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Setup

We consider nonlinear discrete time control systems

x(n + 1) = f(x(n), u(n))

with x(n) ∈ X, u(n) ∈ U , X, U arbitrary metric spaces

Problem: Optimal stabilization via infinite horizon optimal
control:

For a running cost ` : X × U → R+
0 solve

minimize J∞(x, u) =
∞∑

n=0

`(x(n), u(n))
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Model predictive control
Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

minimize J∞(x, u) =
∞∑

n=0

`(x(n), u(n))

by the iterative (online) solution of finite horizon problems

minimize JN(x, u) =
N−1∑
n=0

`(x(n), u(n))

We obtain a feedback law FN by a moving horizon technique
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Model predictive control
At each time instant τ solve for the current state xτ

minimize JN(xτ , u) =
N−1∑
n=0

`(x(n), u(t)), x(0) = xτ

 optimal control u∗(0), . . . , u∗(N − 1)

 set FN(xτ ) := u∗(0)
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 4



Model predictive control
At each time instant τ solve for the current state xτ

minimize JN(xτ , u) =
N−1∑
n=0

`(x(n), u(t)), x(0) = xτ

 optimal control u∗(0), . . . , u∗(N − 1)  set FN(xτ ) := u∗(0)

Horizont

t

[0,M−1]( ,x)

MTT

u 1

u

ξ

u
∗(n)

horizon N

FN(xτ )

u

1 N

t t

Horizont

(M+1)TT

[0,M−1]u 2

uM ξ( ,x)
(ξ ,x )11

u

u
∗(n)

horizon N

FN(xτ )
FN(xτ+1)

u

0 1 N
t

τ τ + 1
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MPC from the trajectory point of view

n
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black = predictions (open loop optimization)
red = MPC closed loop
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MPC from the trajectory point of view
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Relaxed dynamic programming inequality
Questions:

When does MPC stabilize the system?

How good is the MPC Feedback law?

Define optimal value functions VN(x) := infu JN(x, u)
V∞(x) := infu J∞(x, u)

Theorem: If there exists α ∈ (0, 1] such that the relaxed
dynamic programming inequality

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

holds for all x, then asymptotic stability follows (with VN as
Lyapunov function) and we get the suboptimality estimate

J∞(x, FN) ≤ VN(x)/α ≤ V∞(x)/α

Note: The last inequality does not hold for MPC schemes
Note: with stabilizing terminal constraints
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Computing α

Goal: Compute α in the relaxed DP inequality

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

Different ways to compute α:

by computing VN (see also [Shamma/Xiong ’97])

by imposing suitable bounds on VN [Gr./Rantzer ’08]

using controllability properties [Gr. ’09]

←

online along the NMPC closed loop trajectory
[Gr./Pannek ’09]
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Computing α

Goal: Compute α in the relaxed dynamic programming
inequality

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

under the C, σ-exponential controllability property
(with respect to the running cost l):

For each x(0) there exists a control sequence u(·) such that

`(x(n), u(n)) ≤ Cσn`∗(x(0))

holds for all n ∈ N0, where `∗(x(0)) = infu∈U `(x(0), u)

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 8
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Suboptimality and stability condition
C, σ-exponential controllability: `(x(n), u(n)) ≤ Cσn`∗(x(0))

Theorem: The value

α(C, σ) = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi =

i−1∑
k=0

Cσk

is the maximal α in the relaxed dynamic programming
inequality over all C, σ-exponentially controllable systems.

In particular: If α(C, σ) > 0, then the MPC feedback FN

stabilizes all C, σ-exponentially controllable systems and we
get J∞(x, FN) ≤ V∞(x)/α(C, σ).

Furthermore: If α(C, σ) < 0 then there exists a C, σ-expo-
nentially controllable system, which is not stabilized by FN .

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 9
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Idea of proof
We want to compute α such that for all x:

VN(f(x, FN(x))) ≤ VN(x)− α`(x, FN(x))

the controllability property induces upper bounds on
(sums of) the cost `(x∗(n), u∗(n)) along the optimal
trajectory corresponding to VN(x)

the bounds on the `(x∗(n), u∗(n)) and the controllability
condition induce upper bounds on VN(f(x, FN(x)))

combining these bounds leads to a linear program for α

this linear program is explicitly solvable

the converse statement for α(C, σ) < 0 is obtained by
explicit construction of a counterexample

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 10
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Stability chart for C and σ

Minimal horizon N for stable NMPC depending on C and σ

(Figure: Harald Voit)

Conclusion: good performance can be expected for small
overshoot C
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Example
In general, quantitative values for C and σ (or analogous
parameters in alternative controllability assumptions) are
difficult if not impossible to obtain

However, our results are still useful if only qualitative
information is known

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x) and distributed control u = u(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 12
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The uncontrolled PDE
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 13



The uncontrolled PDE

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.5

uncontrolled (u ≡ 0)
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 13



The uncontrolled PDE

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.575

uncontrolled (u ≡ 0)
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data solution y(n, ·) at y ≡ 0

Usual cost: quadratic L2 cost

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2 + λ‖u(n, ·)‖2L2

A small calculation reveals that for this L2 cost the overshoot
C is much larger than for the H1 cost

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2 + ‖yx(n, ·)‖2L2︸ ︷︷ ︸
=‖y(n,·)‖2

H1

+λ‖u(n, ·)‖2L2 .
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MPC with L2 vs. H1 cost
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N= 3, H1

MPC with L2 and H1 cost, λ = 0.1, sampling time T = 0.025

similar results can be obtained for the wave equation
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Networked MPC

We now consider an MPC controller implemented via a
network

For simplicity of exposition, we neglect

computation and transmission delay

disturbance and prediction error

Both can be added to our analysis, cf. [Gr./Pannek/
Worthmann ’09] and [Findeisen/Gr., in preparation]

Here, we only consider packet loss
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Packet loss

Network

MPC Controller

Plant

F (x(n))

x(n)

N

Idea: • send several values of optimal open loop
Idea: • control sequence (instead of just the first value)
Idea: • use these values until next values arrive
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Schematic illustration of the idea

n
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red = MPC closed loop
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 18



Schematic illustration of the idea

n

x

0 1 2 3 4 5 6

x2

black = predictions (open loop optimization)
red = MPC closed loop
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Schematic illustration of the idea
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Rigorous formulation

Denote (successful) transmission times by ni, i = 1, 2, . . .

Define a buffer length M ∈ N, M ≤ N − 1

At each transmission time ni, the plant receives the feedback
control sequence

FN(x(ni), k) = u∗(k), k = 0, 1, 2, . . . ,M − 1

and implements

FN(xni
, 0), FN(xni

, 1), . . . , FN(xni
, mi − 1)

on the control horizon mi = ni+1 − ni ≤M

Note mi is unknown at time ni

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 19
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Stability theorem
Theorem: If there exists α ∈ (0, 1] such that the relaxed
dynamic programming inequality

VN(x(m, x0, u
∗)) ≤ VN(x)− α

m−1∑
k=0

`(x(m, x0, u
∗), u∗(m))

holds for all m = 1, . . . ,M , then asymptotic stability follows
for the MPC closed loop with arbitrary transmission times ni,
i ∈ N, satisfying ni+1 − ni ≥M .

Furthermore, VN is Lyapunov function at the transmission
times ni and we get the suboptimality estimate

J∞(x, FN) ≤ V∞(x)/α

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 20
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Computation of α

Again, for C, σ-exponentially controllable systems, this
α = α(C, σ,N, m) can be explicitly computed:

α = 1−

N∏
i=m+1

(γi − 1)
N∏

i=N−m+1

(γi − 1)(
N∏

i=m+1

γi −
N∏

i=m+1

(γi − 1)
) (

N∏
i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)
)

with γi =
∑i−1

k=0 Cσk

Note: at first, this yields a stability criterion for each fixed
control horizon m only. However, since we get a common
Lyapunov function VN , stability carries over to varying control
horizon mi

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 21
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Example
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α(C, σ,N, m) for C = 2, σ = 0.68, N = 8, m = 1, . . . , 7

This symmetry and monotonicity is not a coincidence
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Properties of α

Theorem: The values α(N, m) satisfy

α(N, m) = α(N, N −m), m = 1, . . . , N − 1

and
α(N, m) ≤ α(N, m + 1), m = 1, . . . dN/2e

Corollary: If N is such that all C, σ-exponentially controllable
systems are stabilized with “classical” MPC (m = 1), then
they are stabilized for arbitrary varying control horizons
mi ∈ {1, . . . , N − 1}

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 23
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Monotonicity in simulation examples
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The monotonicity means that when enlarging the control
horizon the closed loop performance first improves and then
becomes worse, again

While we cannot exactly recover the symmetry in simulation
examples, we can observe this monotonicity
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Example: linearized inverted pendulum

ẋ =


0 1 0 0
g −k 0 0
0 0 0 1
0 0 0 0

 x +


0
1
0
1

 u, x0 =


0
0
−2

0


sampling time T = 0.5, `(x, u) = 2‖x‖1 + 4‖u‖1, N = 11
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 25



Example: linearized inverted pendulum
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Relaxed dynamic programming in distributed MPC

— some ideas

In distributed MPC schemes, the online optimization is carried
out locally in the subsystems

To this end

the optimization in each time instant has to be localized,
i.e., split up

some communication between the subsystems is
necessary, often restricted to communication with
neighbors

Structural properties, e.g., whether the subsystems are
physically coupled or only coupled via the optimization
objective play an important role for the design of the scheme

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 26
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Communication during optimization
If we assume sufficiently fast communication, then subsystems
may exchange information during the iterative optimization in
each time step

Suitable decoupling of the problem leads to the central
optimum (whereas näıve decoupling may only lead to a Nash
equilibrium, cf. [Venkat/Rawlings/Wright ’05])

Optimization iteration is slowed down by communication
 termination before convergence may be necessary

Ideas: Use a relaxed dynamic programming type condition

ṼN(f(x, F̃N(x))) ≤ ṼN(x)− ᾱ`(x, F̃N(x))

for some predefined ᾱ ∈ (0, 1) as termination criterion.
Design the optimzation such that this condition is satisfied
after few iterations.

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 27
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No communication during optimization
For a multi-vehicle formation problem, [Dunbar/Murray ’06]
showed stability for an NMPC scheme in which only the open
loop optimized predicted trajectories are communicated (once
in each time step)

The stability proof heavily relies on

stabilizing terminal constraints

additional (severe) constraints on the predicted trajectory
in the optimization

In addition, since there is no information exchange during the
optimization, only some kind of Nash equilibrium (instead of a
central optimum) can be expected

Idea: Replace the constraints by suitable “decentralized”
controllability conditions under which stability and — if
possible — suboptimality can be shown with our techniques

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 28



No communication during optimization
For a multi-vehicle formation problem, [Dunbar/Murray ’06]
showed stability for an NMPC scheme in which only the open
loop optimized predicted trajectories are communicated (once
in each time step)

The stability proof heavily relies on

stabilizing terminal constraints

additional (severe) constraints on the predicted trajectory
in the optimization

In addition, since there is no information exchange during the
optimization, only some kind of Nash equilibrium (instead of a
central optimum) can be expected

Idea: Replace the constraints by suitable “decentralized”
controllability conditions under which stability and — if
possible — suboptimality can be shown with our techniques
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Asynchronous Optimization

So far, we implicitly assumed that optimization in the the
subsystems is performed synchronously

However, for various reasons it may be preferable that different
subsystems optimize at different time instances

This is similar to the networked setting, but now the times ni

when switching from one open loop sequence to another are
different in each subsystem

Idea: use similar techniques as in the networked setting in
order to analyze stability and suboptimality

Lars Grüne, Suboptimality estimates for NMPC schemes, p. 29
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Summary and Conclusions
based on a simple relaxed dynamic programming
inequality we developed a stability and guaranteed
performance analysis method for MPC schemes without
having to impose stabilizing terminal constraints

with this method we can compute optimization horizon
bounds N via explicit analytical formulas

these analytic results allow for qualitative statements even
if only rough quantitative information is available

the method can be extended to varying control horizons
mi ∈ {1, . . . ,M} and shows that larger and varying
control horizons can be used without losing (nominal)
stability and performance

we expect various applications in distributed MPC, both
analytic and algorithmic

www.math.uni-bayreuth.de/∼lgruene/
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Lars Grüne, Suboptimality estimates for NMPC schemes, p. 30



Summary and Conclusions
based on a simple relaxed dynamic programming
inequality we developed a stability and guaranteed
performance analysis method for MPC schemes without
having to impose stabilizing terminal constraints

with this method we can compute optimization horizon
bounds N via explicit analytical formulas

these analytic results allow for qualitative statements even
if only rough quantitative information is available

the method can be extended to varying control horizons
mi ∈ {1, . . . ,M} and shows that larger and varying
control horizons can be used without losing (nominal)
stability and performance

we expect various applications in distributed MPC, both
analytic and algorithmic

www.math.uni-bayreuth.de/∼lgruene/
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