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VAPOR COMPRESSION REFRIGERATION CYCLE
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WHAT IS CONTROL OF HVAC/R?

Reliably operating HVAC/R systems to be functional and energy efficient
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What'’s important? What'’s important?
+ Control architecture & algorithm design « Know the physics, systems objectives and limitations
* Implementation and test/verification * Model the physics, component to system
« Tuning and commissioning + System complexity

* Operation & upgrading



MODEL BASED CONTROL DEVELOPMENT PROCESS

From requirements definition to field support
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APPLICATION EXAMPLES

Equipment
Pulsor™: Truck Refrigeration Equipment

Developed control architecture and algorithm for
robust system performance and optimal efficiency

*

Systems aable 1 | varanes | vandbes
CO20Ltec™: Supermarket Refrigeration System Ze > | N
Developed control commissioning guidelines in use K‘\? S v ] 39%
by Carrier installers o’ =
Infinity NG™: Residential HYAC System

Demonstrated HW-independent, model based - _?ﬁ% e
developed control algorithm on scalable SW platform “xmmz"”e‘““p
(5

L arg e System S/B u | I d | n g S T:frage Energy Savings (%) from Low-Cost Optimal Control

. ~15% (office) ~10% (hotel)

Supervisory control algorithm : 10% to 15% energy ”*VL‘W 115 12
consumption reduction. sl bad il . . s

Case Config. 1 (Office-PriOnly)  Case Config. 2 (Office-PriSec )  Case Config. 3 (Hotel-PriOnly) Case Config. 4 (Hotel-PriSec)




PULSOR™  TRUCK REFRIGERATION

Architecture and algorithm design

Verification and
Validation

Rapid prototyping
I e —— e —

Modeling and _ _
Requirements Simulation Algorithm design
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IR

Active constraint control algorithm
Eliminated cycling

Operating constraints
Better performance

Product
No control algorithm

changes
during field trials y

Small (~kW) capacity

Air-cooled, standard vapor compression
system

Single-input-multiple-output control
(Hybrid control solution)




CO,OLTEC™  SUPERMARKET REFRIGERATION

Faster and accurate system commissioning

Requirements Modeling and Control analysis and design Commissioning
Simulation guidelines
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CO,0OLtec™: Gas Cooler Modeling

More physics captured by 2-D cross-flow HX model versus 1-D counter flow HX model
at reasonable cost of S|mulat|on speed
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INFINITY NG.. . RESIDENTIAL HVAC

Software architecture and system control design

Model-based control algorithm development System control algorithm
i = ‘{§| i corr;p.l [corﬁp.3J com‘p.NI

comp. 2 comp. 4
Control Algorithm ~ HP&Furnace Madel Dymola Zone Model TemDD‘SDmVI t
Applications Programming Interface (API)
____________________________________________________ ] Middleware Services

) Layered base
New programming model [ software

architecture

HW resource mapping
Data Dictionary

A Y
generated code
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Product @

Field trial results
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Multiple-input-multiple-output | g e

control Control e e
algorithm

Final Code

Automatically
generated code

Large variety of configurations

No control algfprithm changes
Hardware/software separation during field trials



INTEGRATED WHOLE-BUILDING HVAC MODEL

Inputs 3" Floor Ret. Air Mass Flow, individual Z =

* Weather & Schedules | \yater-side S Temp., RH ndividual zone femp.
atersice Sup. Controls (Pl)

Key Outputs Pressure & Temp :

Chiller Plant Eqp. AHU3 |

—

Power, Flow, Temp. ~ Floor 3

* AHU Fan Power & 3rd Floor Sup. Air Mass Flow,
Valve Pos. — Temp., RH
e Zone Temp., RH. Control (PI)

Chilled-Water Ret.

|
|

: 2" Floor Ret. Air Mass Flow,
Pressure & Temp. Water-Side Sup. :

SAT _'.“_
:
I
: Temp., RH
[

l.iJiIding

—é

T Pressure & Temp.
Chiller Plant
I 2" Floor Sup. Air Mass Flow, - --> Floor 2
‘ pT— - 3 . 1
73 ﬁ:d : Temp., RH
e b |
! 15t Floor Ret. Air Mass Flow,
g A E : Temp., RH
: Water-Side Sup.
1 Pressure & Temp. _
CHWST AHU1 '
CWST 1%t Floor Sup. Air Mass Flow =~ ~> Floor1
DP Control (PI) ' ’
Temp., RH




SUMMARY OF CASE STUDIES

8 Test Profiles
(each case config.)

4 Case Configurations

Web-Bulb Temp.

Wet-Bulb Temp. (°C)

30
Test Cases Test Case Scenarios
Case Configuration 1 Medium Office + Primary-Only Chiller Plant Configuration
1 % : Test1 Miami Summer 25+
Test 2 Miami Shoulder
Case Configuration 2 Medium Office + Primary-Sec. Chiller Plant Configuration 2071
2 % Test3 Las Vegas Summer
s LLL! I Test 4 Las Vegas Shoulder 157
Case Configuration 3 Large Hotel +‘Primary—0nly Chiller Plant Configuration Test5 Baltimore Summer ‘ o —
3 amiShouder
E@ Test 6 Baltimore Shoulder LMasVezsz|:mmer
Case Configuration 4 Large Hotel + Primary-Sec. (’:—Qar Plant Configuration Test 7 Chicago Summer 5r ;ZIst\?/rsgf:Ss::llr:ifr
4 ¢ BaltimoreShoulder
£ ChicagoSummer
@ I{:E% Test 8 Chicago Shoulder oY Chicagosmmder : : ;
0 Juu 1000 1500 2000 2500
Time (samples)
4 Chiller Plant Control Algorithms
Control Algorithms Descriptions
1. Baseline Control Constant chilled-water supply temp. (CHWST) setpoint of 7°C. Load based chiller staging logic.
2. OAT-Based Reset A linear schedule to reset CHWST setpoint based on outdoor air temperature (ASHRAE 90.1). Load based chiller
(ASHRAE 90.1) staging logic.
3. Heuristic-Based Trim-Respond logic resets CHWST setpoint based on the demand measured by AHU’s chilled-water valve
(Trim-Respond) position. One request is generated when one chilled-water valve position becomes greater than a prescribed
threshold (e.g., 90%). Load based chiller staging logic.
4. Low-Cost Optimal Maximize CHWST setpoint while performing real-time load estimation. Load based chiller staging logic.
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LOW-COST OPTIMAL CONTROL

1to8 1to8 1to8
Average = 100( Z Etotal,base - Z Etotal,optimal )/ Z Etotal,base
test no. test no. test no.

Average Energy Savings (%) from Low-Cost Optimal Control
18.1

~10% (hotel)

~15% (office)
11.5

6.4

_ =

Case Config. 3 (Hotel-PriOnly) Case Config. 4 (Hotel-PriSec)

Case Config. 1 (Office-PriOnly)  Case Config. 2 (Office-PriSec )
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CONCLUSIONS

Better performing and more robust products

J Physics based dynamic modeling and control enabling

Control architecture (actuation/sensing) trade-off analysis
Algorithm analysis and design

Installation/commissioning guidelines development
Software robustness testing

Equipment diagnostics development

_INo turn-backs or surprises after the products are developed/deployed
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