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Outline

® Dynamical Model of a Production-Inventory System
® Control Strategies:
e IMC-PID and 2DoF Feedback-Only IMC
e 3DoF Combined Feedback/Feedforward IMC
e Model Predictive Control (MPC)
e Improved MPC algorithm / Hybrid MPC
® Control-relevant Demand Modeling / Demand Forecasting

® Summary and Conclusions
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Production-Inventory System
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Semiconductor Manufacturing
Supply Chain Management
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Whole Hospital Occupancy
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® Roche, K.T., D.E. Rivera, and J.K. Cochran, “A control engineering framework for managing
whole hospital occupancy,” Mathematical and Computer Modelling, Vol. 55, Issues 3-4,
pgs. 1401 - 1417, February 2012.
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Global Warming/Climate Change

How do we cause
CO2 emissions?
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* PERCENTAGES DO NOT ADD UP TO 100 BECAUSE OF ROUNDING,

e From National Geographic Magazine
(http://ngm.nationalgeographic.com/big-idea/05/carbon-bath)
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Parental Function-Home Visits Behavioral Intervention as a
Production-Inventory Control Problem

Parental function PF(t) is built up by providing an intervention I(t) (frequency of home visits), that is
potentially subject to delay, and is depleted by potentially multiple disturbances (adding up to D(t)).

Controller/
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Rules
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: |
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: Variable) \ 4 (9 KI
! ( Delay Time) (Gain)
I | Exogenous
I Infl Depletion
: nrow / | AN Effects
I (Disturbance
Variable)
!. _______ ?FT’E“_S (_tz _ _ _| Parental Function I
Measured Parental (Controlled I
Function Variable) I D (t>

(Feedback Signal) PF (t) ! Outflow
| @—»

PE(t+1) = PF(t)+ K7 I(t — ) — D(t)

e Rivera, D.E., M.D. Pew, and L.M. Collins, “Engineering approaches for the design and analysis of adaptive,
time-varying interventions,” Drug and Alcohol Dependence, Special Issue on Adaptive Treatment Strategies,
Vol. 88, Supplement 2, pgs. S31-540, (2007).
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Internal Model Control (IMC) Design Procedure

Y D—+fato i o L R U D]t K A

e Step 1 (Nominal Performance): Obtain an H, (ISE)-optimal g(s)

- An external input form is specified (e.g., step or ramp)
- Closed-form solution for g(s) is obtained
- Resulting controller is stable and causal

e Step 2 (Robust Stability and Performance)

- Augment the IMC controller from Step 1 with a filter, f(s).
- Proper choice and tuning of the filter ensures that:
the final controller q(s) is proper.
the control system achieves stability and performance under uncertainty.
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IMC-PID Tuning Rules
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D.E. Rivera, M. Morari, and S. Skogestad. “Internal Model Control 4: PID Controller
Design”. Ind. Eng. Chem. Process Des. Dev. 25, 252-265, 1986.
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IMC-PID Controller Response
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Two Degree-of-Freedom (2DoF) Feedback-Only IMC
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J.D. Schwartz and D.E. Rivera. “A process control approach to tactical inventory
management in production-inventory systems,” International Journal of Production
Economics, Volume 125, Issue 1, Pages 111-124, 2010.
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2DoF Feedback-Only IMC
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3DoF Combined Feedback/Feedforward IMC Conftrol
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J.D. Schwartz and D.E. Rivera. “A process control approach to tactical inventory
management in production-inventory systems,” International Journal of Production
Economics, Volume 125, Issue 1, Pages 111-124, 2010.
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3DoF Combined Feedback/Feedforward IMC Conftrol
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Model Predictive Control (MPC)
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IMC/MPC Comparison
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Constrained MPC (with Stpt Anticipation)
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Simulation under conditions of active constraints in net stock and factory starts.
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Some Observations

e Feedback-only control strategies (even if multi-degree-of-freedom)
are unsatisfactory (in general).

e Combined feedback-feedforward strategies that rely on the
availability of a demand forecast signal are necessary for good,
comprehensive control.

e Model predictive control can provide useful functionality (e.g.,
constraint handling, anticipation) but the traditional move
suppression/single-degree-of-freedom formulation can be lacking.
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Motivation for an Improved MPC Formulation

Integrating dynamics (i.e., ramp responses and disturbances)

Need to take advantage of anticipated future system inputs (i.e.,
forecasted demand)

Multiple degrees-of-freedom (forecasted + unforecasted demand +
inventory setpoint tracking) with ease of tuning

Ability to incorporate problem-specific constraints and possibly
hybrid dynamics

Robustness in the presence of stochasticity and nonlinearity

Nandola, N. and D. E. Rivera, “An Improved Formulation of Hybrid Model Predictive Control with Application
to Production-Inventory Systems,” /EEE Trans. Control Systems Technology, Vol. 21, No. 1, pgs. 121-135, 2013.
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Block Diagram for 3 DoF MPC Controller
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Three Degree-of-Freedom (3-DoF) MPC Tuning

1. Filter I for inventory target setpoint tracking (Type | /asymptotically
step signals)

(1 —ay4)z

fi(z) =

a=1,...,n
< — A,

2. Filter Il for forecasted demand satisfaction (Type Il /asymptotically
ramp signals)

(1 —arpy) + Sar] — saryz” " = anyz”

1 — oz”jz—l

2

fi(2) = J=1...,n

G CSEL 22 BSU Shaimsares

Control Systems Engineering Laboratory ARIZONA STATE UNIVERSITY




Three-degree-of-freedom (3-DoF) MPC tuning (cont.)

® State estimation and unmeasured disturbance rejection (J.H. Lee and Yu, Computers
and Chemical Engineering,Vol. 18, No. |, pgs. 15-37, 1994)

Step-Al: X (k|k — 1): one step ahead prediction using actual measured disturbance (d)
Step-A2: X (klk) = X(k|k— 1)+ K¢(y(k) —CX(klk—1))

Step-B1: X1 (k|k — 1): one step ahead prediction using filtered measured disturbance (d ;)
Step-B2: Xy (klk) = Xpu(klk — 1) + Kf(y(k) — CX(k|k — 1))

Kf — [O Fy Fa]T
Fo, = diag{(fa)ly"' 7(fa)ny}
Fy = diag{(fo)1,- - (fo)n,}

_ (fa)'Q . :
(fb)j — 1+aj_;j(fa)j7 Og(fa)jg]-a ]-S]Sny

- (fa);is focused on each output J;constrained to 0 < (f,); <1
- Speed of dist. rejection is proportional to the tuning parameter (f4);
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3-DoF MPC for Continuous Input
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Controller Model (includes hybrid dynamics)

Plant Model Mixed Logical Dynamical (MLD) Framework

r(k+1) = Ax(k)+ Biu(k) + B2d(k) + Bsz(k) + Bad(k)
y(k+1) Cx(k+1)+d(k+1)+vk+1)
Es > E3i(k)+ E3z(k) — Eay(k) — Eru(k) + Eqd(k)

d’ : Unmeasured disturbance d : Measured disturbance

Disturbance Model

Ty(k+1) = Aypzy(k)+ Byw(k) ——  Integrated white noise
dk+1) = Cupzu(k+1)
A, = diaglay, ay, -+, an, }, By = Cy = 1
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MPC Objective Function

p m—1

min J Ik +0) —y)llg, + 3 I(Aulk+ i),
{[U(k+i)]§n61,[5(k+i)]p_l [z<k+z‘>1f’—1 ; “ z; o

>

2

+ZH (k+14) —u)|3, +Zu (k4 1) — qu+2\| 2k +1i) — 2)|13,

Subject to

Es > FE28(k+14)+ Bsz(k+1) — Eqy(k + 1) — Eru(k) + Eqd(k +4), 0<i<p—1

Ymin S y(k+z) SymaX7 1 Szép
< wulk+1) < Upax, 0<i<m—1
<

Umin >
Aupmin < Aulk+1) < AUpax, 0<i<m—1
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Hybrid 3 DoF Model Predictive Conftrol,
Production-Inventory System
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Hybrid vs Continuous 3 DoF MPC
Production-Inventory System
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Solution involves solving a Mixed Integer Quadratic Program (MIQP) to address continuous error

but discrete-level inputs (i.e., a hybrid problem).
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Production-Inventory System in the
Presence of Forecast Error
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System Response to Forecast Error

The closed-loop system response to a unit pulse in forecast error provides a basis for
understanding modeling requirements for control-relevant demand models.

Impulse Response Frequency Response
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J.D. Schwartz and D.E. Rivera. “A control-relevant approach to demand modeling for
supply chain management,” Computers and Chemical Engineering, 70:78-90, 2014,
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Understanding C-L Response to Forecast Error
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The effect of forecast error on closed-loop performance is most significant
in an intermediate frequency range.
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Response to Forecast Error (MPC, changing move suppression)

E— Inventory response to forecast error
- === Starts response to forecast error
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GCSEL Control-Relevant Estimation  FSilengineering

Control Systems Engineering Laboratory ARIZONA STATE UNIVERSITY

True demand is defined by a demand transfer function pq(z) and a
stochastic component H(z)a(t).

d(t) = pa(z)ua(t) + H(2)a(t)
The estimated demand is defined by $4(2) and a noise model Pe(2).
d(t) = pa(2)ua(t) + pee(t)

The control-relevant estimation step consists of minimizing the one-step-ahead
prediction error, where L(z) is the prefilter.

min V' = min E Z[L(z)e(t)]2 = mi %Ze%(t)

D ) D b N D 7~
Pd;Pe DPd;Pe —1 Pd;Pe —1

Parseval’s theorem allows for frequency domain analysis of the problem.
N 7r

N |
NIE%ON;%“)—%/

— T

2

Le™) (\pd(ejw) — pa(e’*)

Pe(e7?)

‘ 2

B, (w)+ |H(e)|” @a(w)> duw

33



GCSEL Multi-Objective Formulation PS5l engineering
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It is desirable to minimize a weighted combination of inventory and factory starts variance.

min | Y (1 —y)eX(t) + 2> yAu?(t)
Pd;sPe =0 =0

The control-relevant prefilter then takes the following form.

o er () = (L= DL ()P () + PALAU(E) P ()

By assuming an output error model structure, L(z) can be reduced to the following form.
L(e”)]* = (1 = )| Le. ()" + YA Lau(e’)]”

A curve fitting procedure is then used to obtain an Infinite Impulse Response filter that matches
the amplitude ratio of the control-relevant prefilter.

34



Mult-Objective Formulation (Cont.)
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Final Observations

® Production-inventory systems are iconic dynamical systems that describe
interesting problems in the process industries (and beyond).

® Combined feedback-feedforward strategies relying on demand forecast signals
are necessary to adequately control these systems. Improved formulations of
MPC can be developed in this regard.

® Demand modeling is a problem of significant importance in production-
inventory systems; analysis of closed-loop decision policies show that these
are most responsive to forecast error in an intermediate frequency bandwidth.

® Prefiltering can be used to apply the proper emphasis in control-relevant
demand modeling.

® Multivariable extensions exist for both the control and demand modeling /
demand forecasting segments of this presentation.
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