 assigns all probability to arg max {vy, vs, ..., v, }
Prob[v;]
1 ...............................

. b A AR .
icpt
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Spatial adaptive play

e At stage t

— Player i is selected at random
— Chosen player sets

a,(t) = rand [a (ui(l, a_i(t — 1)), ooy wi(m, a_s(t — 1)); T)]

— Interpretation: Noisy best reply to previous joint actions

e Fact: SAP results in a Markov chain over joint action space A with a unique stationary
distribution, u.

e Blume (1993): In (cardinal) potential games,
0(a)/T

S T

e Implication: As T" | 0, all probability assigned to potential maximizer.

pla) =o(gla);T) =
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SAP variation: Binary

e Motivation:

— Reduced processing per stage
— First step towards constrained actions

e At stage t:

— Player i is selected at random
— Chosen player compares a;(t — 1) with randomly selected a]

a;(t) = rand [o(u;(a;(t — 1), a_i(t — 1)), wi(al, a_i(t — 1): T))]

e Arslan, Marden, & JSS (2007): Binary SAP results in same stationary distribution as
SAP.

e Consequence: Arbitrarily high steady state probability on potential function maximizer.
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SAP variation: Constrained

e Action evolution must satisfy: a,(t) € C(a;(t — 1))
— Limited mobility
— Obstacles
e Algorithm: Same as before except
a, € Cla;(t — 1))
e Marden & JSS (2008): Constrained SAP results in potential function maximizer being
stochastically stable.

— Arbitrarily high steady state probability on potential function maximizer
— Does not characterize steady state distribution
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Payoff based algorithms

e Action & oracle based algorithms require:

— Explicit communications
— Explicit representations of payoff functions

e Payoff based algorithms:

— No (explicit) communication among agents
— Only requires ability to measure payoff upon deployment
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Experimentation dynamics

e Initialization of baseline action and baseline utility:
a;(1) = a;(0)

]

uj(1) = ui(a(0))

e Action selection:
a;(t) = al(t)with probability (1 — e)

a;(t) is chosen randomly over A; with probability ¢

e Baseline action & utility update:

Successful Unsuccessful No
Experimentation Experimentation Experimentation
ai(t) # al(t) ailt) # a;(t)
b b a;(t) = al(t)
uialt)) > u;(t) uila(t)) < u;(t) : :
I I b
bt +1) = ait) a(t+1) = a(t) a;(t+1) = a;(t)

Wbt + 1) = ui(a(t)) Wbt +1) = ub(t) ui(t +1) = u;(a(t))
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Experimentation dynamics, cont

e Marden, Young, Arslan, & JSS (2007): For potential games,
lim Pra(t) is a NE] > p*

t—00

for any p* < 1 with sufficiently small exploration rate e.

e Suitably modified algorithm admits noisy utility measurements.
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Longer talk material...

e How to assign individual payoff functions?

— Induce “localization”
— Have desirable NE
— Produce potential game

e Proof methods:
— “Sticky” NE
— Characterization of steady state distribution
— Stochastic stability
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lllustration: Rendezvous with obstacles

e Assume undirected connected constant graph (can be gen-
eralized)

e Global objective:

Glowa) =3 XYl ,

k jENk
e Global objective without agent i
Glba) ==53 3 la—a .
k;;é@ jGNk\Z ™

it _doruieroan_obel o

e Marginal contribution utility:

ui(aia a—i) - G(ai7 a—i) — G((Z)7 a—i) - = Z ‘ai — aj
JEN;

e Apply constrained SAP...
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lllustration: Distributed routing

e Setup: 10 parallel roads. 100 vehicles.

e Marginal contribution utility using overall congestion induces _ _
“tolls” X ‘o
(k) = (k=1) - (¢;(k) — e (k= 1)) | |
e Apply max regret with intertia...
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Final remarks

e Recap:

— Descriptive vs prescriptive

— Action/Oracle/Payoff based algorithms
— NE or potential function maximization
— Potential games & payoff design

e Future work:
— Convergence rates
— Exploiting prescriptive setting
— Agent dynamics
— Control theory and descriptive agenda
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