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OUTLINE 

Vapor compression refrigeration cycle 

 

Model Based Control Development Process 

 

Application Examples 

Transportation Refrigeration 

Commercial Refrigeration  

Residential HVAC 

Commercial Building HVAC 

 

Conclusions 
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VAPOR COMPRESSION REFRIGERATION CYCLE 
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WHAT IS CONTROL OF HVAC/R?  

HVAC/R Plant Control 

Equipment 
Measurements 

Actuations 

What’s important? 

• Control architecture & algorithm design 

• Implementation and test/verification 

• Tuning and commissioning 

• Operation & upgrading 

Reliably operating HVAC/R systems to be functional and energy efficient  
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Supermarket refrigeration 

What’s important? 

• Know the physics, systems objectives and limitations 

• Model the physics, component to system 

• System complexity 

Controller 

parameters 



From requirements definition to field support 

Control design 
Commissioning 

Field upgrades and configuration 
Requirements 

Modeling and simulation 

Symptom 1

Symptom 2

Symptom 3

Symptom N

Symptom 4

Verification and validation 

Diagnostics and fault detection 

Operation 

Hardware/software 
updates 
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Rapid prototyping, Hardware-in-the-loop 
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Tuning guideline 

MODEL BASED CONTROL DEVELOPMENT PROCESS 



Infinity NGTM: Residential HVAC System 

Developed control architecture and algorithm for 

robust system performance and optimal efficiency 
 

Developed control commissioning guidelines in use 

by Carrier installers 

CO2OLtecTM: Supermarket Refrigeration System 

PulsorTM: Truck Refrigeration Equipment 
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Zone3 SP

Zone3 temp

Zone4 SP

Zone4 temp

Demonstrated HW-independent, model based 

developed control algorithm on scalable SW platform 
 

Equipment 

Systems 

APPLICATION EXAMPLES 
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Supervisory control algorithm : 10%  to 15% energy 

consumption reduction. 

Large Systems/Buildings 



PULSOR™…TRUCK REFRIGERATION 

Architecture and algorithm design 

Product 

 

 

 

Verification and 
Validation 

Rapid prototyping 

No control algorithm  

changes  

during field trials 

Algorithm design 

Active constraint control algorithm 

Eliminated cycling 

Better performance 

Setpoint 

Modeling and  
Simulation 

 

 

 

Small (~kW) capacity 

 

Air-cooled, standard vapor compression 

system 

 

Single-input-multiple-output control  

   (Hybrid control solution) 

0 1 2 3 4 5 6 7 8 0 

5 

10 

15 

20 

25 

30 

35 

Suction Pressure [bar] 

D
is

c
h
a
rg

e
 P

re
s
s
u
re

 [
b
a
r]

 

Requirements 

Operating constraints 
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CO2OLTEC™…SUPERMARKET REFRIGERATION 
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Faster and accurate system commissioning 

 

 

 

 Large (~100kW) capacity 

 

CO2-based refrigeration system 

 

Multiple-input-multiple-output control  

   (100’s control loops) 

 

Site-specific configuration 

 

 

 

Product 

0

0.5

1

1.5

2

2.5

3

Default

tuning

New 

tuning

Default

tuning

New 

tuning

Default

tuning

New 

tuning

39% 

66% 

60% 

Control variable 1 Controlled 

variable 3 

Controlled 

variable 2 

 

 

CCS using 

transitioned SW 

2010 

Control analysis and design 

0 50 100 150 200
50

60

70

 

 
Controlled variable 1 

Setpoint 

0 50 100 150 200
32

34

36

Setpoint 

Controlled variable 2 

Modeling and  
Simulation 

 

 

 

Requirements 

Sanitary hot  
water 

Space heating 

Fresh food Rack 

Controls 

Island 

Combi - 
freezer 

Serve - over 

Multideck 

Cold room evap. 

Condenser 

Sanitary hot  
water 

Fresh food rack 

Frozen 
food rack 

Cold  
room evap. 

Controls 

Island 

Combi 
freezer 

Serve over 

Controls 

- 

- 

Space heating 

Commissioning 
guidelines 

Control tuning 

instructions 

Before After Before After Before After 



9 

CO2OLtec™: Gas Cooler Modeling 
More physics captured by 2-D cross-flow HX model versus 1-D counter flow HX model 

at reasonable cost of simulation speed 

Front view 

Side view 
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INFINITY NG…RESIDENTIAL HVAC 
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Software architecture and system control design 

Field trial results 
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North American  

   residential application 
 

Multiple-input-multiple-output  

   control  
 

 Large variety of configurations 

New programming model 
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generated code 

Data Dictionary 

HW resource mapping 

Hardware/software separation 

Model-based control algorithm development 
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INTEGRATED WHOLE-BUILDING HVAC MODEL 

Building  

Floor 1 

Floor 3 

Floor 2 

AHU1 

3rd Floor Ret. Air Mass Flow, 
Temp., RH 

AHU2 

AHU3 

Chiller Plant 

3rd Floor Sup. Air Mass Flow, 
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Pressure & Temp. 
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Inputs  
• Weather & Schedules 

Key Outputs 
• Chiller Plant Eqp. 

Power, Flow, Temp.  
• AHU Fan Power & 

Valve Pos. 
• Zone Temp., RH. 
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Case Configurations Definitions

Case Configuration 1 Medium Office + Primary-Only Chiller Plant Configuration

Case Configuration 2 Medium Office + Primary-Sec. Chiller Plant Configuration

Case Configuration 3 Large Hotel + Primary-Only Chiller Plant Configuration

Case Configuration 4 Large Hotel + Primary-Sec. Chiller Plant Configuration

SUMMARY OF CASE STUDIES 

4 Case Configurations 

1 

2 

3 

4 

Web-Bulb Temp. 

Test Cases Test Case Scenarios 

Test 1 Miami Summer 

Test 2 Miami Shoulder 

Test 3 Las Vegas Summer 

Test 4 Las Vegas Shoulder 

Test 5 Baltimore Summer 

Test 6 Baltimore Shoulder 

Test 7 Chicago Summer 

Test 8 Chicago Shoulder 

8 Test Profiles 
 (each case config.) 

Control Algorithms Descriptions 

1. Baseline Control Constant chilled-water supply temp. (CHWST) setpoint of 7°C. Load based chiller staging logic. 

2. OAT-Based Reset 

(ASHRAE 90.1) 

A linear schedule to reset CHWST setpoint based on outdoor air temperature (ASHRAE 90.1). Load based chiller 

staging logic. 

3. Heuristic-Based 

(Trim-Respond) 

Trim-Respond logic resets CHWST setpoint based on the demand measured by AHU’s chilled-water valve 

position. One request is generated when one chilled-water valve position becomes greater than a prescribed 

threshold (e.g., 90%). Load based chiller staging logic. 

4. Low-Cost Optimal Maximize CHWST setpoint while performing real-time load estimation. Load based chiller staging logic. 

4 Chiller Plant Control Algorithms 
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LOW-COST OPTIMAL CONTROL 

18.1 

11.5 12 

6.4 

Case Config. 1 (Office-PriOnly) Case Config. 2 (Office-PriSec ) Case Config. 3 (Hotel-PriOnly) Case Config. 4 (Hotel-PriSec)

Average Energy Savings (%) from Low-Cost Optimal Control 

~15% (office)   ~10% (hotel)   
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CONCLUSIONS 
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Better performing and more robust products 

 Physics based dynamic modeling and control enabling 
 

Control architecture (actuation/sensing) trade-off analysis 
 

Algorithm analysis and design 
 

 Installation/commissioning guidelines development 
 

Software robustness testing 
 

Equipment diagnostics development 

 

No turn-backs or surprises after the products are developed/deployed 

 


