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Outline

• Dynamical Model of a Production-Inventory System

• Control Strategies:

• IMC-PID and 2DoF Feedback-Only IMC 

• 3DoF Combined Feedback/Feedforward IMC

• Model Predictive Control (MPC)

• Improved MPC algorithm / Hybrid MPC

• Control-relevant Demand Modeling / Demand Forecasting

• Summary and Conclusions
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Production-Inventory System
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Semiconductor Manufacturing
Supply Chain Management
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Whole Hospital Occupancy
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• Roche, K.T., D.E. Rivera, and J.K. Cochran, “A control engineering framework for managing 
whole hospital occupancy,” Mathematical and Computer Modelling,  Vol. 55, Issues 3-4, 
pgs. 1401 - 1417, February 2012.
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Global Warming/Climate Change

7

• From National Geographic Magazine 
(http://ngm.nationalgeographic.com/big-idea/05/carbon-bath)
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Parental function PF(t) is built up by providing an intervention I(t) (frequency of home visits), that is 
potentially subject to delay, and is depleted by potentially multiple disturbances (adding up to  D(t)).

Parental Function-Home Visits Behavioral Intervention as a 
Production-Inventory Control Problem

8

PF (t + 1) = PF (t) + KI I(t� �)�D(t)
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• Rivera, D.E., M.D. Pew, and L.M. Collins, “Engineering approaches for the design and analysis of adaptive, 
time-varying interventions,” Drug and Alcohol Dependence, Special Issue on Adaptive Treatment Strategies, 
Vol. 88, Supplement 2, pgs. S31-S40, (2007).
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Internal Model Control (IMC) Design Procedure

• Step 1 (Nominal Performance): Obtain an H2 (ISE)-optimal q(s)

 - An external input form is specified (e.g., step or ramp)
 - Closed-form solution for q(s) is obtained
 - Resulting controller is stable and causal

• Step 2 (Robust Stability and Performance)

 - Augment the IMC controller from Step 1 with a filter, f(s).
 - Proper choice and tuning of the filter ensures that:
  the final controller q(s) is proper.
  the control system achieves stability and performance under uncertainty.

p(s)

p̃(s)

q(s) c(s)
r(s) u(s)y(s)

+

+

+
-

-

-
p(s)

u(s) r(s) y(s)

⇐⇒
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IMC-PID Tuning Rules
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D.E. Rivera, M. Morari, and S. Skogestad. “Internal Model Control 4: PID Controller 
Design”. Ind. Eng. Chem. Process Des. Dev. 25, 252-265, 1986.
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IMC-PID Controller Response
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Two Degree-of-Freedom (2DoF) Feedback-Only IMC

p(s) =
Ke−θs

s
p̃(s) =
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J.D. Schwartz and D.E. Rivera. “A process control approach to tactical inventory 
management in production-inventory systems,” International Journal of Production 

Economics, Volume 125, Issue 1, Pages 111-124, 2010.
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2DoF Feedback-Only IMC
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3DoF Combined Feedback/Feedforward IMC Control
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J.D. Schwartz and D.E. Rivera. “A process control approach to tactical inventory 
management in production-inventory systems,” International Journal of Production 

Economics, Volume 125, Issue 1, Pages 111-124, 2010.
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3DoF Combined Feedback/Feedforward IMC Control
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Model Predictive Control (MPC)

Keep Inventories at Planning Setpoints Penalize Changes in Factory Starts

min
�u(k|k)...�u(k+M�1|k)

z }| {
PX

`=1
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IMC/MPC Comparison
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Constrained MPC (with Stpt Anticipation)
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Some Observations

• Feedback-only control strategies (even if multi-degree-of-freedom) 
are unsatisfactory (in general).

• Combined feedback-feedforward strategies that rely on the 
availability of a demand forecast signal are necessary for good, 
comprehensive control.

• Model predictive control can provide useful functionality (e.g., 
constraint handling, anticipation) but the traditional move 
suppression/single-degree-of-freedom formulation can be lacking.

19
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Motivation for an Improved MPC Formulation 

• Integrating dynamics (i.e., ramp responses and disturbances)

• Need to take advantage of anticipated future system inputs (i.e., 
forecasted demand)

• Multiple degrees-of-freedom (forecasted + unforecasted demand + 
inventory setpoint tracking) with ease of tuning

• Ability to incorporate problem-specific constraints and possibly 
hybrid dynamics

• Robustness in the presence of stochasticity and nonlinearity

20

Nandola, N. and D. E. Rivera, “An Improved Formulation of Hybrid Model Predictive Control with Application 
to Production-Inventory Systems,” IEEE Trans. Control Systems Technology, Vol. 21, No. 1, pgs. 121-135, 2013. 
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Block Diagram for 3 DoF MPC Controller
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Three Degree-of-Freedom (3-DoF) MPC Tuning

1. Filter I  for inventory target setpoint tracking (Type I /asymptotically 
step signals)

2. Filter II  for forecasted demand satisfaction (Type II /asymptotically 
ramp signals)

fj(z) =

[

(1 − αIIj) + 3

5
αIIj

]

−

1

5
αIIjz

−1
−

2

5
αIIjz

−2

1 − αIIjz−1
, j = 1, . . . , n

fi(z) =
(1 − αIi)z

z − αIi

, i = 1, . . . , n
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Three-degree-of-freedom (3-DoF) MPC tuning (cont.)

• State estimation and unmeasured disturbance rejection (J.H. Lee and Yu, Computers 
and Chemical Engineering, Vol. 18, No. 1, pgs. 15-37, 1994)

23

-        is focused on each output   ; constrained to 
- Speed of dist. rejection is proportional to the tuning parameter

(fa)j j 0  (fa)j  1
(fa)j

Kf = [0 Fb Fa]T

Fa = diag{(fa)1, · · · , (fa)ny}
Fb = diag{(fb)1, · · · , (fb)ny}

(fb)j =
(fa)j

2

1 + ↵j � ↵j(fa)j
, 0  (fa)j  1, 1  j  ny

Step-B1: Xflt(k|k � 1): one step ahead prediction using filtered measured disturbance (dflt)

Step-B2: Xflt(k|k) = Xflt(k|k � 1) + Kf (y(k)� CX(k|k � 1))

Step-A1: X(k|k � 1): one step ahead prediction using actual measured disturbance (d)

Step-A2: X(k|k) = X(k|k � 1) + Kf (y(k)� CX(k|k � 1))
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3-DoF MPC for Continuous Input
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independent controller adjustment without the need for move suppression!
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Controller Model (includes hybrid dynamics)

Disturbance Model 

xw(k + 1) = Awxw(k) + Bww(k)
d

0(k + 1) = Cwxw(k + 1)

Aw = diag{↵1, ↵1, · · · , ↵ny}, Bw = Cw = I

Integrated white noise

25

: Unmeasured disturbance d0 : Measured disturbance d

Plant Model Mixed Logical Dynamical (MLD) Framework

x(k + 1) = Ax(k) + B1u(k) + B2�(k) + B3z(k) + Bdd(k)
y(k + 1) = Cx(k + 1) + d

0(k + 1) + ⌫(k + 1)
E5 � E2�(k) + E3z(k)� E4y(k)� E1u(k) + Edd(k)
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MPC Objective Function

26

min
{[u(k+i)]m�1

i=0 , [�(k+i)]p�1
i=0 , [z(k+i)]p�1

i=0 }
J
4=

pX

i=1

k(y(k + i)� yr)k2
Qy

+
m�1X

i=0

k(�u(k + i))k2
Q�u

+
m�1X

i=0

k(u(k + i)� ur)k2
Qu

+
p�1X

i=0

k(�(k + i)� �r)k2
Qd

+
p�1X

i=0

k(z(k + i)� zr)k2
Qz

Subject to

y
min

 y(k + i)  y
max

, 1  i  p

u
min

 u(k + i)  u
max

, 0  i  m� 1
�u

min

 �u(k + i)  �u
max

, 0  i  m� 1

E5 � E2�(k + i) + E3z(k + i)� E4y(k + i)� E1u(k) + Edd(k + i), 0  i  p� 1
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Hybrid 3 DoF Model Predictive Control,
Production-Inventory System
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y(k + 1) = y(k) + Ku(k � (✓ � 1))� d(k)
d(k) = d

f

(k)
| {z }

forecasted

+ d
u

(k)| {z }
unforecasted
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Solution involves solving a Mixed Integer Quadratic Program (MIQP) to address continuous error 
but discrete-level inputs (i.e., a hybrid problem).
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Production-Inventory System in the 
Presence of Forecast Error

Integrating System with Delays
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d(t) = dF (t − θF ) + dU (t)
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System Response to Forecast Error
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The closed-loop system response to a unit pulse in forecast error provides a basis for 
understanding modeling requirements for control-relevant demand models.

30

J.D. Schwartz and D.E. Rivera. “A control-relevant approach to demand modeling for 
supply chain management,” Computers and Chemical Engineering, 70:78-90, 2014.
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Understanding C-L Response to Forecast Error

31

The effect of forecast error on closed-loop performance is most significant 
in an intermediate frequency range.
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Response to Forecast Error (MPC, changing move suppression)
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d(t) = p̃d(z)ud(t) + p̃ee(t)

Parseval’s theorem allows for frequency domain analysis of the problem.

True demand is defined by a demand transfer function pd(z) and a 
stochastic component H(z)a(t).

The control-relevant estimation step consists of minimizing the one-step-ahead 
prediction error, where         is the prefilter.L(z)

d(t) = pd(z)ud(t) + H(z)a(t)

The estimated demand is defined by           and a noise model         .p̃d(z) p̃e(z)

lim
N→∞

1

N

N
∑

t=1

e2

L(t) =
1

2π

∫ π

−π

∣

∣

∣

∣

L(ejω)

p̃e(ejω)

∣

∣

∣

∣

2
(

∣

∣pd(e
jω) − p̃d(e

jω)
∣

∣

2
Φud

(ω)+
∣

∣H(ejω)
∣

∣

2
Φa(ω)

)

dω

min
p̃d,p̃e

V = min
p̃d,p̃e

1

N

N∑

t=1

[L(z)e(t)]2 = min
p̃d,p̃e

1

N

N∑

t=1

e
2

L(t)
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It is desirable to minimize a weighted combination of inventory and factory starts variance.

|L(ejω)|2

|p̃e(ejω)|2
ΦeF

(ω) = (1 − γ)|Lec
(ejω)|2ΦeF

(ω) + γλ|L∆u(ejω)|2ΦeF
(ω)

By assuming an output error model structure, L(z) can be reduced to the following form.

|L(ejω)|2 = (1 − γ)|Lec
(ejω)|2 + γλ|L∆u(ejω)|2

A curve fitting procedure is then used to obtain an Infinite Impulse Response filter that matches 
the amplitude ratio of the control-relevant prefilter.

The control-relevant prefilter then takes the following form.

min
p̃d,p̃e

[

∞
∑

t=0

(1 − γ)e2
c(t) + λ

∞
∑

t=0

γ∆u2(t)

]
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Multi-Objective Formulation (Cont.)

|L(ejω)|2 = (1 − γ)|Lec
(ejω)|2 + γλ|L∆u(ejω)|2

γ = 0 : Inventory Variance Optimal

γ = 1 : Starts Change Variance Optimal

γ : Weighted Combination
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Final Observations

• Production-inventory systems are iconic dynamical systems that describe 
interesting problems in the process industries (and beyond).

• Combined feedback-feedforward strategies relying on demand forecast signals 
are necessary to adequately control these systems.  Improved formulations of 
MPC can be developed in this regard.

• Demand modeling is a problem of significant importance in production-
inventory systems; analysis of closed-loop decision policies show that these 
are most responsive to forecast error in an intermediate frequency bandwidth. 

• Prefiltering can be used to apply the proper emphasis in control-relevant 
demand modeling.

• Multivariable extensions exist for both the control and demand modeling / 
demand forecasting segments of this presentation.
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