

Recent Advances in Paper Machine Control Q. Lu¹, M.G. Forbes², R.B. Gopaluni¹, P.D. Loewen¹, J.U. Backström², **G.A. Dumont**¹

1 - University of British Columbia 2 - Honeywell Process Solutions Vancouver, Canada

LCCC Process Control Workshop – Lund - September 30, 2016

Research Interests

- Adaptive Control, predictive control, system identification, control of distributed parameter systems, control performance monitoring,
- Applications of advanced control to process industries, particularly pulp and paper:
 - Kamyr digester
 - Bleach plant
 - Thermomechanical pulping
 - Paper machine.

My Research Lab then....

Research Interests

- Biomedical applications of control and signal processing:
 - Automatic drug delivery, closed-loop control of anesthesia,
 - Physiological monitoring in the OR and ICU, modeling and
 - Identification of physiological systems (cardiovascular system, circadian rhythms),
 - Biosignal processing (EEG, ECG, etc...), detection of epileptic seizures,
 - Identification of the dynamics of the autonomic nervous system,
 - Low-cost mobile health technology for global health

My Research Lab now...

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Back to the Paper Machine

Honeywell

 We have been collaborating with Honeywell Process Solutions since 1986

 Pulp stock is extruded on to a wire screen up to 11m wide and may travel faster than 100km/h.

Initially, the pulp stock is composed of about 99.5% water and 0.5% fibres.

 Newly-formed paper sheet is pressed and further dewatered.

The pressed sheet is then dried to moisture specifications

The paper machine pictured is 200 metres long and the paper sheet travels over 400 metres.

scanner

Honeywell

• The finished paper sheet is wound up on the reel.

The moisture content at the dry end is about 5%. It began as pulp stock composed of about 99.5% water.

Outline

- Introduction
- Adaptive control for the MD process
- Adaptive control for the CD process
- Summary

Motivations

Honeywell

- For most paper machines, the initial controller is used for months even years without retuning the controller.
- Dynamics of paper machines vary over time due to changes in operation conditions.
- Control performance may deteriorate due to some factors, e.g., irregular disturbance. model-plant mismatch.

Control performance vs. usage time (M. Jeliali, Springer, 2013)

Objectives

- Monitoring controller performance online for MD and CD processes.
- Identifying whether model-plant mismatch happens.
- Re-identifying process model in the case of significant mismatch:
 - Optimal input design in closed-loop;
 - Closed-loop identification.
- Re-tuning controllers based on updated process model.
- Performing this adaptive scheme in closed-loop without interrupting the process or user intervention.

Adaptive Control Framework

Adaptive control scheme for both MD and CD

• Monitoring includes control performance assessment and modelplant mismatch detection.

Adaptive Control for the Machine-Directional Process of Paper Machines

Outline

- Performance monitoring
- Model-plant mismatch detection
- Optimal input design
- Summary

Performance Monitoring

Honeywell

- Minimum variance benchmark: time-delay as the main performance limitation.
- Decompose output into controller-invariant and controllerdependent

$$y(t) = \underbrace{f_0 e(t) + f_1 e(t-1) + \dots + f_{d-1} e(t-d+1)}_{F(q^{-1}) \text{ controller-invariant}} + R(z^{-1})e(t-d)$$

• MVC performance index

$$\eta = \frac{var[Fe(t)]}{var[y(t)]}$$

• Moving average modeling of y(t) to estimate performance index.

Performance Monitoring Example

Introduce a gain mismatch at time t=300 min

Pitfalls of using MVC or MVClike benchmark to detect mismatch:

- Various factors can degrade performance index;
- Not able to discriminate mismatch from other causes;
- Noise model change can ٠ degrade PI but should not trigger an identification.

Model-Plant Mismatch Detection

- Mismatch detection is the core of our adaptive control scheme.
- Objective: a method to directly detect mismatch online, with routine operating data that may lack any external excitations.
- Difficulty: large variance on parameter estimates; limited amount of data.
- Idea: using a period of 'good data' as benchmark and compare it with the data under test.
- Techniques: a novel consistent closed-loop identification method; train support vector machine (SVM) with 'good data'; predict mismatch with SVM on testing data.

Honeywell

• The training and testing idea:

- MPM indicator: +1 means no mismatch; -1 means mismatch; 0 means SVM is under training.
- Actual algorithm works in moving window form.

Mismatch detection logic flow

Honeywell

SVM Training and Testing

Illustration of SVM training and testing idea

Cluster of impulse responses of process model estimates from 'good data'

Mismatch detection is viewed as 'outlier detection'

• Can monitor MPM and noise change independently.

Mismatch Detection Example

• 3x3 lower triangular MD process with 3 MVs: stockflow, steam4, steam3, and 3 CVs: weight, press moisture and real moisture.

For ARX model structure

$$A(q^{-1},\theta)y(t) = B(q^{-1},\theta)u(t-d) + e(t)$$

• Covariance of parameter estimate $\hat{\theta}$ is

$$cov(\hat{\theta}) = (\Psi^T \Psi)^{-1} = R_u^{-1}$$

where Ψ is the regression matrix.

• Optimal input design is formulated as minimizing R_u^{-1} , or maximizing R_u , by choosing input signal

 $\max_u trace(R_u)$

• It is shown that $R_u = U^T G U$, where U contains input signal, G is determined by process model information. The input design

 $\max_u trace(R_u)$

$$s.t. \quad u_t \in \mathcal{U}, y_t \in \mathcal{Y}, \qquad t=1,\ldots,N$$

Moving Horizon Input Design

Honeywell

- Input design requires true parameter values that are not available.
- Cannot guarantee input and output within bounds due to the difference between initial and true parameter values.
- Moving horizon input design framework

Optimal Input Design Example

Honeywell

 2x2 lower triangular MD process, 2 CVs: dry weight, size press moisture, and 2 MVs: stock flow, dryer pressure

27

Optimal Input Design Example

Honeywell

 2x2 lower triangular MD process, 2 CVs: dry weight, size press moisture, and 2 MVs: stock flow, dryer pressure

Recursive estimation of parameters

Summary

- Implemented the MVC benchmark to monitor controller performance for the MD process.
- Presented a novel closed-loop identification that can give consistent estimate for process model without requiring *a priori* knowledge on noise model;
- Proposed an SVM-based approach that can effectively detect mismatch and is not affected by noise model change.
- Designed an optimal input design scheme by maximizing the Fisher information matrix subject to a set of constraints on process input and output.

Adaptive Control for the Cross-**Directional Process of Paper Machines**

Outline

- CD process model and control
- Performance monitoring strategy
- Model-plant mismatch detection
- CD closed-loop input design
- Summary

CD Process Control

• Objective: keep paper sheet properties as flat as possible

CD Process Model

Only consider the single array case

$$y(t) = g(z^{-1})Gu(t) + H(z^{-1})e(t)$$

• Temporal parameter vector $\theta_T = [\tau, d]$. Spatial parameter vector is collected into $\theta_S = [\gamma, \xi, \beta, \alpha]$.

Single actuator spatial response

Structure of G matrix

• A performance index (PI) to assess control performance:

 $PI = \frac{trace(\Sigma_{benchmark})}{trace(\Sigma_{output})}$

where $\Sigma_{benchmark}$ is the covariance of controller-invariant portion of output profile. Σ_{output} is the covariance of overall output profile.

- How to find controller-invariant parts from output profile?
 - Temporal direction: time-delay, unpredictable components;
 - Spatial direction: limited spatial bandwidth, uncontrollable parts.

Honeywell

• Precisely, decompose output profile y(t) as:

$$y(t) = y_{p,c}(t) + \underbrace{y_{p,uc}(t) + y_{up,c}(t) + y_{up,uc}(t)}_{T}$$

controller-invariant

• Moving average (MA) form of controllable output profile

$$y_c(t) = \underbrace{f_0 e_c(t) + \dots + f_{d-1} e_c(t-d+1)}_{\text{unpredictable due to time-delay}} + G_R(z^{-1})e_c(t-d)$$

• Performance index η is defined as

$$\eta = \frac{trace\left[\sum_{i=0}^{d-1} f_i \Sigma_{e_c} f_i^T\right]}{trace\left[\Sigma_{y_c}\right]}$$

Performance Monitoring Example

• PI is consistent with variance trend.

16-10-14

Honeywell

Model-Plant Mismatch Detection

- Various factors may drop performance index.
- It is not easy to discriminate mismatch from other causes.
- We hope to detect the mismatch with routine operating data where external excitations may not exist.
- Extend the SVM technique to the CD process.

• Two main building blocks: routine closed-loop ID and SVM tuning.

Optimal Input Design in Closed-loop

Fig. spatial input design scheme

- Focus on optimal input design for steady-state CD model G.
- Large number of inputs and outputs make it rather complex.
- Parsimonious noncausal modeling

$$y(x) = \frac{M(\lambda)M(\lambda^{-1})}{N(\lambda)N(\lambda^{-1})}r(x) + \frac{R(\lambda)R(\lambda^{-1})}{S(\lambda)S(\lambda^{-1})}e(x)$$

Honeywell

Optimal Input Design in Closed-loop

Honeywell

• Causal-equivalent representation

$$\tilde{y}(x) = \frac{M^2(\lambda^{-1})}{N^2(\lambda^{-1})}r(x) + \frac{R^2(\lambda^{-1})}{S^2(\lambda^{-1})}\tilde{e}(x)$$

• Input design based on causal-equivalent representation

• Finite parameterization of spectrum $\Phi_r(\omega)$ and reduce the problem into convex optimization.

Optimal Input Design in Closed-loop

Honeywell

- Comparison between optimal input, spatial bump perturbation and white noise input (same variance with optimal input).
 - 100 Monte-Carlo simulations under three dither signals
 - Closed-loop identification with data collected from every simulation
 - Estimates under optimal input have smallest variance
 - Estimates under bump perturbation have largest variance

- Q. Lu, M.G. Forbes, R.B. Gopaluni, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. Performance assessment of cross-directional control for paper machines. IEEE Transactions on Control Systems Technology, 2016.
- Q. Lu, L.D. Rippon, R.B. Gopaluni, M.G. Forbes, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. Cross-directional controller performance monitoring for paper machines. American Control Conference, 2015.
- Q. Lu, L.D. Rippon, R.B. Gopaluni, M.G. Forbes, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. A closed-loop ARX output-error identification method for industrial routine operating data. 2016.
- Q. Lu, R.B. Gopaluni, M.G. Forbes, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. Identification of symmetric noncausal processes: cross-directional response modeling in paper machines. 2016.
- Q. Lu, R.B. Gopaluni, M.G. Forbes, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. Model-plant mismatch detection with support vector machines. 2016.

- Q. Lu, R.B. Gopaluni, M.G. Forbes, P.D. Loewen, J.U. Backstrom, and G.A. Dumont. Noncausal modeling and closed-loop optimal input design for cross-directional processes of paper machines. 2016.
- Q. Lu, L.D. Rippon, P.D. Loewen, R.B. Gopaluni. Adaptive control of paper machines. Technical report, 2016.
- M. Yousefi, Q. Lu, R.B. Gopaluni, P.D. Loewen, M.G. Forbes, G.A. Dumont, J.U. Backstrom. Detecting model-plant mismatch without external excitation. American Control Conference, 2015.
- M. Yousefi, L.D. Rippon, M.G. Forbes, R.B. Gopaluni, P.D. Loewen, G.A. Dumont, J.U. Backstrom. Moving-horizon predictive input design for closed-loop identification. AdChem, 2015.
- M. Yousefi, M.G. Forbes, R.B. Gopaluni, G.A. Dumont, J.U. Backstrom, A. Malhotra. Sensitivity of controller performance indices to model-plant mismatch: an application to paper machine control. American Control Conference, 2015.