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Introduction

Extremum seeking is a real-time optimization technique.

PlantControl
Parameter
Estimation

Real-Time
Optimization

Figure : Basic RTO loop.

RTO is a supervisory system designed to monitor and improve
process performance.
It uses process data to move the process to operating points that
are optimal wrt a meaningful user-defined metric
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Introduction

In most applications, RTO exploits process models and
optimization techniques to compute optimal steady-state operating
conditions

I Control objectives vs. Optimization objectives
Success of RTO relies on

I the accuracy of the (steady-state) model
I robustness of the RTO approach
I flexibility of the control system

In the absence of accurate process descriptions (model-based) RTO
yields erratic results

Successful RTO requires integrated solutions.
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Introduction

Extremum Seeking Control (ESC) is a model free technique that
relies on minimal assumptions concerning:

I the process model
I the objective function
I the constraints

ESC only requires the measurement of the objective function and
the constraints
Considerable appeal in practice

I Achieves RTO objectives without the need for complex model-based
formulations.
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Introduction

Extremum-seeking control (ESC) has been the subject of
considerable research effort over the last decade.
Mechanism dates back to the 1920s [Leblanc, 1922]

I Objective is to drive a system to the optimum of a measured
variable of interest [Tan et al., 2010]

Revived interest in the field was primarily sparked by Krstic and
co-workers [Krstic and Wang, 2000]

I Provided an elegant proof of the convergence of a standard
perturbation based ESC for a general class of nonlinear systems
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Introduction

Basic ESC objectives:
Given an (unknown) nonlinear dynamical system and (unknown)
measured cost function:

ẋ = f(x, u) (1)
y = h(x) (2)

The objective is to steer the system to the equilibrium x∗ and u∗

that achieves the minimum value of y(= h(x∗)).
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Problem Definition

The objective is to steer the system to the equilibrium x∗ and u∗
that achieves the minimum value of y(= h(x∗)).

I The equilibrium (or steady-state) map is the n dimensional vector
π(u) which is such that:

f(π(u), u) = 0.

I The equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

I The problem is to find the minimizer u∗ of y = `(u∗).
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Problem Definition
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Figure : ESC Basic Assumptions.
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Basic ESC Loop
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Figure : Standard ESC Loop.
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Basic ESC Loop

Closed-loop dynamics are:

ẋ = f(x, û(t) + a sin(ωt))
˙̂u = −ωkξ
ξ̇ = −ωωlξ + ω

ωl
a

(h(x)− η) sin(ωt)

η̇ = −ωωhη + ωωhh(x).

Tuning parameters are:
I k the adaptation gain
I a the dither signal amplitude
I ω the dither signal frequency
I ωl and ωh the low-pass and high-pass filter parameters
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Basic ESC loop

The stability analysis [Krstic and Wang, 2000] relies on two
components:

1 an averaging analysis of the persistently perturbed ESC loop
2 a time-scale separation of ESC closed-loop dynamics between the

system dynamics and the quasi steady-state extremum-seeking task.

This is a very powerful and very general result.
Analysis confirms properties: small a, small ω, small k.
Convergence is slow with limited robustness.
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Proportional Integral ESC

Limitations associated with the two time-scale approach to ESC
remains problematic.

Two (or more) time-scale assumption is required to ensure that
optimization operates at a quasi steady-state time-scale
Convergence is very slow.
Limits applicability in practice.

Improvement in transient performance are possible:
Standard ESC is an integral controller → Performance limitation
Add proportional action.
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Proportional Integral ESC
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Proportional Integral ESC

Proposed PI-ESC algorithm:

ẋ = f(x) + g(x)u

v̇ = −ωhv + y

˙̂u = − 1

τI
(−ω2

hv + ωhy) sin(ωt)

u = −k
a

(−ω2
hv + ωhy) sin(ωt) + û+ a sin(ωt).

Tuning parameters:
I k and τI are the proportional and integral gain
I a and ω are the dither amplitude and frequency
I ωh(>> ω) is the high-pass filter parameter.
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Proportional Integral ESC

Theorem 1
Consider the nonlinear closed-loop PIESC system with cost function
y = h(x). Let Assumptions 1, 2, 3 and 4 hold. Then

1 there exists a τ∗I such that for all τI > τ∗I the trajectories of the
nonlinear system converge to an O(1/ω) neighbourhood of the
unknown optimum equilibrium, x∗ = π(u∗),

2 there exists ω∗ > 0 such that, for any ω > ω∗, the unknown
optimum is a practically stable equilibrium of the PIESC system
with a region of attraction whose size grows with the ratio a

k ,
3 ‖x− x∗‖ enters an O( 1

ω ) +O( k
ωa) +O( aω ) neighbourhood of the

origin and ‖û− u∗‖ enters an O( 1
ω ) +O( 1

ωaτI
) +O( a

τIω
) of the

origin.
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Proportional Integral ESC

Proof of theorem demonstrates that:
I the proportional action minimizes the impact of the time scale

separation
I the integral action acts as a standard perturbation based ESC
I Combined action guarantees stabilization of the unknown

equilibrium
I With fast convergence

Impact of dither signal is inversely proportional to the frequency
Size of ROA is proportional to a

k .
PIESC acts as a dynamic output feedback nonlinear
controller.
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Example 1

We consider the following dynamical system taken from Guay and
Zhang [2003]:

ẋ1 =x21 + x2 + u

ẋ2 =− x2 + x21

The cost function to be minimized is given by: y = −1− x1 + x21.

the optimum cost is y∗ = −1.25 and occurs at u∗ = −0.5, x∗1 = 0.5,
x∗2 = 0.25

The tuning parameters are chosen as: k = 10, τI = 0.1, a = 10,
ω = 100 with ωh = 1000.
Outperforms the model-based approach of Guay and Zhang [2003]
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Example 1
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RLS Proportional Integral ESC

Parameterize ẏ as:

ẏ = θ0 + θ1u = φT θ (4)

where φ = [1, uT ]T and θ = [θ0, θ
T
1 ]T .

θ0 and θ1 are unknown time-varying parameters.
Proposed PI-ESC given by:

u = −kθ̂1 + û+ d(t)

˙̂u = − k
τI
θ̂1

where
I θ̂1 is the estimation of θ1.
I k is the proportional gain
I τI is the integral time constant.
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Parameter Estimation

The proposed time-varying parameter estimation scheme consists of an
output prediction mechanism.

˙̂y = φT θ̂ +Ke+ cT
˙̂
θ (5)

ċT = −KcT + φT (6)
˙̂η = −Kη̂. (7)

where
θ̂ are parameter estimates
e = y − ŷ and θ̃ = θ − θ̂
K is a positive constant to be assigned
c ∈ Rp is the solution of the differential equation:
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Parameter Estimation

The parameter estimation law is given by:

Σ̇−1 =− Σ−1ccTΣ−1 + kTΣ−1 − δΣ−2 (8)

with initial condition Σ−1(t0) = 1
αI, and the parameter update law:

˙̂
θ =Proj(Σ−1(c(e− η̂)− δ

2
θ̂),Θ0), θ̂(t0) = θ0 ∈ Θ0, (9)

where δ is a positive constant. Proj{φ, θ̂} denotes a Lipschitz
projection operator Krstic et al. [1995] such that

−Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (10)

θ̂(t0) ∈ Θ0 =⇒ θ̂ ∈ Θ, ∀t ≥ t0 (11)

where Θ , B(θ̂, zθ),
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Parameter Estimation

Assumption 4: There exists constants α1 > 0 and T > 0 such
that ∫ t+T

t
c(τ)c(τ)Tdτ ≥ α1I (12)

∀t > 0. �

Theorem 1

Let Assumptions 1 to 4 hold. Consider the extremum-seeking controller
and the parameter estimation algorithm. Then there exists tuning
parameters k, kT , K and τ∗I such that for all τI > τ∗I . the system
converges exponentially to an O(D/τI) neighbourhood of the minimizer
x∗ of the measured cost function y.
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Example 2

Consider the following system

ẋ1 = x2

ẋ2 = −x1 − x2 + u

with the following cost function:

y = 4 + (x1 − 1.5)2 + x22.

Tuning parameters: kT = 20, K = 20I, k = 0.25 and τI = 0.15.
d(t) = 0.1 sin(10t).

The initial conditions are θ̂(0) = [0, −1]T ,
x1(0) = x2(0) = u(0) = 0.
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Example 2
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Figure : State trajectories as a function of time.
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Example 2
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Figure : Input u(t) and output y(t).

PI-ESC provides significant improvement in transient performance
(as opposed to TVESC).
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Discrete-time ESC

Design of discrete-time ESC systems is not as prevalent:
I Discrete-time ESC [Ariyur and Krstic, 2003], [Choi et al., 2002]

with application to PID tuning in [Killingsworth and Krstic, 2006].
I Adaptive estimation approach [Guay, 2014]
I Discrete-time ESC subject to stochastic perturbations [Manzie and

Krstic, 2009] and [Liu and Krstic, 2014b].
I Approximate parameterizations of the unknown cost function [Ryan

and Speyer, 2010].
I Analysis of nonlinear-optimization algorithms [Teel and Popovic,

2001].
I Global sampling methods [Nesic et al., 2013].

Discrete-time techniques cannot be derived directly from continuous-time
techniques.
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Problem Definition

ESC objectives:
Given an (unknown) nonlinear discrete-time dynamical system and
(unknown) measured cost function:

xk+1 = xk + f(xk) + g(xk)uk (13)
yk = h(xk) (14)

The objective is to steer the system to the equilibrium x∗ and u∗

that achieves the minimum value of y(= h(x∗)).
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Proportional Integral ESC

The cost function dynamics are parameterized as follows:

yk+1 = yk + θ0,k + θT1,k(uk − ûk)
where
θ0,k and θ1,k are the time-varying parameters, θ0,k = Ψ0,k and
θ1,k = ΨT

1,k.
Proposed PI-ESC given by:

uk = −kg θ̂1,k + ûk + dk

ûk+1 = ûk −
1

τI
θ̂1,k

where
I θ̂1,k is the estimation of θ1,k.
I kg is the proportional gain
I τI is the integral time constant.
I dk is the dither signal.
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Proportional Integral ESC

Proposed parameter estimation routine given by:

ŷk+1 =ŷk +K(yk − ŷk) + φTk θ̂k + ωTk (θ̂1,k+1 − θ̂1,k)
Σk+1 =αΣk + ωkω

T
k + σI

θ̂k+1 =Proj{θ̂k + (αΣk + σI)−1ωkQk(ek − η̂k),Θk}
Qk =(1 + wTk (αΣk + σI)−1wk)

−1

ωk+1 =ωk −Kωk + φk, η̂k+1 = η̂k −Kη̂k

φTk = [1, (uk − ûk)T ]T , θ̂k = [θ̂0,k, θ̂
T
1,k]

T .
Proj represents an orthogonal projection onto the surface of the
uncertainty set Θk = B(θ̂c, zθ̂c).
Tuning parameters are α, σ and K.
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Proportional Integral ESC
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xk+1 = xk + f(xk) + g(xk)uk

yk = h(xk)

Figure : Schematic representation of the PI-ESC approach.
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Proportional Integral ESC

Assumption 4 [Goodwin and Sin, 2013]
There exists constants βT > 0 and T > 0 such that

1

T

k+T−1∑
i=k

ωiω
T
i > βT I, ∀k > T. (15)

Theorem 2
Consider the nonlinear discrete-time system (13) with cost function
(14), the extremum seeking controller and parameter estimation scheme.
Let Assumptions 1-6 be fulfilled. Then there exists positive constants α,
K, kg(> k∗g) and τI such that for every τI ≥ τ∗I , the states xk and input
uk of the closed-loop system enter a neighbourhood of the unknown
optimum (x∗, u∗).
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Simulation: Example 1

Consider a simple, 1st order, dynamical system:

xk+1 = 0.8xk + uk

yk = (xk − 3)2 + 1

The steady-state optimum occurs at

u∗ = 0.6

y∗ = 1.
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Distributed Extremum seeking control
Internet network control design

The discrete-time ESC approach can be generalized for the design
of distributed optimization and control of complex unknown
networks
ESC can adjust local actions in the absence of any knowledge
about the underlying dynamics and network interactions
Application to air-based (balloon) internet system design
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Air-based internet
Why balloons?

Float in the stratosphere (10–50 km altitude)
High enough to avoid weather and airplanes

I Airplanes typically fly below 15 km altitude
Low enough for fast connections without lag

I Satellites fly in low-earth orbit at around
1200 km altitude

Float passively to minimize energy costs
Solar panels help balloons stay up for hundreds
of days
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Modeling balloon dynamics
Basics

Each balloon moves in a spherical shell
Altitude is limited to 10−50km
Earth’s radius is 6371km so we can neglect altitude
ith balloon’s position can be represented by a point, qi ∈ S2.
Altitude, ui, will be used as an input parameter

Assumption 1
The balloons move exactly with the wind currents and assume dynamics
characterized by local wind patterns.
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Modeling balloon dynamics
Nonlinear dynamic model

For each altitude, ui, let fui : R× S2 → TS2 be a time varying
vector field on the sphere. Then the balloon’s dynamics are:

q̇i = fui(t, qi) (16)

For simulation: An approximate model of fui can be created by
interpolating gridded wind data from the NOAA

Assumption 2
The time-varying vector fields fui ∈ X(R, S2) are smooth and the map
ui 7→ fui is smooth
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Voronoi partitions
Definition

Let Γi be the region of Earth where users are connected to balloon
i

What should the regions Γi look like?
Define the Voronoi partition by:

Γi =
{
q ∈ S2 | G(q, qi) < G(q, qj)∀j 6= i

}
(17)

where G(·, ·) is the round metric on S2.
Voronoi partitions ensure each user is connected to the nearest
balloon
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Controller design
Control objectives

Connect all users to a balloon with a satisfactory connection
Balloons should coordinate their own motion
The control algorithm should rely on measurements and
communication but not a model
Balloons must float passively with the wind
Each balloon should try to position itself such that internet traffic
is shared equally between all balloons

40 / 59



Controller design
Existing approaches

Google intends on using “some complex algorithms and lots of
computing power” (Official Google Blog [2013])
Sniderman showed that lots of computing power is unnecessary
(Sniderman et al. [2015])

I Uses a geometric, block-circulant approach
I Algorithms rely on a linear model of wind currents
I Simulations only performed on a circle and do not generalize to a

sphere

Can we solve control a non-linear 2-dimensional system without
lots of computing power?
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Controller design
Distributed architecture
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Controller design
Distributed architecture as seen by one balloon

Balloon iyi ui

Ĵi Ĵi Ĵi Ĵi

Ĵj Ĵk Ĵ`
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Controller design
Consensus estimation

Each balloon measures yi and estimates 1
pJ by a consensus algorithm[

Ĵ [k + 1]− Ĵ [k]
ρ[k + 1]− ρ[k]

]
=

[
−κP I − κIL −I
κPκIL 0

] [
Ĵ [k]
ρ[k]

]
∆t

+

[
κP I
0

]
y[k]∆t+

[
I
0

]
∆y[k]

(18)

Example (Laplacian matrix)

1 2

3

45

L =


3 −1 0 −1 −1
0 1 0 0 −1
−1 −1 4 −1 −1
−1 0 0 2 −1
0 −1 0 0 1


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Controller design
Extremum seeking control (ESC)

The objective of ESC is to minimize a measured cost
Balloons estimate the gradient of the Ĵi with respect to ui and
move in that direction
We will use the PI form of ESC:

ui[k] = −kg θ̂1,i[k] + ûi[k] + di[k] (19)

ûi[k + 1] = ûi[k]− 1

τI
θ̂1,i[k] (20)

θ̂1,i is the gradient estimate, kg and τI are tuning parameters, and
di is a dither signal
Dither signals must all have different frequencies
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Controller design
Parameter estimation

The total cost dynamics can be parameterized as:

1

p
∆J [k + 1] = θ0,i[k] + θ1,i[k]ui[k] = θ>i [k]φi[k] (21)

The parameter vector, θi, can be estimated using a variation of
recursive least squares Adetola and Guay [2008]:

Σi[k + 1] = αΣi[k] +wi[k]w>i [k] (22)

θ̂i[k + 1] = Projγθ

(
θ̂i[k] +

Σ−1i [k]wi[k] (ei[k]− η̂[k])

α+w>i [k]Σ−1i [k]wi[k]

)
(23)
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Controller design
Single balloon block diagram
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Simulation results
Overview

1200 balloons floating between 10 kPa and 1 kPa (15–26 km
altitude)
Wind model is an interpolation of wind data on March 8, 2016 at
17:00 UTC from the NOAA National Oceanic and Atmospheric
Administration [2016]
Cost function depends on Voronoi area, Ai, and distance from
centroid, qc,i ∈ Γi

yi =

(
Ai −

At
p

)2

+ G (qi, qc,i)
2 (24)

Each balloon communicates with its Delaunay-neighbours and
implements identical discrete-time distributed ESC

∆t κP κI K α τI Kg D γθ

0.1h 1 0.5 0.8 0.8 10 1 0.1 1
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Simulation results
Launch sites

Many balloons must all start
at one of several launch sites
For simulation, we have chosen
12 large cities around the
world as launch sites

City Country

New York USA
Mexico City Mexico
São Paulo Brazil
Buenos Aires Argentina
Paris France
Moscow Russia
Lagos Nigeria
Kinshasa DR Congo
Tokyo Japan
Delhi India
Jakarta Indonesia
Manila Philippines
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Simulation results
Balloons without controllers launched from cities
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Simulation results
ESC balloons launched from cities
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Simulation results
Cost function trajectories for balloons launched from cities
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Concluding Remarks

ESC can be used to solve of number of problems where:
I Exact mathematical nature of the input-output dynamics are

unknown
I Cost function can be measured or inferred

Useful for the development of a wealth of new tools in PSE
I Feedback stabilization
I Observer design
I Large scale system optimization
I Systematic design of RTO systems
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Outlook

Beyond existing techniques there are a wealth of new tools that are
emerging:

I ESC-based MPC
I Machine Learning
I Large optimization on clouds, etc...

It is an adaptive, robust, real-time optimization technique with
strong potential in many areas:

I Automotive
I Building Systems Management
I Petroleum Production Technologies
I Industrial energy management
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